metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(N,N,N-tri­methyl­ethanaminium) bis­­(1,4-tetra­selenido-κ2Se1,Se4)cadmate

aDepartment of Chemistry, University of Incheon, Incheon 406-772, Republic of Korea
*Correspondence e-mail: kimkw@incheon.ac.kr

(Received 10 February 2011; accepted 25 February 2011; online 2 March 2011)

The title compound, (EtMe3N)2[Cd(Se4)2], which has been prepared by reaction of CdI2, K2Se4 and EtMe3NI in dimethyl­formamide, is the first example of a [Cd(Se4)2]2− anion stabilized by alkyl­ammonium counter-ions. The Cd atom in the complex [Cd(Se4)2]2− anion is tetra­hedrally coordinated by two chelating tetra­selenide ligands, and both CdSe4 rings exhibit an envelope conformation.

Related literature

For general background to [Cd(Se4)2]2− complexes, see: Kanatzidis & Huang (1994[Kanatzidis, M. G. & Huang, S.-P. (1994). Coord. Chem. Rev. 130, 509-621.]); Ansari et al. (1990[Ansari, M. A., Mahler, C. H., Chorghade, G. S., Lu, Y.-J. & Ibers, J. A. (1990). Inorg. Chem. 29, 3832-3839.]); Barrie et al. (1994[Barrie, P. J., Clark, R. J. H., Withnall, R., Chung, D.-Y., Kim, K.-W. & Kanatzidis, M. G. (1994). Inorg. Chem. 33, 1212-1216.]). For related structures, see: Adel et al. (1988[Adel, J., Weller, F. & Dehnicke, K. (1988). Z. Naturforsch. Teil B, 43, 1094-1100.]); Kräuter et al. (1989[Kräuter, G., Weller, F. & Dehnicke, K. (1989). Z. Naturforsch. Teil B, 44, 444-454.]); Magull et al. (1992[Magull, S., Dehnicke, K. & Fenske, D. (1992). Z. Anorg. Allg. Chem. 608, 17-22.]); Banda et al. (1989[Banda, R. M. H., Cusick, J., Scudder, M. L., Craig, D. C. & Dance, I. G. (1989). Polyhedron, 8, 1995-1998.]). For applications of soluble cadmium–chalcogen compounds, see: Khanna et al. (2006)[Khanna, P. K., Singh, N., Charan, S., Lonkar, S. P., Reddy, A. S., Patil, Y. & Viswanath, A. K. (2006). Mater. Chem. Phys. 97, 288-294.]; Nesheva (2001[Nesheva, D. (2001). Handbook of Surfaces and Interfaces of Materials, Vol. 3, edited by H. S. Nalwa, pp. 239-279. San Diego: Academic Press.]); Dhingra et al. (1991[Dhingra, S., Kim, K.-W. & Kanatzidis, M. G. (1991). Mater. Res. Soc. Symp. Proc. 204, 163-168.]).

[Scheme 1]

Experimental

Crystal data
  • (C5H14N)2[Cd(Se4)2]

  • Mr = 920.42

  • Monoclinic, P 21 /c

  • a = 12.5125 (2) Å

  • b = 11.3273 (2) Å

  • c = 16.7290 (3) Å

  • β = 95.174 (1)°

  • V = 2361.39 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 13.25 mm−1

  • T = 173 K

  • 0.30 × 0.27 × 0.16 mm

Data collection
  • Bruker APEXII CCD ULTRA diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.010, Tmax = 0.041

  • 40764 measured reflections

  • 5876 independent reflections

  • 4911 reflections with I > 2σ(I)

  • Rint = 0.074

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.081

  • S = 1.03

  • 5876 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.88 e Å−3

  • Δρmin = −1.85 e Å−3

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Within metal polychalcogenide chemistry, the bis(tetrachalcogenido)metallate [M(Q4)2]2- (Q = S, Se, Te) anions are among the most well known molecular complexes (Kanatzidis & Huang (1994); Ansari et al. (1990)). For the [Cd(Se4)2]2- anion, there are four structurally characterized complexes: stabilized with [Na(15-crown-5]+ (Adel et al. (1988)), [Li3(12-crown-4)3(CH3COO]2+ (Kräuter et al. (1989)), [Ba(18-crown-6)(DMF)4]2+ (Magull et al. (1992)), and [Ph4P]+ (Banda et al. (1989)). So far, no alkylammonium salt of the [Cd(Se4)2]2- anion had been structurally characterized. Compared to alkali metal-crown ether complexes and arylphosphonium salts, an alkylammonium salt could be preferable for the application as a precursor of Cd/Se binary and related materials (Khanna et al. (2006); Nesheva (2001); Dhingra et al. (1991)), and also for 77Se solid-state NMR measurements (Barrie et al. (1994)). The title compound is the first example of an alkylammonium [Cd(Se4)2]2- salt, containing EtMe3N+ cations as the counterion.

The structure of the [Cd(Se4)2]2- anion in (EtMe3N)2[Cd(Se4)2] is essentially the same as that of the [Na(15-crown-5]+, [Li3(12-crown-4)3(CH3COO]2+, [Ba(18-crown-6)(DMF)4]2+, and [Ph4P]+ salts. As shown in Fig. 1, a Cd atom is tetrahedrally coordinated by two chelating tetraselenide ligands, and all eight Se atoms occupy distinct crystallographic sites. The Cd—Se distances and Se—Se distances are typical, ranging from 2.6347 (5) Å to 2.6789 (5) Å, and from 2.3289 (6) Å to 2.3419 (6) Å, respectively, similar to those found in the previously characterized four [Cd(Se4)2]2- complexes. Both CdSe4 rings in [Cd(Se4)2]2- exhibit the envelope conformation. In one CdSe4 ring, the Cd1, Se1, Se2, and Se4 atoms are considered to be in a plane with a mean deviation of 0.12 (4) Å, while the Se3 atom lies 1.24 Å below it. Similarly, in the other CdSe4 ring, the Cd1, Se5, Se7, and Se8 atoms are in a plane with a mean deviation of 0.15 (6) Å, and the Se6 atom lies 1.17 Å below it. The dihedral angle between the two planes in [Cd(Se4)2]2- is found to be 112.12°.

Related literature top

For general background to [Cd(Se4)2]2- complexes, see: Kanatzidis & Huang (1994); Ansari et al. (1990); Barrie et al. (1994). For related structures, see: Adel et al. (1988); Kräuter et al. (1989); Magull et al. (1992); Banda et al. (1989). For applications of soluble cadmium–chalcogen compounds, see: Khanna et al. (2006); Nesheva (2001); Dhingra et al. (1991).

Experimental top

All synthetic experiments were performed under an atmosphere of dry argon or nitrogen using either a glove box or a Schlenk line. To a 50 ml DMF solution of 0.59 g (1.5 mmol) K2Se4 and 0.32 g (1.5 mmol) EtMe3NI, a 10 ml DMF solution of 0.27 g (0.75 mmol) CdI2 was added dropwise over a 20 min period. 60 ml ether were slowly layered over the filtrate solution, after removing undissolved precipitates by filtration. Upon standing at room temperature for 3 days, dark purple crystals were obtained. These crystals were isolated and washed with ether several times. More crystals were obtained upon layering additional 50 ml ether over the solution after isolation of the first crop of crystals. The overall yield was 65%, based on the CdI2 used. SEM/EDAX analyses on the crystals of (EtMe3N)2[Cd(Se4)2] showed an average Cd:Se atomic ratio of 1:7.2.

Refinement top

H atoms were positioned geometrically and treated as riding, with C—H = 0.97 (CH2) and 0.96 (CH3) Å with Uiso(H) = 1.2 (1.5 for methyl) Ueq(C). H atoms of the CH3 were positioned to be staggered with respect to the shortest other bond to the atom to which the CH3 is attached.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Structure of the asymmetric unit in (EtMe3N)2[Cd(Se4)2]. Displacement ellipsoids are drawn at the 50% probability level, except for H atoms which are drawn as spheres with an arbitrary radius.
Bis(N,N,N-trimethylethanaminium) bis(1,4-tetraselenido-κ2Se1,Se4)cadmate top
Crystal data top
(C5H14N)2[Cd(Se4)2]F(000) = 1688
Mr = 920.42Dx = 2.589 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.5125 (2) ÅCell parameters from 9912 reflections
b = 11.3273 (2) Åθ = 2.4–28.1°
c = 16.7290 (3) ŵ = 13.25 mm1
β = 95.174 (1)°T = 173 K
V = 2361.39 (7) Å3Polyhedral block, dark purple
Z = 40.30 × 0.27 × 0.16 mm
Data collection top
Bruker APEXII CCD ULTRA
diffractometer
5876 independent reflections
Radiation source: Turbo X-ray4911 reflections with I > 2σ(I)
Multilyar monochromatorRint = 0.074
ϕ and ω scansθmax = 28.3°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1616
Tmin = 0.010, Tmax = 0.041k = 1515
40764 measured reflectionsl = 2220
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.081 w = 1/[σ2(Fo2) + (0.0326P)2 + 1.8487P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
5876 reflectionsΔρmax = 0.88 e Å3
191 parametersΔρmin = 1.85 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00141 (10)
Crystal data top
(C5H14N)2[Cd(Se4)2]V = 2361.39 (7) Å3
Mr = 920.42Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.5125 (2) ŵ = 13.25 mm1
b = 11.3273 (2) ÅT = 173 K
c = 16.7290 (3) Å0.30 × 0.27 × 0.16 mm
β = 95.174 (1)°
Data collection top
Bruker APEXII CCD ULTRA
diffractometer
5876 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
4911 reflections with I > 2σ(I)
Tmin = 0.010, Tmax = 0.041Rint = 0.074
40764 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.081H-atom parameters constrained
S = 1.03Δρmax = 0.88 e Å3
5876 reflectionsΔρmin = 1.85 e Å3
191 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.28864 (2)0.52306 (3)0.255978 (17)0.02603 (9)
Se10.29708 (3)0.75340 (4)0.28334 (3)0.03026 (11)
Se20.47862 (3)0.76914 (4)0.32974 (3)0.03032 (11)
Se30.49898 (3)0.60822 (4)0.41770 (3)0.03229 (11)
Se40.47131 (3)0.44849 (4)0.32945 (3)0.03102 (11)
Se50.28100 (3)0.40649 (4)0.11800 (2)0.03112 (11)
Se60.09505 (3)0.40696 (5)0.08845 (3)0.03800 (12)
Se70.03406 (3)0.34066 (4)0.20879 (3)0.03345 (11)
Se80.08684 (3)0.49621 (4)0.29446 (3)0.03304 (11)
N10.2702 (3)0.1209 (3)0.3584 (2)0.0271 (7)
N20.1899 (2)0.6780 (3)0.5421 (2)0.0273 (7)
C10.2527 (4)0.2362 (4)0.3994 (3)0.0363 (10)
H1A0.23830.22170.45390.054*
H1B0.19290.27660.37180.054*
H1C0.31590.28420.39880.054*
C20.1710 (4)0.0470 (5)0.3612 (3)0.0451 (12)
H2A0.15750.0340.41610.068*
H2B0.18110.02750.33560.068*
H2C0.1110.08730.33370.068*
C30.2907 (4)0.1413 (5)0.2737 (3)0.0500 (14)
H3A0.3540.18880.27180.075*
H3B0.23050.18150.24630.075*
H3C0.3010.06690.2480.075*
C40.3621 (3)0.0540 (4)0.4028 (3)0.0316 (9)
H4A0.34430.03940.45720.038*
H4B0.36870.0220.3770.038*
C50.4685 (4)0.1152 (5)0.4065 (3)0.0462 (12)
H5A0.52230.06590.43410.069*
H5B0.46430.18860.43470.069*
H5C0.48710.13020.3530.069*
C60.1112 (4)0.7104 (5)0.5999 (3)0.0426 (11)
H6A0.14610.71010.65340.064*
H6B0.05350.65420.59630.064*
H6C0.08320.78770.58740.064*
C70.2779 (4)0.7675 (5)0.5477 (3)0.0489 (13)
H7A0.31180.76920.60150.073*
H7B0.24860.84390.5340.073*
H7C0.32990.74690.51120.073*
C80.1357 (4)0.6786 (6)0.4594 (3)0.0561 (15)
H8A0.08040.61960.45490.084*
H8B0.18730.66180.42170.084*
H8C0.10450.75490.44790.084*
C90.2423 (4)0.5611 (5)0.5627 (3)0.0434 (12)
H9A0.29620.54650.52570.052*
H9B0.27910.56650.61620.052*
C100.1678 (5)0.4572 (5)0.5604 (4)0.0588 (15)
H10A0.20830.38670.57320.088*
H10B0.13120.45020.50770.088*
H10C0.11620.46840.59890.088*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.02102 (14)0.02943 (17)0.02811 (16)0.00364 (11)0.00481 (11)0.00007 (11)
Se10.02386 (19)0.0284 (2)0.0385 (2)0.00127 (16)0.00277 (16)0.00038 (17)
Se20.02108 (19)0.0273 (2)0.0435 (3)0.00169 (16)0.00789 (16)0.00507 (17)
Se30.0269 (2)0.0401 (3)0.0298 (2)0.00456 (18)0.00195 (16)0.00306 (17)
Se40.02296 (19)0.0274 (2)0.0426 (3)0.00099 (16)0.00250 (17)0.00039 (17)
Se50.0253 (2)0.0401 (3)0.0292 (2)0.00149 (17)0.00922 (16)0.00414 (17)
Se60.0279 (2)0.0541 (3)0.0313 (2)0.0017 (2)0.00101 (17)0.00473 (19)
Se70.01889 (19)0.0374 (3)0.0446 (3)0.00443 (17)0.00541 (16)0.00307 (19)
Se80.0223 (2)0.0426 (3)0.0357 (2)0.00182 (17)0.01091 (16)0.00686 (18)
N10.0189 (15)0.0344 (19)0.0293 (18)0.0003 (14)0.0093 (13)0.0002 (14)
N20.0223 (15)0.0346 (19)0.0260 (17)0.0016 (14)0.0074 (12)0.0010 (14)
C10.033 (2)0.029 (2)0.049 (3)0.0038 (18)0.0139 (19)0.0045 (19)
C20.025 (2)0.044 (3)0.066 (3)0.007 (2)0.009 (2)0.006 (2)
C30.043 (3)0.080 (4)0.029 (3)0.013 (3)0.011 (2)0.011 (2)
C40.028 (2)0.032 (2)0.035 (2)0.0071 (18)0.0075 (17)0.0023 (17)
C50.025 (2)0.051 (3)0.062 (3)0.000 (2)0.002 (2)0.001 (2)
C60.032 (2)0.058 (3)0.040 (3)0.002 (2)0.0186 (19)0.011 (2)
C70.049 (3)0.047 (3)0.054 (3)0.019 (2)0.024 (2)0.010 (2)
C80.048 (3)0.088 (5)0.032 (3)0.007 (3)0.002 (2)0.001 (3)
C90.029 (2)0.042 (3)0.060 (3)0.004 (2)0.006 (2)0.008 (2)
C100.055 (3)0.043 (3)0.081 (4)0.007 (3)0.022 (3)0.002 (3)
Geometric parameters (Å, º) top
Cd1—Se42.6347 (5)C3—H3A0.96
Cd1—Se12.6494 (5)C3—H3B0.96
Cd1—Se52.6535 (5)C3—H3C0.96
Cd1—Se82.6789 (5)C4—C51.497 (6)
Se1—Se22.3402 (5)C4—H4A0.97
Se2—Se32.3419 (6)C4—H4B0.97
Se3—Se42.3411 (6)C5—H5A0.96
Se5—Se62.3346 (6)C5—H5B0.96
Se6—Se72.3401 (7)C5—H5C0.96
Se7—Se82.3289 (6)C6—H6A0.96
N1—C31.481 (6)C6—H6B0.96
N1—C11.500 (6)C6—H6C0.96
N1—C21.501 (6)C7—H7A0.96
N1—C41.515 (5)C7—H7B0.96
N2—C81.485 (6)C7—H7C0.96
N2—C61.487 (5)C8—H8A0.96
N2—C71.494 (6)C8—H8B0.96
N2—C91.504 (6)C8—H8C0.96
C1—H1A0.96C9—C101.499 (7)
C1—H1B0.96C9—H9A0.97
C1—H1C0.96C9—H9B0.97
C2—H2A0.96C10—H10A0.96
C2—H2B0.96C10—H10B0.96
C2—H2C0.96C10—H10C0.96
Se4—Cd1—Se1102.462 (15)H3B—C3—H3C109.5
Se4—Cd1—Se5102.001 (17)C5—C4—N1114.9 (4)
Se1—Cd1—Se5129.652 (18)C5—C4—H4A108.5
Se4—Cd1—Se8130.416 (18)N1—C4—H4A108.5
Se1—Cd1—Se895.396 (16)C5—C4—H4B108.5
Se5—Cd1—Se8101.053 (16)N1—C4—H4B108.5
Se2—Se1—Cd198.899 (19)H4A—C4—H4B107.5
Se1—Se2—Se3101.33 (2)C4—C5—H5A109.5
Se4—Se3—Se2101.76 (2)C4—C5—H5B109.5
Se3—Se4—Cd196.841 (19)H5A—C5—H5B109.5
Se6—Se5—Cd198.053 (19)C4—C5—H5C109.5
Se5—Se6—Se7102.31 (2)H5A—C5—H5C109.5
Se8—Se7—Se6100.97 (2)H5B—C5—H5C109.5
Se7—Se8—Cd199.156 (19)N2—C6—H6A109.5
C3—N1—C1110.3 (4)N2—C6—H6B109.5
C3—N1—C2109.4 (4)H6A—C6—H6B109.5
C1—N1—C2108.5 (3)N2—C6—H6C109.5
C3—N1—C4111.0 (3)H6A—C6—H6C109.5
C1—N1—C4110.3 (3)H6B—C6—H6C109.5
C2—N1—C4107.4 (3)N2—C7—H7A109.5
C8—N2—C6109.4 (3)N2—C7—H7B109.5
C8—N2—C7109.1 (4)H7A—C7—H7B109.5
C6—N2—C7108.6 (4)N2—C7—H7C109.5
C8—N2—C9111.8 (4)H7A—C7—H7C109.5
C6—N2—C9111.6 (4)H7B—C7—H7C109.5
C7—N2—C9106.2 (4)N2—C8—H8A109.5
N1—C1—H1A109.5N2—C8—H8B109.5
N1—C1—H1B109.5H8A—C8—H8B109.5
H1A—C1—H1B109.5N2—C8—H8C109.5
N1—C1—H1C109.5H8A—C8—H8C109.5
H1A—C1—H1C109.5H8B—C8—H8C109.5
H1B—C1—H1C109.5C10—C9—N2115.3 (4)
N1—C2—H2A109.5C10—C9—H9A108.4
N1—C2—H2B109.5N2—C9—H9A108.4
H2A—C2—H2B109.5C10—C9—H9B108.4
N1—C2—H2C109.5N2—C9—H9B108.4
H2A—C2—H2C109.5H9A—C9—H9B107.5
H2B—C2—H2C109.5C9—C10—H10A109.5
N1—C3—H3A109.5C9—C10—H10B109.5
N1—C3—H3B109.5H10A—C10—H10B109.5
H3A—C3—H3B109.5C9—C10—H10C109.5
N1—C3—H3C109.5H10A—C10—H10C109.5
H3A—C3—H3C109.5H10B—C10—H10C109.5

Experimental details

Crystal data
Chemical formula(C5H14N)2[Cd(Se4)2]
Mr920.42
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)12.5125 (2), 11.3273 (2), 16.7290 (3)
β (°) 95.174 (1)
V3)2361.39 (7)
Z4
Radiation typeMo Kα
µ (mm1)13.25
Crystal size (mm)0.30 × 0.27 × 0.16
Data collection
DiffractometerBruker APEXII CCD ULTRA
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.010, 0.041
No. of measured, independent and
observed [I > 2σ(I)] reflections
40764, 5876, 4911
Rint0.074
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.081, 1.03
No. of reflections5876
No. of parameters191
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.88, 1.85

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), WinGX (Farrugia, 1999).

 

Acknowledgements

This work was supported by a University of Incheon Research Grant in 2006. The authors thank Dr Ji-Eun Lee at the Central Instrument Facility of Gyeongsang National University for the X-ray measurements.

References

First citationAdel, J., Weller, F. & Dehnicke, K. (1988). Z. Naturforsch. Teil B, 43, 1094–1100.  CAS Google Scholar
First citationAnsari, M. A., Mahler, C. H., Chorghade, G. S., Lu, Y.-J. & Ibers, J. A. (1990). Inorg. Chem. 29, 3832–3839.  CSD CrossRef CAS Web of Science Google Scholar
First citationBanda, R. M. H., Cusick, J., Scudder, M. L., Craig, D. C. & Dance, I. G. (1989). Polyhedron, 8, 1995–1998.  CAS Google Scholar
First citationBarrie, P. J., Clark, R. J. H., Withnall, R., Chung, D.-Y., Kim, K.-W. & Kanatzidis, M. G. (1994). Inorg. Chem. 33, 1212–1216.  CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDhingra, S., Kim, K.-W. & Kanatzidis, M. G. (1991). Mater. Res. Soc. Symp. Proc. 204, 163–168.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKanatzidis, M. G. & Huang, S.-P. (1994). Coord. Chem. Rev. 130, 509–621.  CrossRef CAS Google Scholar
First citationKhanna, P. K., Singh, N., Charan, S., Lonkar, S. P., Reddy, A. S., Patil, Y. & Viswanath, A. K. (2006). Mater. Chem. Phys. 97, 288–294.  CrossRef CAS Google Scholar
First citationKräuter, G., Weller, F. & Dehnicke, K. (1989). Z. Naturforsch. Teil B, 44, 444–454.  Google Scholar
First citationMagull, S., Dehnicke, K. & Fenske, D. (1992). Z. Anorg. Allg. Chem. 608, 17–22.  CrossRef CAS Google Scholar
First citationNesheva, D. (2001). Handbook of Surfaces and Interfaces of Materials, Vol. 3, edited by H. S. Nalwa, pp. 239–279. San Diego: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds