organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(Pyridin-4-yl­thio)­pentane-2,4-dione

aCollege of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China
*Correspondence e-mail: zhangqingfu@foxmail.com

(Received 24 March 2011; accepted 27 March 2011; online 31 March 2011)

In the title compound, C10H11NO2S, the acetyl­acetone group crystallizes in the keto form with all the non-hydrogen atoms in the acetyl­acetone group approximately co-planar with a maximum atomic deviation 0.055 (2) Å; the dihedral angle between the acetyl­acetone group and the pyridine ring is 85.90 (6)°. An intra­molecular O—H⋯O hydrogen bond involving the acetyl­acetone group forms a six-membered ring.

Related literature

For applications of β-diketones and their derivatives in metallo-supra­molecular chemistry, see: Aromí et al. (2008[Aromí, G., Gamez, P. & Reedijk, J. (2008). Coord. Chem. Rev. 252, 964-989.]); Chen et al. (2003[Chen, B.-L., Fronczek, F. R. & Maverick, A. W. (2003). Chem. Commun. pp. 2166-2167.]; 2004[Chen, B.-L., Fronczek, F. R. & Maverick, A. W. (2004). Inorg. Chem. 43, 8209-8211.]); Domasevitch et al. (2006[Domasevitch, K. V., Vreshch, V. D., Lysenko, A. B. & Krautscheid, H. (2006). Acta Cryst. C62, m443-m447.]); Massue et al. (2005[Massue, J., Bellec, N., Chopin, S., Levillain, E., Roisnel, T., Clrac, R. & Lorcy, D. (2005). Inorg. Chem. 44, 8740-8748.]); Soldatov & Ripmeester (2001[Soldatov, D. V. & Ripmeester, J. A. (2001). Chem. Eur. J. 7, 2979-2994.]); Tabellion et al. (2001[Tabellion, F. M., Seidel, S. R., Arif, A. M. & Stang, P. J. (2001). Angew. Chem. Int. Ed. 40, 1529-1532.]); Vigato et al. (2009[Vigato, P. A., Peruzzo, V. & Tamburini, S. (2009). Coord. Chem. Rev. 253, 1099-1201.]); Vreshch et al. (2003[Vreshch, V. D., Chernega, A. N., Howard, J. A. K., Sieler, J. & Domasevitch, K. V. (2003). Dalton Trans. pp. 1707-1711.], 2004[Vreshch, V. D., Lysenko, A. B., Chernega, A. N., Howard, J. A. K., Krautscheid, H., Sielerd, J. & Domasevitch, K. V. (2004). Dalton Trans. pp. 2899-2903.]); Won et al. (2007[Won, T.-J., Clegg, J. K., Leonard, F. L. & McMurtrie, J. C. (2007). Cryst. Growth Des. 7, 972-979.]); Zhang et al. (2006[Zhang, X.-F., Chen, H., Ma, C. B., Chen, C.-N. & Liu, Q.-T. (2006). Dalton Trans. pp. 4047-4055.]).

[Scheme 1]

Experimental

Crystal data
  • C10H11NO2S

  • Mr = 209.26

  • Monoclinic, P 21 /c

  • a = 8.3273 (7) Å

  • b = 9.5614 (8) Å

  • c = 13.0681 (11) Å

  • β = 92.698 (1)°

  • V = 1039.34 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 298 K

  • 0.35 × 0.30 × 0.28 mm

Data collection
  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.907, Tmax = 0.925

  • 5011 measured reflections

  • 1822 independent reflections

  • 1351 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.120

  • S = 1.06

  • 1822 reflections

  • 130 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2 0.88 1.58 2.427 (3) 161

Data collection: SMART (Siemens, 1996[Siemens. (1996). SMART and SAINT. Siemens Analytical X-ray Systems, Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens. (1996). SMART and SAINT. Siemens Analytical X-ray Systems, Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The β-diketones and their derivatives have attracted much attention in recent years, not only for their valuable intrinsic chemical and physical properties but also for their wide applications in metallo-supramolecular chemistry (Aromí & Gamez et al.,2008; Massue & Bellec et al., 2005; Soldatov & Ripmeester, 2001; Tabellion & Seidel et al., 2001; Vigato & Peruzzo et al., 2009; Chen & Fronczek et al.,2003; Chen & Fronczek et al.,2004; Domasevitch & Vreshch, et al., 2006; Vreshch & Chernega et al. 2003; Vreshch & Lysenko et al. 2004; Won & Clegg et al.,2007; Zhang & Chen et al., 2006). Among them, the N-containing bifunctional derivatives of β-diketones have been successfully applied to construct various metal-organic supramolecular complexes (Chen & Fronczek et al.,2003; Chen & Fronczek et al.,2004; Domasevitch & Vreshch, et al., 2006; Vreshch & Chernega et al. 2003; Vreshch & Lysenko et al. 2004; Won & Clegg et al.,2007; Zhang & Chen et al., 2006). We report here on the structure of an interesting nonlinear N-containing bifunctional compound, 3-(pyridin-4-ylthio)pentane-2,4-dione, which is prepared according to the previously reported methord (Won & Clegg et al.,2007).

As shown in Fig. 1, the acetylacetone group is with keto-enol tautomerism, where all the non-hydrogen atoms in the acetylacetone group are approximately co-planar with a maximum atomic deviation 0.0547 (24) Å, and the dihedral angle between the acetylacetone group and the pyridine ring is about of 85.90 (6)°. The bond angle of C3—S1—C6 is about of 105.16 (10)°, leading to a V-shaped conformation of the whole molecule. In the crystal strucutre, the intramolecular O—H···O hydrogen bonding interactions have been found in the same acetylacetone group, forming a six-membered cyclic structure. However, no intermolecular H-bonding interactions have been found in the title comound (Fig. 2).

Related literature top

For applications of β-diketones and their derivatives in metallo-supramolecular chemistry, see: Aromí et al. (2008); Chen et al. (2003; 2004); Domasevitch et al. (2006); Massue et al. (2005); Soldatov & Ripmeester (2001); Tabellion et al. (2001); Vigato et al. (2009); Vreshch et al. (2003, 2004); Won et al. (2007); Zhang et al. (2006).

Experimental top

The title compound, 3-(pyridin-4-ylthio)pentane-2,4-dione, was prepared according to the previously reported method (Won & Clegg et al.,2007). The yellow crystals of title compound suitable for X-ray crystallographic analysis were obtained by recrystallization from acetonitrile.

Refinement top

All H atoms on C atoms were positioned geometrically and refined as riding atoms with d(C—H) =0.93–0.97 Å, and Uiso(H) =1.2Ueq(C). The H atom on O atom of enol group was located from difference Fourier map and refined with d(O—H) =0.881 Å, and Uiso(H) =1.2Ueq(O).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The packing diagram of the title compound.
3-(Pyridin-4-ylthio)pentane-2,4-dione top
Crystal data top
C10H11NO2SF(000) = 440
Mr = 209.26Dx = 1.337 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2174 reflections
a = 8.3273 (7) Åθ = 2.5–27.3°
b = 9.5614 (8) ŵ = 0.28 mm1
c = 13.0681 (11) ÅT = 298 K
β = 92.698 (1)°Block, yellow
V = 1039.34 (15) Å30.35 × 0.30 × 0.28 mm
Z = 4
Data collection top
Siemens SMART CCD area-detector
diffractometer
1822 independent reflections
Radiation source: fine-focus sealed tube1351 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
phi and ω scansθmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.907, Tmax = 0.925k = 511
5011 measured reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.120 w = 1/[σ2(Fo2) + (0.0562P)2 + 0.3241P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
1822 reflectionsΔρmax = 0.17 e Å3
130 parametersΔρmin = 0.19 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.136 (9)
Crystal data top
C10H11NO2SV = 1039.34 (15) Å3
Mr = 209.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.3273 (7) ŵ = 0.28 mm1
b = 9.5614 (8) ÅT = 298 K
c = 13.0681 (11) Å0.35 × 0.30 × 0.28 mm
β = 92.698 (1)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
1822 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1351 reflections with I > 2σ(I)
Tmin = 0.907, Tmax = 0.925Rint = 0.030
5011 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 1.06Δρmax = 0.17 e Å3
1822 reflectionsΔρmin = 0.19 e Å3
130 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.87871 (8)0.22005 (6)0.95516 (6)0.0688 (3)
O10.7336 (2)0.60208 (19)1.01493 (15)0.0761 (6)
H10.77150.62130.95470.091*
O20.8608 (2)0.60632 (19)0.85162 (14)0.0769 (6)
N10.4443 (3)0.0271 (2)0.83293 (19)0.0714 (6)
C10.6930 (4)0.3985 (4)1.1103 (2)0.0863 (9)
H1A0.78130.36881.15500.129*
H1B0.63050.31851.08860.129*
H1C0.62660.46231.14610.129*
C20.7557 (3)0.4691 (3)1.01961 (19)0.0566 (6)
C30.8327 (3)0.3980 (2)0.94164 (17)0.0495 (6)
C40.8804 (3)0.4736 (3)0.85562 (18)0.0580 (6)
C50.9512 (4)0.4065 (4)0.7658 (2)0.0890 (10)
H5A1.00510.47590.72690.133*
H5B0.86740.36390.72350.133*
H5C1.02700.33630.78890.133*
C60.7057 (3)0.1310 (2)0.90682 (16)0.0466 (5)
C70.7102 (3)0.0134 (2)0.90713 (19)0.0584 (6)
H70.80110.06070.93270.070*
C80.5786 (3)0.0856 (3)0.8692 (2)0.0730 (8)
H80.58430.18270.86900.088*
C90.4412 (3)0.1119 (3)0.8347 (2)0.0630 (7)
H90.34740.15610.81070.076*
C100.5674 (3)0.1949 (2)0.86962 (18)0.0542 (6)
H100.55910.29190.86800.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0565 (4)0.0432 (4)0.1043 (6)0.0034 (3)0.0216 (3)0.0036 (3)
O10.0818 (13)0.0532 (11)0.0934 (14)0.0072 (9)0.0045 (10)0.0142 (9)
O20.0901 (14)0.0563 (11)0.0827 (13)0.0179 (10)0.0131 (10)0.0166 (9)
N10.0674 (14)0.0546 (13)0.0923 (17)0.0155 (11)0.0029 (12)0.0121 (11)
C10.090 (2)0.095 (2)0.0750 (19)0.0214 (18)0.0168 (15)0.0053 (16)
C20.0498 (13)0.0525 (14)0.0668 (15)0.0059 (10)0.0058 (11)0.0064 (11)
C30.0459 (12)0.0407 (12)0.0610 (14)0.0075 (9)0.0053 (10)0.0053 (10)
C40.0484 (13)0.0634 (16)0.0614 (15)0.0137 (11)0.0080 (11)0.0028 (12)
C50.080 (2)0.116 (3)0.0717 (19)0.0176 (18)0.0129 (15)0.0173 (17)
C60.0502 (13)0.0403 (12)0.0495 (12)0.0014 (9)0.0039 (9)0.0023 (9)
C70.0605 (15)0.0398 (12)0.0751 (16)0.0029 (10)0.0060 (12)0.0046 (11)
C80.076 (2)0.0402 (13)0.103 (2)0.0097 (13)0.0085 (16)0.0015 (13)
C90.0570 (14)0.0594 (16)0.0720 (16)0.0022 (12)0.0043 (12)0.0048 (12)
C100.0577 (14)0.0413 (12)0.0630 (14)0.0010 (10)0.0044 (11)0.0041 (10)
Geometric parameters (Å, º) top
S1—C31.752 (2)C4—C51.484 (4)
S1—C61.764 (2)C5—H5A0.9600
O1—C21.286 (3)C5—H5B0.9600
O1—H10.8814C5—H5C0.9600
O2—C41.280 (3)C6—C101.373 (3)
N1—C81.318 (3)C6—C71.381 (3)
N1—C91.330 (3)C7—C81.368 (4)
C1—C21.480 (4)C7—H70.9300
C1—H1A0.9600C8—H80.9300
C1—H1B0.9600C9—C101.378 (3)
C1—H1C0.9600C9—H90.9300
C2—C31.404 (3)C10—H100.9300
C3—C41.409 (3)
C3—S1—C6105.16 (10)H5A—C5—H5B109.5
C2—O1—H1101.1C4—C5—H5C109.5
C8—N1—C9115.8 (2)H5A—C5—H5C109.5
C2—C1—H1A109.5H5B—C5—H5C109.5
C2—C1—H1B109.5C10—C6—C7117.9 (2)
H1A—C1—H1B109.5C10—C6—S1124.71 (17)
C2—C1—H1C109.5C7—C6—S1117.38 (17)
H1A—C1—H1C109.5C8—C7—C6118.8 (2)
H1B—C1—H1C109.5C8—C7—H7120.6
O1—C2—C3120.9 (2)C6—C7—H7120.6
O1—C2—C1115.7 (2)N1—C8—C7124.6 (2)
C3—C2—C1123.4 (2)N1—C8—H8117.7
C2—C3—C4119.1 (2)C7—C8—H8117.7
C2—C3—S1120.14 (18)N1—C9—C10124.5 (2)
C4—C3—S1120.67 (18)N1—C9—H9117.7
O2—C4—C3120.0 (2)C10—C9—H9117.7
O2—C4—C5116.8 (2)C6—C10—C9118.4 (2)
C3—C4—C5123.1 (3)C6—C10—H10120.8
C4—C5—H5A109.5C9—C10—H10120.8
C4—C5—H5B109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.881.582.427 (3)161

Experimental details

Crystal data
Chemical formulaC10H11NO2S
Mr209.26
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)8.3273 (7), 9.5614 (8), 13.0681 (11)
β (°) 92.698 (1)
V3)1039.34 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.35 × 0.30 × 0.28
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.907, 0.925
No. of measured, independent and
observed [I > 2σ(I)] reflections
5011, 1822, 1351
Rint0.030
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.120, 1.06
No. of reflections1822
No. of parameters130
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.19

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.881.582.427 (3)161
 

Acknowledgements

We acknowledge financial support by the National Natural Science Foundation of China (grant No. 21001061), the Natural Science Foundation of Shandong Province (grant No. ZR2010BL020) and the Liaocheng University Funds for Young Scientists (31805).

References

First citationAromí, G., Gamez, P. & Reedijk, J. (2008). Coord. Chem. Rev. 252, 964–989.  Google Scholar
First citationChen, B.-L., Fronczek, F. R. & Maverick, A. W. (2003). Chem. Commun. pp. 2166–2167.  CrossRef Google Scholar
First citationChen, B.-L., Fronczek, F. R. & Maverick, A. W. (2004). Inorg. Chem. 43, 8209–8211.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDomasevitch, K. V., Vreshch, V. D., Lysenko, A. B. & Krautscheid, H. (2006). Acta Cryst. C62, m443–m447.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMassue, J., Bellec, N., Chopin, S., Levillain, E., Roisnel, T., Clrac, R. & Lorcy, D. (2005). Inorg. Chem. 44, 8740–8748.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens. (1996). SMART and SAINT. Siemens Analytical X-ray Systems, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSoldatov, D. V. & Ripmeester, J. A. (2001). Chem. Eur. J. 7, 2979–2994.  CrossRef PubMed CAS Google Scholar
First citationTabellion, F. M., Seidel, S. R., Arif, A. M. & Stang, P. J. (2001). Angew. Chem. Int. Ed. 40, 1529–1532.  Web of Science CrossRef CAS Google Scholar
First citationVigato, P. A., Peruzzo, V. & Tamburini, S. (2009). Coord. Chem. Rev. 253, 1099–1201.  Web of Science CrossRef CAS Google Scholar
First citationVreshch, V. D., Chernega, A. N., Howard, J. A. K., Sieler, J. & Domasevitch, K. V. (2003). Dalton Trans. pp. 1707–1711.  Web of Science CSD CrossRef Google Scholar
First citationVreshch, V. D., Lysenko, A. B., Chernega, A. N., Howard, J. A. K., Krautscheid, H., Sielerd, J. & Domasevitch, K. V. (2004). Dalton Trans. pp. 2899–2903.  CrossRef Google Scholar
First citationWon, T.-J., Clegg, J. K., Leonard, F. L. & McMurtrie, J. C. (2007). Cryst. Growth Des. 7, 972–979.  CrossRef CAS Google Scholar
First citationZhang, X.-F., Chen, H., Ma, C. B., Chen, C.-N. & Liu, Q.-T. (2006). Dalton Trans. pp. 4047–4055.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds