organic compounds
3-(Pyridin-4-ylthio)pentane-2,4-dione
aCollege of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China
*Correspondence e-mail: zhangqingfu@foxmail.com
In the title compound, C10H11NO2S, the acetylacetone group crystallizes in the keto form with all the non-hydrogen atoms in the acetylacetone group approximately co-planar with a maximum atomic deviation 0.055 (2) Å; the dihedral angle between the acetylacetone group and the pyridine ring is 85.90 (6)°. An intramolecular O—H⋯O hydrogen bond involving the acetylacetone group forms a six-membered ring.
Related literature
For applications of β-diketones and their derivatives in metallo-supramolecular chemistry, see: Aromí et al. (2008); Chen et al. (2003; 2004); Domasevitch et al. (2006); Massue et al. (2005); Soldatov & Ripmeester (2001); Tabellion et al. (2001); Vigato et al. (2009); Vreshch et al. (2003, 2004); Won et al. (2007); Zhang et al. (2006).
Experimental
Crystal data
|
Refinement
|
|
Data collection: SMART (Siemens, 1996); cell SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536811011330/zj2007sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811011330/zj2007Isup2.hkl
The title compound, 3-(pyridin-4-ylthio)pentane-2,4-dione, was prepared according to the previously reported method (Won & Clegg et al.,2007). The yellow crystals of title compound suitable for X-ray crystallographic analysis were obtained by recrystallization from acetonitrile.
All H atoms on C atoms were positioned geometrically and refined as riding atoms with d(C—H) =0.93–0.97 Å, and Uiso(H) =1.2Ueq(C). The H atom on O atom of enol group was located from difference Fourier map and refined with d(O—H) =0.881 Å, and Uiso(H) =1.2Ueq(O).
Data collection: SMART (Siemens, 1996); cell
SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids. | |
Fig. 2. The packing diagram of the title compound. |
C10H11NO2S | F(000) = 440 |
Mr = 209.26 | Dx = 1.337 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 2174 reflections |
a = 8.3273 (7) Å | θ = 2.5–27.3° |
b = 9.5614 (8) Å | µ = 0.28 mm−1 |
c = 13.0681 (11) Å | T = 298 K |
β = 92.698 (1)° | Block, yellow |
V = 1039.34 (15) Å3 | 0.35 × 0.30 × 0.28 mm |
Z = 4 |
Siemens SMART CCD area-detector diffractometer | 1822 independent reflections |
Radiation source: fine-focus sealed tube | 1351 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.030 |
phi and ω scans | θmax = 25.0°, θmin = 2.6° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −9→9 |
Tmin = 0.907, Tmax = 0.925 | k = −5→11 |
5011 measured reflections | l = −15→15 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.038 | H-atom parameters constrained |
wR(F2) = 0.120 | w = 1/[σ2(Fo2) + (0.0562P)2 + 0.3241P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max < 0.001 |
1822 reflections | Δρmax = 0.17 e Å−3 |
130 parameters | Δρmin = −0.19 e Å−3 |
0 restraints | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.136 (9) |
C10H11NO2S | V = 1039.34 (15) Å3 |
Mr = 209.26 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 8.3273 (7) Å | µ = 0.28 mm−1 |
b = 9.5614 (8) Å | T = 298 K |
c = 13.0681 (11) Å | 0.35 × 0.30 × 0.28 mm |
β = 92.698 (1)° |
Siemens SMART CCD area-detector diffractometer | 1822 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1351 reflections with I > 2σ(I) |
Tmin = 0.907, Tmax = 0.925 | Rint = 0.030 |
5011 measured reflections |
R[F2 > 2σ(F2)] = 0.038 | 0 restraints |
wR(F2) = 0.120 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.17 e Å−3 |
1822 reflections | Δρmin = −0.19 e Å−3 |
130 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.87871 (8) | 0.22005 (6) | 0.95516 (6) | 0.0688 (3) | |
O1 | 0.7336 (2) | 0.60208 (19) | 1.01493 (15) | 0.0761 (6) | |
H1 | 0.7715 | 0.6213 | 0.9547 | 0.091* | |
O2 | 0.8608 (2) | 0.60632 (19) | 0.85162 (14) | 0.0769 (6) | |
N1 | 0.4443 (3) | −0.0271 (2) | 0.83293 (19) | 0.0714 (6) | |
C1 | 0.6930 (4) | 0.3985 (4) | 1.1103 (2) | 0.0863 (9) | |
H1A | 0.7813 | 0.3688 | 1.1550 | 0.129* | |
H1B | 0.6305 | 0.3185 | 1.0886 | 0.129* | |
H1C | 0.6266 | 0.4623 | 1.1461 | 0.129* | |
C2 | 0.7557 (3) | 0.4691 (3) | 1.01961 (19) | 0.0566 (6) | |
C3 | 0.8327 (3) | 0.3980 (2) | 0.94164 (17) | 0.0495 (6) | |
C4 | 0.8804 (3) | 0.4736 (3) | 0.85562 (18) | 0.0580 (6) | |
C5 | 0.9512 (4) | 0.4065 (4) | 0.7658 (2) | 0.0890 (10) | |
H5A | 1.0051 | 0.4759 | 0.7269 | 0.133* | |
H5B | 0.8674 | 0.3639 | 0.7235 | 0.133* | |
H5C | 1.0270 | 0.3363 | 0.7889 | 0.133* | |
C6 | 0.7057 (3) | 0.1310 (2) | 0.90682 (16) | 0.0466 (5) | |
C7 | 0.7102 (3) | −0.0134 (2) | 0.90713 (19) | 0.0584 (6) | |
H7 | 0.8011 | −0.0607 | 0.9327 | 0.070* | |
C8 | 0.5786 (3) | −0.0856 (3) | 0.8692 (2) | 0.0730 (8) | |
H8 | 0.5843 | −0.1827 | 0.8690 | 0.088* | |
C9 | 0.4412 (3) | 0.1119 (3) | 0.8347 (2) | 0.0630 (7) | |
H9 | 0.3474 | 0.1561 | 0.8107 | 0.076* | |
C10 | 0.5674 (3) | 0.1949 (2) | 0.86962 (18) | 0.0542 (6) | |
H10 | 0.5591 | 0.2919 | 0.8680 | 0.065* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0565 (4) | 0.0432 (4) | 0.1043 (6) | 0.0034 (3) | −0.0216 (3) | −0.0036 (3) |
O1 | 0.0818 (13) | 0.0532 (11) | 0.0934 (14) | 0.0072 (9) | 0.0045 (10) | −0.0142 (9) |
O2 | 0.0901 (14) | 0.0563 (11) | 0.0827 (13) | −0.0179 (10) | −0.0131 (10) | 0.0166 (9) |
N1 | 0.0674 (14) | 0.0546 (13) | 0.0923 (17) | −0.0155 (11) | 0.0029 (12) | −0.0121 (11) |
C1 | 0.090 (2) | 0.095 (2) | 0.0750 (19) | −0.0214 (18) | 0.0168 (15) | −0.0053 (16) |
C2 | 0.0498 (13) | 0.0525 (14) | 0.0668 (15) | −0.0059 (10) | −0.0058 (11) | −0.0064 (11) |
C3 | 0.0459 (12) | 0.0407 (12) | 0.0610 (14) | −0.0075 (9) | −0.0053 (10) | −0.0053 (10) |
C4 | 0.0484 (13) | 0.0634 (16) | 0.0614 (15) | −0.0137 (11) | −0.0080 (11) | −0.0028 (12) |
C5 | 0.080 (2) | 0.116 (3) | 0.0717 (19) | −0.0176 (18) | 0.0129 (15) | −0.0173 (17) |
C6 | 0.0502 (13) | 0.0403 (12) | 0.0495 (12) | −0.0014 (9) | 0.0039 (9) | −0.0023 (9) |
C7 | 0.0605 (15) | 0.0398 (12) | 0.0751 (16) | 0.0029 (10) | 0.0060 (12) | 0.0046 (11) |
C8 | 0.076 (2) | 0.0402 (13) | 0.103 (2) | −0.0097 (13) | 0.0085 (16) | −0.0015 (13) |
C9 | 0.0570 (14) | 0.0594 (16) | 0.0720 (16) | −0.0022 (12) | −0.0043 (12) | −0.0048 (12) |
C10 | 0.0577 (14) | 0.0413 (12) | 0.0630 (14) | −0.0010 (10) | −0.0044 (11) | −0.0041 (10) |
S1—C3 | 1.752 (2) | C4—C5 | 1.484 (4) |
S1—C6 | 1.764 (2) | C5—H5A | 0.9600 |
O1—C2 | 1.286 (3) | C5—H5B | 0.9600 |
O1—H1 | 0.8814 | C5—H5C | 0.9600 |
O2—C4 | 1.280 (3) | C6—C10 | 1.373 (3) |
N1—C8 | 1.318 (3) | C6—C7 | 1.381 (3) |
N1—C9 | 1.330 (3) | C7—C8 | 1.368 (4) |
C1—C2 | 1.480 (4) | C7—H7 | 0.9300 |
C1—H1A | 0.9600 | C8—H8 | 0.9300 |
C1—H1B | 0.9600 | C9—C10 | 1.378 (3) |
C1—H1C | 0.9600 | C9—H9 | 0.9300 |
C2—C3 | 1.404 (3) | C10—H10 | 0.9300 |
C3—C4 | 1.409 (3) | ||
C3—S1—C6 | 105.16 (10) | H5A—C5—H5B | 109.5 |
C2—O1—H1 | 101.1 | C4—C5—H5C | 109.5 |
C8—N1—C9 | 115.8 (2) | H5A—C5—H5C | 109.5 |
C2—C1—H1A | 109.5 | H5B—C5—H5C | 109.5 |
C2—C1—H1B | 109.5 | C10—C6—C7 | 117.9 (2) |
H1A—C1—H1B | 109.5 | C10—C6—S1 | 124.71 (17) |
C2—C1—H1C | 109.5 | C7—C6—S1 | 117.38 (17) |
H1A—C1—H1C | 109.5 | C8—C7—C6 | 118.8 (2) |
H1B—C1—H1C | 109.5 | C8—C7—H7 | 120.6 |
O1—C2—C3 | 120.9 (2) | C6—C7—H7 | 120.6 |
O1—C2—C1 | 115.7 (2) | N1—C8—C7 | 124.6 (2) |
C3—C2—C1 | 123.4 (2) | N1—C8—H8 | 117.7 |
C2—C3—C4 | 119.1 (2) | C7—C8—H8 | 117.7 |
C2—C3—S1 | 120.14 (18) | N1—C9—C10 | 124.5 (2) |
C4—C3—S1 | 120.67 (18) | N1—C9—H9 | 117.7 |
O2—C4—C3 | 120.0 (2) | C10—C9—H9 | 117.7 |
O2—C4—C5 | 116.8 (2) | C6—C10—C9 | 118.4 (2) |
C3—C4—C5 | 123.1 (3) | C6—C10—H10 | 120.8 |
C4—C5—H5A | 109.5 | C9—C10—H10 | 120.8 |
C4—C5—H5B | 109.5 |
Experimental details
Crystal data | |
Chemical formula | C10H11NO2S |
Mr | 209.26 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 298 |
a, b, c (Å) | 8.3273 (7), 9.5614 (8), 13.0681 (11) |
β (°) | 92.698 (1) |
V (Å3) | 1039.34 (15) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.28 |
Crystal size (mm) | 0.35 × 0.30 × 0.28 |
Data collection | |
Diffractometer | Siemens SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.907, 0.925 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5011, 1822, 1351 |
Rint | 0.030 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.038, 0.120, 1.06 |
No. of reflections | 1822 |
No. of parameters | 130 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.17, −0.19 |
Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Acknowledgements
We acknowledge financial support by the National Natural Science Foundation of China (grant No. 21001061), the Natural Science Foundation of Shandong Province (grant No. ZR2010BL020) and the Liaocheng University Funds for Young Scientists (31805).
References
Aromí, G., Gamez, P. & Reedijk, J. (2008). Coord. Chem. Rev. 252, 964–989. Google Scholar
Chen, B.-L., Fronczek, F. R. & Maverick, A. W. (2003). Chem. Commun. pp. 2166–2167. CrossRef Google Scholar
Chen, B.-L., Fronczek, F. R. & Maverick, A. W. (2004). Inorg. Chem. 43, 8209–8211. Web of Science CrossRef PubMed CAS Google Scholar
Domasevitch, K. V., Vreshch, V. D., Lysenko, A. B. & Krautscheid, H. (2006). Acta Cryst. C62, m443–m447. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Massue, J., Bellec, N., Chopin, S., Levillain, E., Roisnel, T., Clrac, R. & Lorcy, D. (2005). Inorg. Chem. 44, 8740–8748. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Siemens. (1996). SMART and SAINT. Siemens Analytical X-ray Systems, Inc., Madison, Wisconsin, USA. Google Scholar
Soldatov, D. V. & Ripmeester, J. A. (2001). Chem. Eur. J. 7, 2979–2994. CrossRef PubMed CAS Google Scholar
Tabellion, F. M., Seidel, S. R., Arif, A. M. & Stang, P. J. (2001). Angew. Chem. Int. Ed. 40, 1529–1532. Web of Science CrossRef CAS Google Scholar
Vigato, P. A., Peruzzo, V. & Tamburini, S. (2009). Coord. Chem. Rev. 253, 1099–1201. Web of Science CrossRef CAS Google Scholar
Vreshch, V. D., Chernega, A. N., Howard, J. A. K., Sieler, J. & Domasevitch, K. V. (2003). Dalton Trans. pp. 1707–1711. Web of Science CSD CrossRef Google Scholar
Vreshch, V. D., Lysenko, A. B., Chernega, A. N., Howard, J. A. K., Krautscheid, H., Sielerd, J. & Domasevitch, K. V. (2004). Dalton Trans. pp. 2899–2903. CrossRef Google Scholar
Won, T.-J., Clegg, J. K., Leonard, F. L. & McMurtrie, J. C. (2007). Cryst. Growth Des. 7, 972–979. CrossRef CAS Google Scholar
Zhang, X.-F., Chen, H., Ma, C. B., Chen, C.-N. & Liu, Q.-T. (2006). Dalton Trans. pp. 4047–4055. CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The β-diketones and their derivatives have attracted much attention in recent years, not only for their valuable intrinsic chemical and physical properties but also for their wide applications in metallo-supramolecular chemistry (Aromí & Gamez et al.,2008; Massue & Bellec et al., 2005; Soldatov & Ripmeester, 2001; Tabellion & Seidel et al., 2001; Vigato & Peruzzo et al., 2009; Chen & Fronczek et al.,2003; Chen & Fronczek et al.,2004; Domasevitch & Vreshch, et al., 2006; Vreshch & Chernega et al. 2003; Vreshch & Lysenko et al. 2004; Won & Clegg et al.,2007; Zhang & Chen et al., 2006). Among them, the N-containing bifunctional derivatives of β-diketones have been successfully applied to construct various metal-organic supramolecular complexes (Chen & Fronczek et al.,2003; Chen & Fronczek et al.,2004; Domasevitch & Vreshch, et al., 2006; Vreshch & Chernega et al. 2003; Vreshch & Lysenko et al. 2004; Won & Clegg et al.,2007; Zhang & Chen et al., 2006). We report here on the structure of an interesting nonlinear N-containing bifunctional compound, 3-(pyridin-4-ylthio)pentane-2,4-dione, which is prepared according to the previously reported methord (Won & Clegg et al.,2007).
As shown in Fig. 1, the acetylacetone group is with keto-enol tautomerism, where all the non-hydrogen atoms in the acetylacetone group are approximately co-planar with a maximum atomic deviation 0.0547 (24) Å, and the dihedral angle between the acetylacetone group and the pyridine ring is about of 85.90 (6)°. The bond angle of C3—S1—C6 is about of 105.16 (10)°, leading to a V-shaped conformation of the whole molecule. In the crystal strucutre, the intramolecular O—H···O hydrogen bonding interactions have been found in the same acetylacetone group, forming a six-membered cyclic structure. However, no intermolecular H-bonding interactions have been found in the title comound (Fig. 2).