metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages m404-m405

[4-Bromo-N-(pyridin-2-yl­methyl­­idene)aniline-κ2N,N′]bis­­(1,1,1,5,5,5-hexa­fluoro­pentane-2,4-dionato-κ2O,O′)nickel(II)

aMolecular Technology Research Unit, Department of Chemistry, Walailak University, Thasala, Nakhon Si Thammarat 80161, Thailand, bDepartment of Chemistry, Faculty of Science, Taksin University, Songkhla 90000, Thailand, and cDepartment of Chemistry, Faculty of Science, University of Sheffield, Brook Hill, Sheffield S3 7HF, England
*Correspondence e-mail: kphimpha@wu.ac.th

(Received 3 August 2010; accepted 15 February 2011; online 9 March 2011)

The title compound, [Ni(C5HF6O2)2(C12H9BrN2)], the NiII atom exhibits a pseudo-octa­hedral coordination geometry. The structure packs through C—H⋯Br inter­actions, forming a hydrogen-bonded ladder. There are also strong hydrogen-bonding inter­actions between two of the O atoms of the β-diketonate ligands and two H atoms on the pyridine ring of the Schiff base ligand.

Related literature

For related structures, see: Harding, Harding, Sophonrat & Adams (2010[Harding, P., Harding, D. J., Soponrat, N. & Adams, H. (2010). Acta Cryst. E66, m1138-m1139.]); Harding, Harding, Tinpun et al. (2010[Harding, P., Harding, D. J., Tinpun, K., Samuadnuan, S., Sophonrat, N. & Adams, H. (2010). Aust. J. Chem. 63, 75-82.]); Aakeröy et al. (2004[Aakeröy, C. B., Desper, J. & Valdés-Martínez, J., (2004). CrystEngComm, 6, 413-418.], 2005[Aakeröy, C. B., Schultheiss, N. & Desper, J. (2005). Inorg. Chem. 44, 4983-4991.], 2007[Aakeröy, C. B., Schultheiss, N., Desper, J. & Moore, C. (2007). CrystEngComm, 9, 421-426.]). For an introduction to crystal engineering, see: Braga et al. (2002[Braga, D., Desiraju, G. R., Miller, J. S., Orpen, A. G. & Price, S. L. (2002). CrystEngComm, 4, 500-509.]). For details concerning the coordination of additional ligands to β-diketon­ate complexes, see: Chassot & Emmenegger (1996[Chassot, P. & Emmenegger, F. (1996). Inorg. Chem. 35, 5931-5934.]); Emmenegger et al. (2001[Emmenegger, F., Schlaepfer, C. W., Stoeckli-Evans, H., Piccand, M. & Piekarski, H. (2001). Inorg. Chem. 40, 3884-3888.]). For a description of the Cambridge Structural database, see: Allen et al. (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C5HF6O2)2(C12H9BrN2)]

  • Mr = 733.95

  • Monoclinic, C 2/c

  • a = 31.251 (8) Å

  • b = 10.006 (3) Å

  • c = 17.653 (5) Å

  • β = 103.952 (5)°

  • V = 5358 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.33 mm−1

  • T = 150 K

  • 0.22 × 0.12 × 0.11 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.628, Tmax = 0.784

  • 27645 measured reflections

  • 5988 independent reflections

  • 3422 reflections with I > 2σ(I)

  • Rint = 0.145

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.132

  • S = 0.91

  • 5988 reflections

  • 379 parameters

  • H-atom parameters constrained

  • Δρmax = 1.24 e Å−3

  • Δρmin = −1.12 e Å−3

Table 1
Selected bond lengths (Å)

Ni1—O3 2.020 (3)
Ni1—O4 2.044 (3)
Ni1—O2 2.045 (3)
Ni1—N2 2.063 (3)
Ni1—O1 2.066 (3)
Ni1—N1 2.113 (4)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯Br1i 0.95 3.02 3.870 (3) 151
C2—H2⋯Br1ii 0.95 3.02 3.833 (3) 145
C12—H12⋯O1iii 0.95 2.53 3.320 (4) 140
C11—H11⋯O4iii 0.95 2.61 3.470 (3) 151
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z]; (ii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (iii) [-x, y, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Metal β-diketonates represent an important class of complexes and are much studied owing to their ease of synthesis, ready modification and multiple applications. In the case of divalent metal ions, the [M(β-diketonate)2] complexes are able to coordinate additional ligands forming either cis- or trans-octahedral metal complexes (Chassot & Emmenegger, 1996; Emmenegger et al., 2001). Of particular relevence to this paper is the use metal β-diketonates complexes in the preparation of crystal engineered networks (Braga et al., 2002) and while hydrogen bonded trans-isomers are well represented few compounds containing cis-isomers are described (Aäkeroy et al., 2004, 2005, 2007). In this paper we describe the synthesis and structure of [Ni(hfac)2(ppaBr)] (hfac = 1,1,1,5,5,5-hexafluoropentane-2,4-dionato; ppaBr = (4-bromo-phenyl)pyridin-2-ylmethylene amine).

[Ni(hfac)2(H2O)2] reacts readily with ppaBr to give [Ni(hfac)2(ppaBr)] 1 which recrystallizes from CH2Cl2/n-hexane to give yellow crystals in the space group C2/c (Figure 1). This contrasts markedly with the analogous cobalt compound which crystallizes in P1 (Harding, Harding, Sophonrat and Adams, 2010). The nickel metal centre is pseudo-octahedral with a cis-arrangement enforced by the chelating ppaBr ligand. The Ni—O and Ni—N bond lengths are typical of values reported for other nickel hfac and diimine complexes reported in the CSD (mean Ni—O distance = 2.01 Å, Ni—N distance = 2.11 Å, Allen, 2002). The β-diketonate ligands exhibit a bent coordination mode in which the angles between the planes defined by the Ni and oxygen atoms and the carbon and oxygen atoms of the β-diketonate ligand are 11.0° and 26.8°. In contrast, in trans-[M(hfac)2(py-CH=CH—C6F4Br)2] (M = Co, Cu) the β-diketonate ligands exhibit a planar coordination mode (Aäkeroy et al., 2007). In addition, the phenyl ring is twisted with to the pyridylimine unit by 30.0° a little greater than the angle observed in [Ni(dbm)2(ppaX)] (X = Me 22.9°, Cl 24.0°, Harding, Harding, Tinpun et al., 2010).

The packing in the structure is composed of two sets of interactions. The first set is involves a series of C—H···Br interactions (H6···Br 3.015 (3) Å, H2···Br 3.017 (3) Å) forming a hydrogen bonding ladder (Figure 2). The second interaction involves a strong hydrogen bonding interactions between two of the oxygen atoms of the β-diketonate ligands and two hydrogen atoms on the pyridyl ring of the ppaBr ligand (O1···H12 2.532 (4) Å, O4···H11 2.610 (3) Å) forming a dimer (Figure 3). In contrast, the cobalt analogue has extensive π···π interactions and interactions between the Br atom on the ppaBr ligand and the β-diketonate ligand (Harding, Harding, Sophonrat and Adams, 2010).

Related literature top

For related structures, see: Harding, Harding, Sophonrat & Adams (2010); Harding, Harding, Tinpun et al. (2010); Aäkeroy et al. (2004, 2005, 2007). For an introduction to crystal engineering, see: Braga et al. (2002). For details concerning the coordination of additional ligand to β-diketonates complexes, see: Chassot & Emmenegger (1996); Emmenegger et al. (2001). For a description of the Cambridge Structural database, see: Allen et al. (2002).

Experimental top

To a green solution of [Ni(hfac)2(H2O)2] (0.128 g, 0.25 mmol) in CH2Cl2 (10 ml) was added a solution of ppaBr (0.065 g, 0.25 mmol) in CH2Cl2 (3 ml). The orange solution was stirred overnight then concentrated in vacuo. n-Hexane (10 ml) was added to precipitate a yellow brown solid which was washed with n-hexane (2 x 5 ml) and dried in vacuo yielding a deep yellow solid (0.096 g, 52%). Found: C 36.2, H 1.7, N 3.9. Calc. for C22H11BrF12N2NiO4: C 36.0, H 1.5, N 3.8%. m/z (ESI) 527 [M-hfac-]+. nmax(KBr)/cm-1 1651 (nC=O). lmax(CH2Cl2)/nm (log e/M-1cm-1) 319 (4.46), 342 (4.34). Mpt. 156 °C.

Refinement top

Hydrogen atoms were placed geometrically and refined with a riding model and with Uiso constrained to be 1.2 (aromatic CH) times Ueq of the carrier atom.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (1) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The molecular packing in (1) showing the C—H···Br interactions between neighbouring ppaBr ligands. Only selected atoms are labelled for clairty. [Symmetry codes: (i) x, -1 + y, z; (ii) x, 1 + y, z; (iii) 1/2 - x, 1/2 - y, -z; (iv) 1/2 - x, 3/2 - y, -z; (v) 1/2 - x, 5/2 - y, -z].
[Figure 3] Fig. 3. The molecular packing in (1) showing the O···H interactions between the oxygen atoms of the β-diketonate ligands and the two hydrogen of the ppaBr ligand. Only selected atoms are labelled for clairty. [Symmetry codes: (i) -x, y, 1/2 - z].
[4-Bromo-N-(pyridin-2-ylmethylidene)aniline- κ2N,N']bis(1,1,1,5,5,5-hexafluoropentane-2,4-dionato- κ2O,O')nickel(II) top
Crystal data top
[Ni(C5HF6O2)2(C12H9BrN2)]F(000) = 2880
Mr = 733.95Dx = 1.820 Mg m3
Monoclinic, C2/cMelting point: 429 K
Hall symbol: -C2ycMo Kα radiation, λ = 0.71073 Å
a = 31.251 (8) ÅCell parameters from 3767 reflections
b = 10.006 (3) Åθ = 2.4–24.9°
c = 17.653 (5) ŵ = 2.33 mm1
β = 103.952 (5)°T = 150 K
V = 5358 (2) Å3Block, brown
Z = 80.22 × 0.12 × 0.11 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
5988 independent reflections
Radiation source: fine-focus sealed tube3422 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.145
Detector resolution: 100 pixels mm-1θmax = 27.5°, θmin = 1.3°
ϕ and ω scansh = 3940
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
k = 1212
Tmin = 0.628, Tmax = 0.784l = 2222
27645 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H-atom parameters constrained
S = 0.91 w = 1/[σ2(Fo2) + (0.0546P)2]
where P = (Fo2 + 2Fc2)/3
5988 reflections(Δ/σ)max < 0.001
379 parametersΔρmax = 1.24 e Å3
0 restraintsΔρmin = 1.12 e Å3
Crystal data top
[Ni(C5HF6O2)2(C12H9BrN2)]V = 5358 (2) Å3
Mr = 733.95Z = 8
Monoclinic, C2/cMo Kα radiation
a = 31.251 (8) ŵ = 2.33 mm1
b = 10.006 (3) ÅT = 150 K
c = 17.653 (5) Å0.22 × 0.12 × 0.11 mm
β = 103.952 (5)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5988 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
3422 reflections with I > 2σ(I)
Tmin = 0.628, Tmax = 0.784Rint = 0.145
27645 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.132H-atom parameters constrained
S = 0.91Δρmax = 1.24 e Å3
5988 reflectionsΔρmin = 1.12 e Å3
379 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.089498 (18)0.60018 (5)0.17271 (3)0.01947 (16)
Br10.279804 (16)0.50379 (5)0.01356 (3)0.03493 (16)
N10.10544 (11)0.4874 (3)0.0821 (2)0.0180 (8)
N20.03045 (12)0.5037 (3)0.1283 (2)0.0193 (8)
O10.06741 (10)0.7013 (3)0.25796 (16)0.0227 (7)
O20.07571 (10)0.7678 (3)0.10485 (16)0.0206 (7)
O30.14882 (9)0.6873 (3)0.21444 (17)0.0253 (7)
O40.10989 (9)0.4413 (3)0.24516 (16)0.0215 (7)
C10.22491 (15)0.4979 (4)0.0144 (3)0.0268 (11)
C20.20348 (15)0.3757 (5)0.0139 (3)0.0318 (12)
H20.21570.29650.00180.038*
C30.16424 (15)0.3716 (4)0.0365 (3)0.0269 (11)
H30.14970.28850.03750.032*
C40.14579 (14)0.4876 (4)0.0578 (3)0.0197 (10)
C50.16748 (15)0.6093 (4)0.0566 (3)0.0257 (11)
H50.15490.68920.07070.031*
C60.20726 (14)0.6144 (4)0.0351 (3)0.0236 (10)
H60.22210.69710.03470.028*
C70.07464 (14)0.4036 (4)0.0519 (3)0.0222 (10)
H70.07880.34100.01390.027*
C80.03340 (13)0.4058 (4)0.0765 (2)0.0168 (9)
C90.00087 (15)0.3178 (4)0.0481 (3)0.0255 (11)
H90.00190.25050.01160.031*
C100.03943 (15)0.3295 (4)0.0736 (3)0.0261 (11)
H100.06320.26910.05600.031*
C110.04250 (15)0.4301 (5)0.1249 (3)0.0265 (11)
H110.06870.44070.14260.032*
C120.00710 (14)0.5167 (4)0.1508 (3)0.0223 (10)
H120.00980.58700.18550.027*
C130.07108 (15)0.8261 (4)0.2653 (2)0.0236 (10)
C140.06750 (18)0.8781 (5)0.3451 (3)0.0326 (12)
C150.07746 (15)0.9195 (4)0.2105 (3)0.0249 (11)
H150.08101.01100.22500.030*
C160.07882 (15)0.8822 (4)0.1348 (3)0.0241 (11)
C170.08415 (17)0.9929 (4)0.0773 (3)0.0278 (11)
C180.18236 (15)0.6331 (4)0.2566 (3)0.0227 (10)
C190.22211 (17)0.7250 (6)0.2750 (3)0.0410 (14)
C200.18587 (15)0.5046 (4)0.2881 (3)0.0281 (11)
H200.21400.47400.31620.034*
C210.14966 (15)0.4192 (4)0.2797 (3)0.0232 (10)
C220.15671 (15)0.2806 (5)0.3172 (3)0.0286 (11)
F10.11909 (12)0.9686 (3)0.0484 (2)0.0590 (10)
F20.04965 (11)0.9967 (3)0.01655 (16)0.0474 (9)
F30.08890 (12)1.1150 (3)0.10758 (16)0.0516 (9)
F40.03084 (12)0.8339 (3)0.3627 (2)0.0651 (10)
F50.06729 (15)1.0080 (3)0.35147 (18)0.0703 (12)
F60.09967 (13)0.8311 (4)0.40128 (18)0.0775 (13)
F70.22453 (10)0.8019 (3)0.2159 (2)0.0584 (10)
F80.21997 (13)0.8058 (4)0.3339 (2)0.0789 (13)
F90.26008 (10)0.6604 (4)0.2971 (3)0.0827 (14)
F100.13059 (10)0.2608 (3)0.3655 (2)0.0540 (9)
F110.19792 (9)0.2582 (3)0.35786 (17)0.0395 (8)
F120.14753 (11)0.1857 (3)0.26264 (18)0.0522 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0209 (3)0.0193 (3)0.0168 (3)0.0020 (2)0.0019 (2)0.0002 (2)
Br10.0284 (3)0.0261 (3)0.0550 (4)0.0007 (2)0.0192 (3)0.0007 (2)
N10.0176 (19)0.0186 (19)0.020 (2)0.0011 (15)0.0087 (16)0.0019 (15)
N20.019 (2)0.0198 (18)0.0171 (19)0.0022 (15)0.0002 (16)0.0014 (15)
O10.0265 (17)0.0234 (17)0.0181 (16)0.0041 (13)0.0051 (14)0.0022 (13)
O20.0269 (17)0.0229 (16)0.0123 (15)0.0012 (13)0.0052 (14)0.0002 (12)
O30.0202 (17)0.0289 (17)0.0248 (17)0.0049 (14)0.0014 (15)0.0015 (14)
O40.0239 (17)0.0250 (16)0.0134 (15)0.0003 (13)0.0001 (14)0.0030 (13)
C10.023 (3)0.026 (2)0.028 (3)0.003 (2)0.000 (2)0.001 (2)
C20.021 (3)0.025 (3)0.055 (4)0.002 (2)0.019 (2)0.000 (2)
C30.024 (3)0.018 (2)0.041 (3)0.0019 (18)0.013 (2)0.000 (2)
C40.020 (2)0.020 (2)0.019 (2)0.0013 (18)0.005 (2)0.0001 (18)
C50.031 (3)0.023 (2)0.024 (2)0.000 (2)0.008 (2)0.002 (2)
C60.019 (2)0.025 (2)0.032 (3)0.0018 (19)0.016 (2)0.002 (2)
C70.028 (3)0.016 (2)0.019 (2)0.0015 (19)0.000 (2)0.0013 (18)
C80.016 (2)0.021 (2)0.014 (2)0.0027 (18)0.0062 (18)0.0056 (18)
C90.030 (3)0.019 (2)0.023 (2)0.0042 (19)0.001 (2)0.0012 (19)
C100.020 (3)0.035 (3)0.023 (3)0.008 (2)0.005 (2)0.001 (2)
C110.023 (3)0.038 (3)0.020 (2)0.001 (2)0.007 (2)0.002 (2)
C120.022 (3)0.027 (2)0.017 (2)0.0056 (19)0.003 (2)0.0011 (18)
C130.029 (3)0.024 (2)0.017 (2)0.005 (2)0.003 (2)0.0033 (19)
C140.049 (3)0.027 (3)0.024 (3)0.012 (2)0.012 (3)0.005 (2)
C150.031 (3)0.020 (2)0.025 (3)0.0018 (19)0.009 (2)0.0032 (19)
C160.025 (3)0.019 (2)0.023 (2)0.0035 (18)0.003 (2)0.0025 (19)
C170.034 (3)0.024 (2)0.026 (3)0.001 (2)0.009 (2)0.001 (2)
C180.025 (3)0.029 (3)0.015 (2)0.005 (2)0.007 (2)0.0012 (19)
C190.030 (3)0.044 (3)0.046 (4)0.011 (3)0.003 (3)0.005 (3)
C200.020 (2)0.034 (3)0.027 (3)0.001 (2)0.000 (2)0.002 (2)
C210.026 (3)0.026 (2)0.016 (2)0.002 (2)0.002 (2)0.0045 (19)
C220.023 (3)0.033 (3)0.030 (3)0.001 (2)0.008 (2)0.003 (2)
F10.064 (2)0.051 (2)0.075 (3)0.0070 (17)0.042 (2)0.0280 (18)
F20.059 (2)0.0475 (19)0.0271 (16)0.0053 (15)0.0060 (16)0.0152 (14)
F30.100 (3)0.0219 (15)0.0304 (17)0.0123 (16)0.0116 (18)0.0018 (13)
F40.077 (3)0.076 (2)0.058 (2)0.030 (2)0.045 (2)0.0352 (19)
F50.158 (4)0.0290 (18)0.0383 (19)0.0167 (19)0.052 (2)0.0129 (14)
F60.086 (3)0.113 (3)0.0216 (17)0.031 (2)0.0094 (19)0.0215 (19)
F70.050 (2)0.066 (2)0.056 (2)0.0321 (17)0.0068 (18)0.0199 (18)
F80.081 (3)0.090 (3)0.069 (3)0.051 (2)0.022 (2)0.045 (2)
F90.0247 (18)0.076 (3)0.136 (4)0.0113 (18)0.004 (2)0.041 (3)
F100.046 (2)0.054 (2)0.072 (2)0.0198 (15)0.0331 (19)0.0345 (17)
F110.0330 (16)0.0378 (16)0.0419 (18)0.0070 (13)0.0021 (15)0.0108 (13)
F120.068 (2)0.0274 (16)0.050 (2)0.0015 (15)0.0074 (18)0.0033 (15)
Geometric parameters (Å, º) top
Ni1—O32.020 (3)C9—H90.9500
Ni1—O42.044 (3)C10—C111.372 (6)
Ni1—O22.045 (3)C10—H100.9500
Ni1—N22.063 (3)C11—C121.393 (6)
Ni1—O12.066 (3)C11—H110.9500
Ni1—N12.113 (4)C12—H120.9500
Br1—C11.897 (5)C13—C151.394 (6)
N1—C71.291 (5)C13—C141.531 (7)
N1—C41.426 (6)C14—F51.304 (5)
N2—C121.332 (6)C14—F61.317 (6)
N2—C81.358 (5)C14—F41.332 (6)
O1—C131.258 (5)C15—C161.399 (6)
O2—C161.255 (5)C15—H150.9500
O3—C181.253 (5)C16—C171.538 (6)
O4—C211.265 (5)C17—F21.326 (5)
C1—C61.376 (6)C17—F31.327 (5)
C1—C21.393 (6)C17—F11.334 (6)
C2—C31.379 (6)C18—C201.394 (6)
C2—H20.9500C18—C191.517 (7)
C3—C41.388 (6)C19—F71.313 (6)
C3—H30.9500C19—F91.325 (6)
C4—C51.396 (6)C19—F81.331 (7)
C5—C61.386 (6)C20—C211.397 (6)
C5—H50.9500C20—H200.9500
C6—H60.9500C21—C221.529 (6)
C7—C81.456 (6)C22—F101.330 (6)
C7—H70.9500C22—F121.333 (5)
C8—C91.384 (6)C22—F111.333 (5)
C9—C101.390 (7)
O3—Ni1—O489.27 (12)C11—C10—C9118.7 (4)
O3—Ni1—O284.55 (12)C11—C10—H10120.7
O4—Ni1—O2173.82 (12)C9—C10—H10120.7
O3—Ni1—N2177.27 (13)C10—C11—C12119.8 (5)
O4—Ni1—N289.36 (12)C10—C11—H11120.1
O2—Ni1—N296.80 (12)C12—C11—H11120.1
O3—Ni1—O187.79 (12)N2—C12—C11121.9 (4)
O4—Ni1—O191.93 (12)N2—C12—H12119.1
O2—Ni1—O187.99 (12)C11—C12—H12119.1
N2—Ni1—O194.62 (13)O1—C13—C15128.3 (4)
O3—Ni1—N198.24 (13)O1—C13—C14114.1 (4)
O4—Ni1—N187.91 (12)C15—C13—C14117.7 (4)
O2—Ni1—N192.82 (12)F5—C14—F6108.1 (4)
N2—Ni1—N179.35 (14)F5—C14—F4106.8 (5)
O1—Ni1—N1173.97 (13)F6—C14—F4104.4 (4)
C7—N1—C4120.1 (4)F5—C14—C13114.9 (4)
C7—N1—Ni1111.8 (3)F6—C14—C13111.0 (4)
C4—N1—Ni1127.9 (3)F4—C14—C13111.0 (4)
C12—N2—C8118.6 (4)C13—C15—C16121.8 (4)
C12—N2—Ni1127.8 (3)C13—C15—H15119.1
C8—N2—Ni1113.2 (3)C16—C15—H15119.1
C13—O1—Ni1121.6 (3)O2—C16—C15129.0 (4)
C16—O2—Ni1121.2 (3)O2—C16—C17112.9 (4)
C18—O3—Ni1126.3 (3)C15—C16—C17118.1 (4)
C21—O4—Ni1124.0 (3)F2—C17—F3106.8 (4)
C6—C1—C2121.5 (5)F2—C17—F1106.0 (4)
C6—C1—Br1119.2 (3)F3—C17—F1107.4 (4)
C2—C1—Br1119.2 (3)F2—C17—C16111.0 (4)
C3—C2—C1118.9 (4)F3—C17—C16114.7 (4)
C3—C2—H2120.5F1—C17—C16110.5 (4)
C1—C2—H2120.5O3—C18—C20127.6 (4)
C2—C3—C4120.7 (4)O3—C18—C19112.9 (4)
C2—C3—H3119.7C20—C18—C19119.5 (4)
C4—C3—H3119.7F7—C19—F9107.5 (5)
C3—C4—C5119.4 (4)F7—C19—F8106.8 (5)
C3—C4—N1122.4 (4)F9—C19—F8106.1 (5)
C5—C4—N1118.2 (4)F7—C19—C18112.7 (4)
C6—C5—C4120.5 (4)F9—C19—C18113.3 (4)
C6—C5—H5119.8F8—C19—C18110.0 (5)
C4—C5—H5119.8C18—C20—C21122.6 (4)
C1—C6—C5119.0 (4)C18—C20—H20118.7
C1—C6—H6120.5C21—C20—H20118.7
C5—C6—H6120.5O4—C21—C20128.4 (4)
N1—C7—C8119.5 (4)O4—C21—C22112.9 (4)
N1—C7—H7120.3C20—C21—C22118.7 (4)
C8—C7—H7120.3F10—C22—F12107.4 (4)
N2—C8—C9122.1 (4)F10—C22—F11107.0 (4)
N2—C8—C7114.9 (4)F12—C22—F11106.3 (4)
C9—C8—C7123.0 (4)F10—C22—C21111.5 (4)
C8—C9—C10119.0 (4)F12—C22—C21110.5 (4)
C8—C9—H9120.5F11—C22—C21113.9 (4)
C10—C9—H9120.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···Br1i0.953.023.870 (3)151
C2—H2···Br1ii0.953.023.833 (3)145
C12—H12···O1iii0.952.533.320 (4)140
C11—H11···O4iii0.952.613.470 (3)151
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x+1/2, y+1/2, z; (iii) x, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Ni(C5HF6O2)2(C12H9BrN2)]
Mr733.95
Crystal system, space groupMonoclinic, C2/c
Temperature (K)150
a, b, c (Å)31.251 (8), 10.006 (3), 17.653 (5)
β (°) 103.952 (5)
V3)5358 (2)
Z8
Radiation typeMo Kα
µ (mm1)2.33
Crystal size (mm)0.22 × 0.12 × 0.11
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.628, 0.784
No. of measured, independent and
observed [I > 2σ(I)] reflections
27645, 5988, 3422
Rint0.145
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.132, 0.91
No. of reflections5988
No. of parameters379
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.24, 1.12

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Ni1—O32.020 (3)Ni1—N22.063 (3)
Ni1—O42.044 (3)Ni1—O12.066 (3)
Ni1—O22.045 (3)Ni1—N12.113 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···Br1i0.953.0153.870 (3)151
C2—H2···Br1ii0.953.0173.833 (3)145
C12—H12···O1iii0.952.5323.320 (4)140
C11—H11···O4iii0.952.6103.470 (3)151
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x+1/2, y+1/2, z; (iii) x, y, z+1/2.
 

Acknowledgements

We thank the Thailand Research Fund (grant No. RSA5080007) for funding this research.

References

First citationAakeröy, C. B., Desper, J. & Valdés-Martínez, J., (2004). CrystEngComm, 6, 413–418.  Google Scholar
First citationAakeröy, C. B., Schultheiss, N. & Desper, J. (2005). Inorg. Chem. 44, 4983–4991.  Web of Science CSD CrossRef PubMed Google Scholar
First citationAakeröy, C. B., Schultheiss, N., Desper, J. & Moore, C. (2007). CrystEngComm, 9, 421–426.  Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBraga, D., Desiraju, G. R., Miller, J. S., Orpen, A. G. & Price, S. L. (2002). CrystEngComm, 4, 500–509.  Web of Science CrossRef CAS Google Scholar
First citationBruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChassot, P. & Emmenegger, F. (1996). Inorg. Chem. 35, 5931–5934.  Google Scholar
First citationEmmenegger, F., Schlaepfer, C. W., Stoeckli-Evans, H., Piccand, M. & Piekarski, H. (2001). Inorg. Chem. 40, 3884–3888.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHarding, P., Harding, D. J., Soponrat, N. & Adams, H. (2010). Acta Cryst. E66, m1138–m1139.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHarding, P., Harding, D. J., Tinpun, K., Samuadnuan, S., Sophonrat, N. & Adams, H. (2010). Aust. J. Chem. 63, 75–82.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages m404-m405
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds