metal-organic compounds
The one-dimensional organic–inorganic hybrid: catena-poly[bis[1-(3-ammoniopropyl)-1H-imidazolium] [[iodidoplumbate(II)]-tri-μ-iodido-plumbate(II)-tri-μ-iodido-[iodidoplumbate(II)]-di-μ-iodido]]
aLaboratoire de Physique Appliquée (LPA), Faculté des Sciences de Sfax, 3018, BP 802, Tunisia, and bLaboratoire de Cristallochimie et des Matériaux, Faculté des Sciences de Tunis, Tunisia
*Correspondence e-mail: habib.boughzala@ipein.rnu.tn
The organic–inorganic hybrid, {(C6H13N3)2[Pb3I10]}n, was obtained by the reaction of 1-(3-ammoniopropyl)imidazolium triiodide and PbI2 at room temperature. The structure contains one-dimensional {[Pb3I10]4−}n polymeric anions spreading parallel to [001], resulting from face–face–edge association of PbI6 distorted octahedra. One of the PbII cations is imposed at an inversion centre, whereas the second occupies a general position. N—H⋯I hydrogen bonds connect the organic cations and inorganic anions.
Related literature
For organic–inorganic hybrid materials, see: Billing & Lemmerer (2004); Dammak et al. (2009); Elleuch et al. (2007, 2010); Gebauer & Schmid (1999); Ishihara et al. (1990); Krautscheid et al. (2001). For the structures of lead iodide-based complexes, see: Maxcy et al. (2003); Mitzi et al. (2001); Mousdis et al. (1998); Papavassiliou et al. (1999); Samet Kallel et al. (2008).
Experimental
Crystal data
|
Refinement
|
Data collection: CAD-4 EXPRESS (Duisenberg, 1992); cell CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
10.1107/S160053681100941X/yk2002sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053681100941X/yk2002Isup2.hkl
Single crystals of (C6H13N3)2Pb3I10 were grown by the slow evaporation at room temperature of a solution containing PbI2 and C6H13N3I3 salts. An aqueous solution of HI was added to the aminopropylimidazole to synthesize C6H13N3I3 precursor. Under ambient conditions, stoechiometric amounts of C6H13N3I3 and PbI2 with excess HI were sailed in DMF. This mixture was stirred and remained clear without any precipitate. Pale-yellow flatted crystals were obtained few weeks later. Supplementary data for this paper are available from the IUCr electronic archives (Reference: CCDC 782074).
All H atoms attached to C and N atom were fixed geometrically and treated as riding with C—H = 0.97 Å (CH2) or 0.93 Å (CH) and N—H = 0.89 Å (NH3) or 0.86 Å (NH) with Uiso(H) = 1.2Ueq(C or N).
Data collection: CAD-4 EXPRESS (Duisenberg, 1992); cell
CAD-4 EXPRESS (Duisenberg, 1992); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).Fig. 1. View of the asymmetric unit of (C6H13N3)2Pb3I10 with some adjacent atoms showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) 1 - x, 2 - y, 1 - z, (ii) 1 - x, 2 - y, 2 - z] | |
Fig. 2. The crystal packing of (C6H13N3)2Pb3I10 viewed along [001] direction and showing the N—H···I hydrogen bonding (dashed lines). |
(C6H13N3)2[Pb3I10] | Z = 1 |
Mr = 2144.99 | F(000) = 916 |
Triclinic, P1 | Dx = 3.647 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.652 (3) Å | Cell parameters from 25 reflections |
b = 11.728 (5) Å | θ = 9–15° |
c = 11.972 (6) Å | µ = 20.81 mm−1 |
α = 117.21 (3)° | T = 293 K |
β = 98.05 (2)° | Flat, yellow |
γ = 107.17 (3)° | 0.4 × 0.2 × 0.02 mm |
V = 976.7 (9) Å3 |
Enraf–Nonius CAD-4 diffractometer | 2749 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.024 |
Graphite monochromator | θmax = 26.0°, θmin = 2.0° |
non–profiled ω/2θ scans | h = −10→2 |
Absorption correction: ψ scan (North et al., 1968) | k = −14→14 |
Tmin = 0.139, Tmax = 0.624 | l = −14→14 |
4950 measured reflections | 2 standard reflections every 120 min |
3796 independent reflections | intensity decay: 6% |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.036 | H-atom parameters constrained |
wR(F2) = 0.110 | w = 1/[σ2(Fo2) + (0.063P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max = 0.001 |
3796 reflections | Δρmax = 2.17 e Å−3 |
143 parameters | Δρmin = −2.09 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.00169 (17) |
(C6H13N3)2[Pb3I10] | γ = 107.17 (3)° |
Mr = 2144.99 | V = 976.7 (9) Å3 |
Triclinic, P1 | Z = 1 |
a = 8.652 (3) Å | Mo Kα radiation |
b = 11.728 (5) Å | µ = 20.81 mm−1 |
c = 11.972 (6) Å | T = 293 K |
α = 117.21 (3)° | 0.4 × 0.2 × 0.02 mm |
β = 98.05 (2)° |
Enraf–Nonius CAD-4 diffractometer | 2749 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.024 |
Tmin = 0.139, Tmax = 0.624 | 2 standard reflections every 120 min |
4950 measured reflections | intensity decay: 6% |
3796 independent reflections |
R[F2 > 2σ(F2)] = 0.036 | 0 restraints |
wR(F2) = 0.110 | H-atom parameters constrained |
S = 1.02 | Δρmax = 2.17 e Å−3 |
3796 reflections | Δρmin = −2.09 e Å−3 |
143 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Pb1 | 0.45091 (5) | 0.90517 (4) | 0.62320 (4) | 0.03669 (15) | |
Pb2 | 0.5000 | 1.0000 | 1.0000 | 0.03708 (18) | |
I1 | 0.76440 (9) | 0.98779 (8) | 0.52450 (7) | 0.0436 (2) | |
I2 | 0.14853 (9) | 0.82298 (7) | 0.74775 (7) | 0.0436 (2) | |
I3 | 0.67368 (10) | 0.82982 (8) | 0.79737 (7) | 0.0432 (2) | |
I4 | 0.59957 (11) | 1.21598 (7) | 0.90100 (8) | 0.0505 (2) | |
I5 | 0.30697 (11) | 0.59287 (8) | 0.38118 (8) | 0.0501 (2) | |
N9 | 0.2562 (18) | 0.3757 (14) | 0.5290 (12) | 0.073 (4) | |
H9A | 0.2959 | 0.4198 | 0.4885 | 0.109* | |
H9B | 0.1595 | 0.3006 | 0.4732 | 0.109* | |
H9C | 0.3332 | 0.3487 | 0.5545 | 0.109* | |
C8 | 0.223 (2) | 0.4705 (14) | 0.6451 (14) | 0.060 (4) | |
H8A | 0.1398 | 0.5000 | 0.6172 | 0.073* | |
H8B | 0.3281 | 0.5534 | 0.7047 | 0.073* | |
C7 | 0.1565 (18) | 0.3985 (15) | 0.7187 (14) | 0.057 (3) | |
H7A | 0.1032 | 0.4516 | 0.7762 | 0.069* | |
H7B | 0.0682 | 0.3058 | 0.6536 | 0.069* | |
C6 | 0.2864 (16) | 0.3825 (13) | 0.8013 (12) | 0.050 (3) | |
H6A | 0.3363 | 0.3245 | 0.7449 | 0.060* | |
H6B | 0.3773 | 0.4739 | 0.8663 | 0.060* | |
N1 | 0.2042 (13) | 0.3173 (9) | 0.8694 (9) | 0.045 (2) | |
C2 | 0.1429 (17) | 0.1818 (12) | 0.8230 (12) | 0.050 (3) | |
H2 | 0.1488 | 0.1127 | 0.7458 | 0.060* | |
N3 | 0.0710 (14) | 0.1625 (10) | 0.9077 (11) | 0.054 (3) | |
H3 | 0.0212 | 0.0825 | 0.8993 | 0.065* | |
C4 | 0.0878 (19) | 0.2879 (14) | 1.0096 (14) | 0.058 (3) | |
H4 | 0.0471 | 0.3025 | 1.0808 | 0.069* | |
C5 | 0.1731 (18) | 0.3842 (14) | 0.9870 (13) | 0.057 (3) | |
H5 | 0.2065 | 0.4805 | 1.0411 | 0.069* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pb1 | 0.0386 (3) | 0.0395 (2) | 0.0362 (2) | 0.01781 (19) | 0.01491 (18) | 0.02124 (19) |
Pb2 | 0.0412 (3) | 0.0372 (3) | 0.0332 (3) | 0.0167 (3) | 0.0139 (2) | 0.0179 (2) |
I1 | 0.0373 (4) | 0.0564 (4) | 0.0468 (4) | 0.0216 (4) | 0.0182 (3) | 0.0318 (4) |
I2 | 0.0343 (4) | 0.0428 (4) | 0.0479 (4) | 0.0126 (3) | 0.0151 (3) | 0.0210 (3) |
I3 | 0.0473 (4) | 0.0506 (4) | 0.0447 (4) | 0.0300 (4) | 0.0203 (3) | 0.0272 (3) |
I4 | 0.0590 (5) | 0.0321 (4) | 0.0514 (4) | 0.0121 (4) | 0.0103 (4) | 0.0213 (3) |
I5 | 0.0543 (5) | 0.0409 (4) | 0.0411 (4) | 0.0177 (4) | 0.0087 (4) | 0.0140 (3) |
N9 | 0.090 (10) | 0.089 (9) | 0.074 (8) | 0.051 (8) | 0.035 (7) | 0.057 (7) |
C8 | 0.085 (11) | 0.058 (8) | 0.062 (8) | 0.034 (8) | 0.029 (7) | 0.045 (7) |
C7 | 0.063 (9) | 0.065 (8) | 0.062 (8) | 0.030 (7) | 0.026 (7) | 0.042 (7) |
C6 | 0.045 (7) | 0.053 (7) | 0.055 (7) | 0.021 (6) | 0.019 (6) | 0.030 (6) |
N1 | 0.044 (6) | 0.038 (5) | 0.042 (5) | 0.015 (4) | 0.006 (4) | 0.017 (4) |
C2 | 0.055 (8) | 0.038 (6) | 0.041 (6) | 0.021 (6) | 0.005 (6) | 0.012 (5) |
N3 | 0.056 (7) | 0.041 (5) | 0.058 (6) | 0.007 (5) | 0.009 (5) | 0.030 (5) |
C4 | 0.068 (9) | 0.061 (8) | 0.058 (8) | 0.026 (7) | 0.038 (7) | 0.037 (7) |
C5 | 0.064 (9) | 0.045 (7) | 0.051 (7) | 0.020 (7) | 0.018 (7) | 0.018 (6) |
Pb1—I5 | 3.155 (2) | C8—H8A | 0.9700 |
Pb1—I1 | 3.1757 (13) | C8—H8B | 0.9700 |
Pb1—I3 | 3.2264 (14) | C7—C6 | 1.502 (18) |
Pb1—I1i | 3.2652 (13) | C7—H7A | 0.9700 |
Pb1—I2 | 3.3039 (14) | C7—H7B | 0.9700 |
Pb1—I4 | 3.309 (2) | C6—N1 | 1.473 (16) |
Pb2—I4 | 3.2105 (15) | C6—H6A | 0.9700 |
Pb2—I4ii | 3.2105 (14) | C6—H6B | 0.9700 |
Pb2—I3 | 3.2388 (14) | N1—C2 | 1.315 (15) |
Pb2—I3ii | 3.2388 (14) | N1—C5 | 1.375 (16) |
Pb2—I2ii | 3.263 (2) | C2—N3 | 1.331 (17) |
Pb2—I2 | 3.263 (2) | C2—H2 | 0.9300 |
I1—Pb1i | 3.2653 (13) | N3—C4 | 1.362 (16) |
N9—C8 | 1.460 (17) | N3—H3 | 0.8600 |
N9—H9A | 0.8900 | C4—C5 | 1.318 (19) |
N9—H9B | 0.8900 | C4—H4 | 0.9300 |
N9—H9C | 0.8900 | C5—H5 | 0.9300 |
C8—C7 | 1.536 (19) | ||
I5—Pb1—I1 | 90.09 (5) | C8—N9—H9C | 109.5 |
I5—Pb1—I3 | 89.89 (5) | H9A—N9—H9C | 109.5 |
I1—Pb1—I3 | 88.94 (4) | H9B—N9—H9C | 109.5 |
I5—Pb1—I1i | 95.96 (5) | N9—C8—C7 | 111.1 (11) |
I1—Pb1—I1i | 92.18 (4) | N9—C8—H8A | 109.4 |
I3—Pb1—I1i | 174.05 (2) | C7—C8—H8A | 109.4 |
I5—Pb1—I2 | 91.62 (5) | N9—C8—H8B | 109.4 |
I1—Pb1—I2 | 175.04 (2) | C7—C8—H8B | 109.4 |
I3—Pb1—I2 | 86.41 (4) | H8A—C8—H8B | 108.0 |
I1i—Pb1—I2 | 92.27 (4) | C6—C7—C8 | 116.4 (12) |
I5—Pb1—I4 | 172.82 (3) | C6—C7—H7A | 108.2 |
I1—Pb1—I4 | 94.09 (5) | C8—C7—H7A | 108.2 |
I3—Pb1—I4 | 84.36 (5) | C6—C7—H7B | 108.2 |
I1i—Pb1—I4 | 89.73 (5) | C8—C7—H7B | 108.2 |
I2—Pb1—I4 | 83.75 (5) | H7A—C7—H7B | 107.3 |
I4—Pb2—I4ii | 180.0 | N1—C6—C7 | 109.8 (10) |
I4—Pb2—I3 | 85.76 (4) | N1—C6—H6A | 109.7 |
I4ii—Pb2—I3 | 94.24 (4) | C7—C6—H6A | 109.7 |
I3—Pb2—I3ii | 180.0 | N1—C6—H6B | 109.7 |
I4ii—Pb2—I2 | 94.02 (5) | C7—C6—H6B | 109.7 |
I4—Pb2—I2 | 85.98 (5) | H6A—C6—H6B | 108.2 |
I3ii—Pb2—I2 | 93.10 (5) | C2—N1—C5 | 108.9 (12) |
I3—Pb2—I2 | 86.90 (5) | C2—N1—C6 | 124.3 (10) |
I2ii—Pb2—I2 | 180.0 | C5—N1—C6 | 126.8 (10) |
I3ii—Pb2—I2ii | 86.90 (5) | N1—C2—N3 | 106.8 (10) |
I3—Pb2—I2ii | 93.10 (5) | N1—C2—H2 | 126.6 |
I4ii—Pb2—I2ii | 85.98 (5) | N3—C2—H2 | 126.6 |
I4—Pb2—I2ii | 94.02 (5) | C2—N3—C4 | 110.1 (10) |
I4—Pb2—I3ii | 94.24 (4) | C2—N3—H3 | 124.9 |
I4ii—Pb2—I3ii | 85.76 (4) | C4—N3—H3 | 124.9 |
Pb1—I1—Pb1i | 87.82 (4) | C5—C4—N3 | 106.2 (11) |
Pb2—I2—Pb1 | 76.05 (4) | C5—C4—H4 | 126.9 |
Pb1—I3—Pb2 | 77.46 (4) | N3—C4—H4 | 126.9 |
Pb2—I4—Pb1 | 76.68 (5) | C4—C5—N1 | 108.0 (12) |
C8—N9—H9A | 109.5 | C4—C5—H5 | 126.0 |
C8—N9—H9B | 109.5 | N1—C5—H5 | 126.0 |
H9A—N9—H9B | 109.5 |
Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x+1, −y+2, −z+2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N9—H9A···I5 | 0.89 | 2.84 | 3.67 (2) | 156 |
N9—H9B···I2iii | 0.89 | 2.90 | 3.68 (2) | 147 |
N9—H9C···I5iv | 0.89 | 2.89 | 3.64 (2) | 143 |
Symmetry codes: (iii) −x, −y+1, −z+1; (iv) −x+1, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | (C6H13N3)2[Pb3I10] |
Mr | 2144.99 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 8.652 (3), 11.728 (5), 11.972 (6) |
α, β, γ (°) | 117.21 (3), 98.05 (2), 107.17 (3) |
V (Å3) | 976.7 (9) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 20.81 |
Crystal size (mm) | 0.4 × 0.2 × 0.02 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.139, 0.624 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4950, 3796, 2749 |
Rint | 0.024 |
(sin θ/λ)max (Å−1) | 0.616 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.036, 0.110, 1.02 |
No. of reflections | 3796 |
No. of parameters | 143 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 2.17, −2.09 |
Computer programs: CAD-4 EXPRESS (Duisenberg, 1992), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).
Pb1—I5 | 3.155 (2) | Pb1—I4 | 3.309 (2) |
Pb1—I1 | 3.1757 (13) | Pb2—I4 | 3.2105 (15) |
Pb1—I3 | 3.2264 (14) | Pb2—I3 | 3.2388 (14) |
Pb1—I1i | 3.2652 (13) | Pb2—I2 | 3.263 (2) |
Pb1—I2 | 3.3039 (14) | ||
I5—Pb1—I1 | 90.09 (5) | I1—Pb1—I4 | 94.09 (5) |
I5—Pb1—I3 | 89.89 (5) | I3—Pb1—I4 | 84.36 (5) |
I1—Pb1—I3 | 88.94 (4) | I1i—Pb1—I4 | 89.73 (5) |
I5—Pb1—I1i | 95.96 (5) | I2—Pb1—I4 | 83.75 (5) |
I1—Pb1—I1i | 92.18 (4) | I4ii—Pb2—I3 | 94.24 (4) |
I3—Pb1—I1i | 174.05 (2) | I4—Pb2—I2 | 85.98 (5) |
I5—Pb1—I2 | 91.62 (5) | I3—Pb2—I2 | 86.90 (5) |
I1—Pb1—I2 | 175.04 (2) | Pb1—I1—Pb1i | 87.82 (4) |
I3—Pb1—I2 | 86.41 (4) | Pb2—I2—Pb1 | 76.05 (4) |
I1i—Pb1—I2 | 92.27 (4) | Pb1—I3—Pb2 | 77.46 (4) |
I5—Pb1—I4 | 172.82 (3) | Pb2—I4—Pb1 | 76.68 (5) |
Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x+1, −y+2, −z+2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N9—H9A···I5 | 0.89 | 2.84 | 3.67 (2) | 155.8 |
N9—H9B···I2iii | 0.89 | 2.90 | 3.68 (2) | 146.5 |
N9—H9C···I5iv | 0.89 | 2.89 | 3.64 (2) | 143.2 |
Symmetry codes: (iii) −x, −y+1, −z+1; (iv) −x+1, −y+1, −z+1. |
References
Billing, D. G. & Lemmerer, A. (2004). Acta Cryst. C60, m224–m226. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Dammak, T., Koubaa, M., Boukheddaden, K., Boughzala, H., Mlayah, A. & Abid, Y. (2009). J. Phys. Chem. 113, 19305–19309. CAS Google Scholar
Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92–96. CrossRef CAS Web of Science IUCr Journals Google Scholar
Elleuch, S., Boughzala, H., Driss, A. & Abid, Y. (2007). Acta Cryst. E63, m306–m308. Web of Science CSD CrossRef IUCr Journals Google Scholar
Elleuch, S., Dammak, T., Abid, Y., Mlayah, A. & Boughzala, H. (2010). J. Lumin. 130, 531–535. CrossRef CAS Google Scholar
Gebauer, T. & Schmid, G. (1999). Z. Anorg. Allg. Chem. 625, 1124–1128. CrossRef CAS Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
Ishihara, T., Takahashi, J. & Goto, T. (1990). Phys. Rev. B, 42, 17, 11099–11107. Google Scholar
Krautscheid, H., Lode, C., Vielsack, F. & Vollmer, H. (2001). J. Chem. Soc. Dalton Trans. pp. 1099–1104. Web of Science CSD CrossRef Google Scholar
Maxcy, K. R., Willett, R. D., Mitzi, D. B. & Afzali, A. (2003). Acta Cryst. E59, m364–m366. Web of Science CSD CrossRef IUCr Journals Google Scholar
Mitzi, D. B., Chondroudis, K. & Kagan, C. R. (2001). IBM J. Res. Dev. 45, 29–45. CrossRef CAS Google Scholar
Mousdis, G. A., Gionis, V., Papavassiliou, C. P. & Terzis, A. (1998). J. Mater. Chem. 8, 2259–2262. CrossRef CAS Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Papavassiliou, G. C., Mousdis, G. A. & Koutselas, I. B. (1999). Adv. Mater. Opt. Electron. 9, 265–271. CrossRef CAS Google Scholar
Samet Kallel, E., Boughzala, H., Driss, A. & Abid, Y. (2008). Acta Cryst. E64, m921. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Recently, self-assembling organic–inorganic hybrid compounds have been the focus of a great number of investigations owing to their unique structural, magnetic, optical nonlinear and optoelectronic functionality (Papavassiliou et al., 1999; Ishihara et al., 1990; Mitzi et al., 2001). In particular, the lead iodide-based hybrid materials have been extensively studied (Gebauer & Schmid, 1999; Dammak et al., 2009; Elleuch et al., 2010) since they show strong room temperature excitonic optical features with large exciton binding energy and oscillator strengths. These low dimensional complexes include zero dimensional (0D), one dimensional (1D), and two dimensional (2D) lead iodide networks with organic groups as spacers. Among them, 1D-hybrids are more attractive in nanoscaled applications since they form a variety of crystalline structures, which differ in the inorganic chain where the [PbI6] octahedra can be connected in different ways: face sharing (Elleuch et al., 2007), edge sharing (Samet Kallel et al., 2008), corner sharing (Mousdis et al., 1998) or through several combinations of these various types of sharing (Maxcy et al., 2003; Billing & Lemmerer, 2004; Krautscheid et al., 2001), as in the case of our compound. We present here the structure of the organic–inorganic one dimensional hybrid compound (C6H13N3)2Pb3I10.
The crystal structure of the title compound consists of (Pb3I10)n4n- chains extending along [001] with the 1-(3-ammoniopropyl)-imidazolium cations as counter-ions (Fig. 1). The inorganic anion, shown in Fig. 1, can be considered as a set of mixed face-shared/edge-shared octahedra. In fact, the unit cell contains three octahedra with two crystallographically independent Pb atoms: Pb1 and Pb2. The central Pb2 octahedron is connected to the Pb1 octahedra by shared faces, while the Pb1 octahedra are linked via edge-sharing at both ends of Pb3I104- to adjacent units.
The coordination octahedron of the central lead ion Pb2 is only slightly distorted since it is located on an inversion centre and is bound to three unique I atoms: I2, I3 and I4, which participate in the face-sharing between the Pb2 and Pb1 octahedra. The bond lengths around Pb2 are very similar (3.2105 (15), 3.2388 (14), 3.263 (2) Å), the bond angles I—Pb2—I deviate slightly from ideal octahedral values, ranging from 83° to 94°. In contrast, Pb1 has a more distorted environement with Pb—I distances ranging from 3.155 (2) to 3.309 (2) Å and with all cis and trans angles different (see Table 1). This Pb atom is bonded to five unique I atoms, where two I1 atoms are responsible for the edge sharing between the neighbouring units to form one-dimensional infinite chains. Atom I5 is the only halide not involved in any bonding with adjacent octahedra and has the shortest Pb—I distance [3.155 (2) Å].
Cations fill channels between the anionic chains (Fig.2). Each terminal ammonium group forms three N—H···I hydrogen bonds to I atoms of three different chains (see Table 2).