metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages m429-m430

(Benzene­carbo­thio­amide-κS)­penta­carbonyl­tungsten(0)

aDépartement de Chimie, Faculté des Sciences Exactes, Université Mentouri Constantine, Route de Ain El Bey, Constantine, Algeria, bDépartement Sciences de la Matière, Facult des Sciences Exactes et Sciences de la Nature et de la Vie, Universit'e Larbi Ben M'hidi, Oum El Bouaghi 04000, Algeria, cUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Mentouri-Constantine, 25000 Algeria, and dEquipe Organométallique et Matériaux Moléculaires, UMR6226 CNRS-Université de Rennes 1, Avenue du Général Leclerc, 35042, Rennes, France
*Correspondence e-mail: bouacida_sofiane@yahoo.fr

(Received 10 February 2011; accepted 6 March 2011; online 12 March 2011)

The asymmetric unit of the title complex, [W(C7H7NS)(CO)5], comprises two independent mol­ecules. In each, the W atom is coordinated by five CO groups and the S atom of the benzencarbothioamide ligand in a distorted octa­hedral geometry. The crystal packing can be described as undulating layers of W(CO)5 and benzene­carbothio­amide parallel to (001). In the crystal, components are linked via inter­molecular N—H⋯O and C—H⋯O hydrogen bonds to form a dimeric chains along the [010] direction. Intra­molecular N—H⋯C inter­actions are also observed.

Related literature

For applications of thio­amides, see: Gok & Cetinkaya (2004[Gok, Y. & Cetinkaya, E. (2004). Turk. J. Chem. 28, 157-162.]). For the preparation of metal complexes of thio­nes, see: Raper (1994[Raper, E. S. (1994). Coord. Chem. Rev. 129, 91-156.], 1996[Raper, E. S. (1996). Coord. Chem. Rev. 153, 199-255.], 1997[Raper, E. S. (1997). Coord. Chem. Rev. 165, 475-567.]). For related structures, see: Saito et al. (2007[Saito, K., Kawno, Y. & Shimoi, M. (2007). Eur. J. Inorg. Chem. pp. 3195-3200.]); Pasynsky et al. (2007[Pasynsky, A. A., Il'in, A. N., Shapovalov, S. S. & Torubayev, Yu. V. (2007). Russ. J. Inorg. Chem. 52, 875-878.]); Darensbourg et al. (1999[Darensbourg, D. J., Frost, B. J., Derecskei-Kovacs, A. & Reibenspies, J. H. (1999). Inorg. Chem. 38, 4715-4723.]). For the coordination characteristics of thio­amides, see: Raper et al. (1983[Raper, E. S., Creighton, J. R., Oughtred, R. E. & Nowell, I. W. (1983). Acta Cryst. B39, 355-360.])

[Scheme 1]

Experimental

Crystal data
  • [W(C7H7NS)(CO)5]

  • Mr = 461.10

  • Monoclinic, P 21 /n

  • a = 7.311 (1) Å

  • b = 19.567 (2) Å

  • c = 20.342 (1) Å

  • β = 91.85 (1)°

  • V = 2908.5 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 8.10 mm−1

  • T = 295 K

  • 0.05 × 0.05 × 0.04 mm

Data collection
  • Nonius KappaCCD diffractometer

  • 11978 measured reflections

  • 6616 independent reflections

  • 5239 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.122

  • S = 1.09

  • 6616 reflections

  • 362 parameters

  • H-atom parameters constrained

  • Δρmax = 2.05 e Å−3

  • Δρmin = −1.81 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H2A⋯O3Bi 0.86 2.52 3.174 (8) 133
C9B—H9B⋯O4Bii 0.93 2.53 3.285 (10) 139
N1B—H2B⋯C3B 0.86 2.59 3.263 (9) 136
N1A—H2A⋯C4A 0.86 2.69 3.412 (10) 142
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008)[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]; molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg & Putz, 2001[Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Thione containing molecules thioamides are important classes of compounds with a wide variety of applications (Gok & Cetinkaya, 2004). The chemical interest of these molecules lies in the fact that they are multi-functional donors with S and N atoms available for coordination, and their biological interest arises from their structural analogy to thiolated nucleosides. A considerable amount of work has been performed on the synthesis and characterization of metal complexes of thione containing molecules as ligands in the past two decades (RAPER, 1994, 1996, 1997). The diverse properties of the thioamide have been attributed to the coordination ability of the heterocyclic RN—C(S)—NR' thioamide group, as a monodentate ligand, to both metallic and non-metallic elements, leading to stable electron donor–acceptor complexes (Raper et al., 1983). As part of our going studies, we report here the synthesis and crystal structure of the title compound, (I). The molecular structure of (I), and the atomic numbering used, is illustrated in Fig. 1. A l l bond distances and angles are within the ranges of accepted values(Saito et al., 2007; Pasynsky et al., 2007; Darensbourg et al., 1999). The tungsten atom displays octahedral geometry with five CO and the benzenecarbothioamide molecule.

The crystal packing in the title structure can be described by undulate layers of W(CO)5 and benzenecarbothioamide parallel to (001)plane (Fig. 2).

In the crystal, the components of the structure are linked via intermolecular N—H···O and C—H···O hydrogen bonds to form a dimeric chains along the[010](Fig. 3) and additional stabilization within these layers is provided by weak intramolecular C—H···S, N—H···C interactions and Van Der Walls interactions (Table. 1). These interactions link the molecules within the layers and also link the layers together and reinforcing the cohesion of the structure.

Related literature top

For applications of thioamides, see: Gok & Cetinkaya (2004). For the preparation of metal complexes of thiones, see: Raper (1994, 1996, 1997). For related structures, see: Saito et al. (2007); Pasynsky et al. (2007); Darensbourg et al. (1999). For the coordination characteristics of thioamides, , see: Raper et al. (1983) Scheme: use a capital letter W for the tunsten atom

Experimental top

A solution of W(CO)6 (137 mg, 1 mmole) and benzenecarbothioamide (102 mg, 1 mmole) in 40 ml of dry THF was irradiated for 2 h with vigorous stirring. The excess of W(CO)6 was moved by filtration and the solvent was evaporated under reduced pressure. The residue was recrystallized from THF/hexane (1:5 ratio). Bright red crystals were washed three times with portions of hexane, and dried under vacuum. Yield:(22%).

Refinement top

All non-H atoms were refined with anisotropic atomic displacement parameters. All H atoms were localized in Fourier maps but introduced in calculated positions and treated as riding on their parent C and N atoms with C—H = 0.93Å and N—H = 0.86Å and Uiso(H) =1.2(carrier atom). The large residual electronic density near The tungsten atoms has no chemical significance.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg et al., 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The structure of the title compound with the atomic labelling scheme. Displacement are drawn at the 50% probability level.
[Figure 2] Fig. 2. A diagram of the layered crystal packing in (I), viewed down the a axis, showing ondulate layers.
[Figure 3] Fig. 3. A part of crystal packing showing W(CO)5S octahedral and demeric chains along the b axis. Hydrogen bonds are shown as dashed lines.
(Benzenecarbothioamide-κS)pentacarbonyltungsten(0) top
Crystal data top
[W(C7H7NS)(CO)5]F(000) = 1728
Mr = 461.10Dx = 2.106 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.311 (1) ÅCell parameters from 6264 reflections
b = 19.567 (2) Åθ = 0.4–27.5°
c = 20.342 (1) ŵ = 8.10 mm1
β = 91.85 (1)°T = 295 K
V = 2908.5 (5) Å3Block, red
Z = 80.05 × 0.05 × 0.04 mm
Data collection top
Nonius KappaCCD
diffractometer
5239 reflections with I > 2σ(I)
Radiation source: Enraf–Nonius FR590Rint = 0.039
Graphite monochromatorθmax = 27.5°, θmin = 2.1°
Detector resolution: 9 pixels mm-1h = 99
CCD rotation images, thick slices scansk = 2525
11978 measured reflectionsl = 2626
6616 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.122 w = 1/[σ2(Fo2) + (0.0734P)2 + 1.0074P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.002
6616 reflectionsΔρmax = 2.05 e Å3
362 parametersΔρmin = 1.81 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0038 (2)
Crystal data top
[W(C7H7NS)(CO)5]V = 2908.5 (5) Å3
Mr = 461.10Z = 8
Monoclinic, P21/nMo Kα radiation
a = 7.311 (1) ŵ = 8.10 mm1
b = 19.567 (2) ÅT = 295 K
c = 20.342 (1) Å0.05 × 0.05 × 0.04 mm
β = 91.85 (1)°
Data collection top
Nonius KappaCCD
diffractometer
5239 reflections with I > 2σ(I)
11978 measured reflectionsRint = 0.039
6616 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.122H-atom parameters constrained
S = 1.09Δρmax = 2.05 e Å3
6616 reflectionsΔρmin = 1.81 e Å3
362 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
W1B0.47552 (3)0.035130 (13)0.139037 (11)0.04115 (12)
W1A0.50314 (4)0.184280 (15)0.597958 (12)0.04710 (12)
S1B0.5287 (2)0.15399 (8)0.18654 (7)0.0438 (3)
S1A0.5302 (2)0.27939 (10)0.68368 (8)0.0515 (4)
C4B0.2268 (10)0.0228 (4)0.1796 (3)0.0492 (15)
C11B0.5994 (11)0.2913 (4)0.3958 (4)0.0592 (18)
H11B0.64880.29350.43840.071*
N1B0.4325 (8)0.1066 (3)0.3024 (3)0.0503 (13)
H1B0.41290.11210.34350.06*
H2B0.41780.06710.28450.06*
O2A0.2854 (9)0.2984 (4)0.5165 (3)0.0847 (19)
O3B0.6891 (8)0.0422 (3)0.2538 (3)0.0653 (14)
O4B0.0839 (7)0.0142 (3)0.1981 (3)0.0650 (14)
O1A0.4938 (11)0.0889 (4)0.4743 (3)0.090 (2)
C1A0.4951 (12)0.1235 (5)0.5205 (4)0.066 (2)
O5B0.2497 (9)0.1036 (4)0.0205 (3)0.089 (2)
O4A0.6958 (9)0.0614 (4)0.6735 (3)0.088 (2)
C7A0.5009 (8)0.3088 (4)0.8138 (3)0.0458 (14)
N1A0.4491 (9)0.1928 (3)0.7778 (3)0.0592 (16)
H1A0.43030.18280.81820.071*
H2A0.44160.16160.74810.071*
C11A0.5770 (12)0.3401 (5)0.9253 (4)0.071 (2)
H11A0.62130.32840.96720.085*
C12A0.5662 (10)0.2917 (4)0.8762 (3)0.0538 (17)
H12A0.60330.2470.8850.065*
O1B0.4266 (10)0.1117 (3)0.0804 (3)0.0832 (18)
C6A0.4889 (8)0.2556 (4)0.7615 (3)0.0469 (15)
O2B0.8466 (9)0.0471 (4)0.0620 (4)0.098 (2)
C4A0.6293 (10)0.1075 (4)0.6486 (4)0.0543 (17)
C7B0.5073 (8)0.2256 (3)0.3007 (3)0.0424 (13)
C9B0.4807 (11)0.3481 (4)0.2996 (4)0.0610 (19)
H9B0.44750.38820.27780.073*
C6B0.4848 (8)0.1589 (3)0.2667 (3)0.0394 (13)
C8A0.4464 (9)0.3749 (4)0.8014 (3)0.0497 (15)
H8A0.40060.38670.75980.06*
C8B0.4610 (9)0.2857 (4)0.2682 (3)0.0495 (15)
H8B0.41630.28410.22490.059*
O5A0.8865 (8)0.2385 (4)0.5503 (3)0.0842 (19)
O3A0.1149 (8)0.1242 (4)0.6324 (3)0.088 (2)
C10A0.5207 (13)0.4069 (5)0.9116 (4)0.076 (2)
H10A0.52550.43970.94470.091*
C5A0.7517 (10)0.2200 (4)0.5684 (4)0.0580 (18)
C10B0.5493 (11)0.3505 (5)0.3630 (4)0.067 (2)
H10B0.56230.39250.38410.08*
C3B0.6128 (9)0.0127 (4)0.2132 (3)0.0472 (14)
C2A0.3655 (11)0.2584 (4)0.5450 (4)0.0596 (18)
C12B0.5759 (9)0.2286 (4)0.3650 (3)0.0489 (15)
H12B0.6060.18850.38750.059*
C9A0.4588 (12)0.4241 (5)0.8501 (4)0.066 (2)
H9A0.42490.46890.84070.079*
C1B0.4418 (11)0.0564 (4)0.0996 (4)0.0570 (17)
C2B0.7157 (11)0.0451 (4)0.0899 (4)0.0576 (18)
C5B0.3328 (10)0.0813 (4)0.0619 (3)0.0555 (17)
C3A0.2517 (11)0.1457 (5)0.6225 (4)0.063 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
W1B0.04647 (17)0.03768 (18)0.03916 (16)0.00108 (10)0.00078 (10)0.00048 (9)
W1A0.04694 (18)0.0514 (2)0.04283 (17)0.00581 (11)0.00016 (11)0.00570 (11)
S1B0.0522 (8)0.0374 (8)0.0417 (7)0.0039 (7)0.0004 (6)0.0012 (6)
S1A0.0554 (9)0.0531 (11)0.0461 (8)0.0015 (8)0.0011 (7)0.0055 (7)
C4B0.054 (4)0.040 (4)0.053 (4)0.003 (3)0.002 (3)0.005 (3)
C11B0.065 (4)0.060 (5)0.052 (4)0.009 (4)0.005 (3)0.008 (3)
N1B0.063 (3)0.045 (3)0.043 (3)0.004 (3)0.008 (2)0.004 (2)
O2A0.089 (4)0.074 (4)0.089 (4)0.016 (3)0.017 (3)0.031 (3)
O3B0.063 (3)0.066 (4)0.066 (3)0.008 (3)0.012 (3)0.016 (3)
O4B0.054 (3)0.056 (3)0.086 (4)0.004 (3)0.016 (3)0.003 (3)
O1A0.126 (6)0.073 (4)0.070 (4)0.011 (4)0.001 (4)0.022 (3)
C1A0.076 (5)0.061 (5)0.060 (5)0.008 (4)0.002 (4)0.007 (4)
O5B0.097 (5)0.103 (5)0.064 (3)0.003 (4)0.022 (3)0.029 (3)
O4A0.087 (4)0.083 (5)0.095 (4)0.032 (4)0.004 (4)0.032 (4)
C7A0.039 (3)0.049 (4)0.049 (3)0.005 (3)0.002 (3)0.003 (3)
N1A0.079 (4)0.052 (4)0.048 (3)0.008 (3)0.017 (3)0.005 (3)
C11A0.077 (5)0.082 (7)0.054 (4)0.001 (5)0.007 (4)0.007 (4)
C12A0.056 (4)0.058 (5)0.047 (4)0.005 (3)0.003 (3)0.006 (3)
O1B0.118 (5)0.055 (4)0.077 (4)0.009 (4)0.007 (4)0.017 (3)
C6A0.036 (3)0.055 (4)0.050 (3)0.001 (3)0.004 (2)0.005 (3)
O2B0.069 (4)0.130 (7)0.099 (5)0.004 (4)0.037 (4)0.011 (4)
C4A0.055 (4)0.050 (4)0.059 (4)0.006 (3)0.004 (3)0.003 (3)
C7B0.039 (3)0.041 (4)0.047 (3)0.001 (3)0.001 (2)0.006 (3)
C9B0.065 (4)0.041 (4)0.077 (5)0.006 (3)0.003 (4)0.005 (4)
C6B0.033 (3)0.037 (3)0.048 (3)0.001 (2)0.003 (2)0.004 (3)
C8A0.046 (3)0.047 (4)0.056 (4)0.003 (3)0.000 (3)0.008 (3)
C8B0.049 (4)0.041 (4)0.057 (4)0.001 (3)0.009 (3)0.006 (3)
O5A0.058 (3)0.116 (6)0.080 (4)0.009 (4)0.021 (3)0.001 (4)
O3A0.055 (3)0.112 (6)0.097 (5)0.015 (4)0.006 (3)0.028 (4)
C10A0.086 (6)0.080 (7)0.061 (5)0.003 (5)0.002 (4)0.019 (4)
C5A0.058 (4)0.065 (5)0.051 (4)0.005 (4)0.008 (3)0.002 (3)
C10B0.070 (5)0.054 (5)0.077 (5)0.017 (4)0.003 (4)0.025 (4)
C3B0.050 (3)0.039 (3)0.052 (4)0.000 (3)0.002 (3)0.002 (3)
C2A0.057 (4)0.067 (5)0.054 (4)0.003 (4)0.003 (3)0.007 (4)
C12B0.055 (4)0.045 (4)0.047 (3)0.006 (3)0.009 (3)0.002 (3)
C9A0.082 (5)0.058 (5)0.057 (4)0.006 (4)0.000 (4)0.008 (4)
C1B0.064 (4)0.054 (5)0.053 (4)0.001 (4)0.003 (3)0.003 (3)
C2B0.067 (5)0.051 (4)0.056 (4)0.003 (3)0.008 (3)0.000 (3)
C5B0.060 (4)0.060 (5)0.046 (4)0.001 (4)0.000 (3)0.008 (3)
C3A0.059 (4)0.077 (6)0.052 (4)0.003 (4)0.007 (3)0.014 (4)
Geometric parameters (Å, º) top
W1B—C1B1.975 (8)C7A—C12A1.382 (9)
W1B—C3B2.016 (7)C7A—C6A1.490 (10)
W1B—C4B2.036 (7)N1A—C6A1.308 (9)
W1B—C2B2.058 (8)N1A—H1A0.86
W1B—C5B2.064 (7)N1A—H2A0.86
W1B—S1B2.5436 (16)C11A—C12A1.379 (12)
W1A—C1A1.974 (9)C11A—C10A1.396 (14)
W1A—C4A2.027 (8)C11A—H11A0.93
W1A—C2A2.052 (8)C12A—H12A0.93
W1A—C5A2.055 (8)O1B—C1B1.155 (10)
W1A—C3A2.063 (8)O2B—C2B1.129 (9)
W1A—S1A2.5537 (19)C7B—C8B1.386 (9)
S1B—C6B1.674 (6)C7B—C12B1.387 (9)
S1A—C6A1.686 (7)C7B—C6B1.484 (9)
C4B—O4B1.134 (8)C9B—C10B1.368 (11)
C11B—C10B1.381 (12)C9B—C8B1.383 (10)
C11B—C12B1.385 (10)C9B—H9B0.93
C11B—H11B0.93C8A—C9A1.381 (11)
N1B—C6B1.318 (8)C8A—H8A0.93
N1B—H1B0.86C8B—H8B0.93
N1B—H2B0.86O5A—C5A1.123 (9)
O2A—C2A1.126 (9)O3A—C3A1.110 (9)
O3B—C3B1.138 (8)C10A—C9A1.360 (12)
O1A—C1A1.157 (10)C10A—H10A0.93
O5B—C5B1.112 (9)C10B—H10B0.93
O4A—C4A1.136 (9)C12B—H12B0.93
C7A—C8A1.375 (10)C9A—H9A0.93
C1B—W1B—C3B86.3 (3)H1A—N1A—H2A120
C1B—W1B—C4B87.5 (3)C12A—C11A—C10A119.3 (7)
C3B—W1B—C4B94.1 (3)C12A—C11A—H11A120.4
C1B—W1B—C2B89.2 (3)C10A—C11A—H11A120.4
C3B—W1B—C2B89.8 (3)C11A—C12A—C7A120.6 (8)
C4B—W1B—C2B174.8 (3)C11A—C12A—H12A119.7
C1B—W1B—C5B92.0 (3)C7A—C12A—H12A119.7
C3B—W1B—C5B178.3 (3)N1A—C6A—C7A118.9 (6)
C4B—W1B—C5B85.6 (3)N1A—C6A—S1A123.1 (6)
C2B—W1B—C5B90.4 (3)C7A—C6A—S1A118.0 (5)
C1B—W1B—S1B177.7 (2)O4A—C4A—W1A175.1 (7)
C3B—W1B—S1B94.2 (2)C8B—C7B—C12B119.3 (6)
C4B—W1B—S1B94.67 (19)C8B—C7B—C6B120.2 (6)
C2B—W1B—S1B88.6 (2)C12B—C7B—C6B120.5 (6)
C5B—W1B—S1B87.5 (2)C10B—C9B—C8B119.7 (8)
C1A—W1A—C4A87.7 (3)C10B—C9B—H9B120.2
C1A—W1A—C2A90.3 (3)C8B—C9B—H9B120.2
C4A—W1A—C2A177.0 (3)N1B—C6B—C7B117.1 (6)
C1A—W1A—C5A88.6 (3)N1B—C6B—S1B124.1 (5)
C4A—W1A—C5A90.5 (3)C7B—C6B—S1B118.9 (5)
C2A—W1A—C5A91.7 (3)C7A—C8A—C9A120.8 (7)
C1A—W1A—C3A88.2 (4)C7A—C8A—H8A119.6
C4A—W1A—C3A90.0 (3)C9A—C8A—H8A119.6
C2A—W1A—C3A87.7 (3)C9B—C8B—C7B120.6 (7)
C5A—W1A—C3A176.7 (3)C9B—C8B—H8B119.7
C1A—W1A—S1A169.8 (3)C7B—C8B—H8B119.7
C4A—W1A—S1A99.7 (2)C9A—C10A—C11A120.2 (8)
C2A—W1A—S1A82.5 (2)C9A—C10A—H10A119.9
C5A—W1A—S1A84.4 (2)C11A—C10A—H10A119.9
C3A—W1A—S1A98.7 (3)O5A—C5A—W1A177.7 (7)
C6B—S1B—W1B113.0 (2)C9B—C10B—C11B120.6 (7)
C6A—S1A—W1A115.3 (3)C9B—C10B—H10B119.7
O4B—C4B—W1B175.2 (6)C11B—C10B—H10B119.7
C10B—C11B—C12B119.9 (7)O3B—C3B—W1B177.2 (6)
C10B—C11B—H11B120.1O2A—C2A—W1A178.0 (7)
C12B—C11B—H11B120.1C11B—C12B—C7B119.9 (7)
C6B—N1B—H1B120C11B—C12B—H12B120
C6B—N1B—H2B120C7B—C12B—H12B120
H1B—N1B—H2B120C10A—C9A—C8A120.0 (8)
O1A—C1A—W1A178.2 (9)C10A—C9A—H9A120
C8A—C7A—C12A119.1 (7)C8A—C9A—H9A120
C8A—C7A—C6A121.1 (6)O1B—C1B—W1B175.5 (7)
C12A—C7A—C6A119.8 (7)O2B—C2B—W1B176.3 (7)
C6A—N1A—H1A120O5B—C5B—W1B176.5 (7)
C6A—N1A—H2A120O3A—C3A—W1A176.3 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H2A···O3Bi0.862.523.174 (8)133
C9B—H9B···O4Bii0.932.533.285 (10)139
C8A—H8A···S1A0.932.793.114 (7)101
C8B—H8B···S1B0.932.793.114 (6)101
N1B—H2B···C3B0.862.593.263 (9)136
N1A—H2A···C4A0.862.693.412 (10)142
Symmetry codes: (i) x+1, y, z+1; (ii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[W(C7H7NS)(CO)5]
Mr461.10
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)7.311 (1), 19.567 (2), 20.342 (1)
β (°) 91.85 (1)
V3)2908.5 (5)
Z8
Radiation typeMo Kα
µ (mm1)8.10
Crystal size (mm)0.05 × 0.05 × 0.04
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
11978, 6616, 5239
Rint0.039
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.122, 1.09
No. of reflections6616
No. of parameters362
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.05, 1.81

Computer programs: COLLECT (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR2002 (Burla et al., 2003), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg et al., 2001), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H2A···O3Bi0.862.523.174 (8)133
C9B—H9B···O4Bii0.932.533.285 (10)139
N1B—H2B···C3B0.862.593.263 (9)136
N1A—H2A···C4A0.862.693.412 (10)142
Symmetry codes: (i) x+1, y, z+1; (ii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors thank the Algerian Ministère de l'Enseignement Supeérieur et de la Recherche Scientifique for financial support.

References

First citationBrandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDarensbourg, D. J., Frost, B. J., Derecskei-Kovacs, A. & Reibenspies, J. H. (1999). Inorg. Chem. 38, 4715–4723.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGok, Y. & Cetinkaya, E. (2004). Turk. J. Chem. 28, 157–162.  Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPasynsky, A. A., Il'in, A. N., Shapovalov, S. S. & Torubayev, Yu. V. (2007). Russ. J. Inorg. Chem. 52, 875–878.  Google Scholar
First citationRaper, E. S. (1994). Coord. Chem. Rev. 129, 91–156.  CrossRef CAS Web of Science Google Scholar
First citationRaper, E. S. (1996). Coord. Chem. Rev. 153, 199–255.  CrossRef CAS Web of Science Google Scholar
First citationRaper, E. S. (1997). Coord. Chem. Rev. 165, 475–567.  CrossRef CAS Web of Science Google Scholar
First citationRaper, E. S., Creighton, J. R., Oughtred, R. E. & Nowell, I. W. (1983). Acta Cryst. B39, 355–360.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSaito, K., Kawno, Y. & Shimoi, M. (2007). Eur. J. Inorg. Chem. pp. 3195–3200.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages m429-m430
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds