organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages o838-o839

5-Chloro-N-(4,5-di­hydro-1H-imidazol-2-yl)-2,1,3-benzo­thia­diazol-4-amine (tizanidine)

aMaterials Chemistry Laboratory, Department of Chemistry, GC University, Lahore 54000, Pakistan, and bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr, iukhan@gcu.edu.pk

(Received 17 February 2011; accepted 4 March 2011; online 12 March 2011)

There are two independent mol­ecules (A and B) with similar conformations in the asymmetric unit of the title compound, C9H8ClN5S. The benzothia­diazole ring systems of both mol­ecules are essentially planar [maximum deviation = 0.021 (2) Å in mol­ecule A and 0.022 (1) Å in mol­ecule B] and make dihedral angles of 68.78 (9) and 54.39 (8)°, respectively, with the mean planes of their 4,5-dihydro-1H-imidazole rings. An intra­molecular N—H⋯Cl hydrogen bond occurs in mol­ecule B. In the crystal, both mol­ecules form centrosymmetric dimers through π-stacking of their benzothia­diazole rings, with inter­planar distances of 3.3174 (7) and 3.2943 (6) Å. These dimers are further linked via pairs of N—H⋯N hydrogen bonds with the dihydro­imidazole rings as the hydrogen-bonding donors and one of the benzothia­diazole N atoms as the acceptors, generating R22(16) ring motifs. The A2 and B2 dimers in turn form additional N—H⋯N hydrogen bonds with the secondary amine as the H-atom donor and the dihydro­imidazole N atom as the acceptor. These R22(8)-type inter­actions connect the A2 and B2 dimers with each other, forming infinite chains along [1[\overline{1}]1].

Related literature

For the medicinal importance of tizanidine, see: Koch et al. (1989[Koch, P., Hirst, D. R. & Wartburg Von, B. R. (1989). Xenobiotica, 19, 1255-1260.]); Shellenberger et al. (1999[Shellenberger, M. K., Groves, L., Shah, J. & Novak, G. D. (1999). Drug Metab. Dispos. 27, 201-205.]); Tse et al. (1987[Tse, F. L. S., Jaffe, J. M. & Bhuta, S. (1987). Fundam. Clin. Pharmacol. 1, 479-485.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C9H8ClN5S

  • Mr = 253.72

  • Triclinic, [P \overline 1]

  • a = 7.6927 (3) Å

  • b = 10.8558 (4) Å

  • c = 12.9969 (5) Å

  • α = 95.790 (1)°

  • β = 101.126 (1)°

  • γ = 92.192 (1)°

  • V = 1057.69 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.54 mm−1

  • T = 296 K

  • 0.29 × 0.18 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 17897 measured reflections

  • 5104 independent reflections

  • 4449 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.120

  • S = 1.03

  • 5104 reflections

  • 302 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3A—HN3A⋯N5B 0.92 (2) 2.10 (2) 3.003 (2) 168 (3)
N4A—HN4A⋯N1Ai 0.86 (3) 2.38 (3) 3.205 (3) 160 (2)
N3B—HN3B⋯N5A 0.88 (2) 1.98 (2) 2.864 (2) 177 (2)
N4B—HN4B⋯Cl1B 0.84 (2) 2.75 (2) 3.1927 (15) 114 (2)
N4B—HN4B⋯N1Bii 0.84 (2) 2.48 (2) 3.227 (2) 150 (2)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+3, -y, -z+2.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Tizanidine {or (5-chloro-N-(4,5-dihydro-1H-imidazol-2-yl)-2,1,3-benzothiadiazol-4-amine)} is an adrenergic agonist and proved to be an active myotonolytic skeletal muscle relaxant with a chemical structure different from other muscle relaxants (Koch et al., 1989; Tse et al., 1987). It also reduces increased muscle tone associated with spasticity in patients with multiple sclerosis or spinal cord injury (Shellenberger et al., 1999). Herein, we report the crystal structure of Tizanidine.

The title compound crystallized with two unique molecules A and B in the asymmetric unit (Fig. 1). The benzothiadiazole ring systems (S1A/N1A/N2A/C1A–C6A and S1B/N1B/N2B/C1B) of both molecules A and B are essentially planar [max. deviations = 0.021 (2) Å for C5A in molecule A and 0.022 (1) Å for C6B in molecule B] and they form dihedral angles of 68.78 (9) and 54.39 (8)°, respectively, with the mean planes of their 4,5-dihydro-1H-imidazole rings (N4A/N5A/C7A–C9A and N4B/N5B/C7B–C9B). The conformations of molecules A and B are similar (Fig. 2).

Molecular conformations in the crystal structure are stabilized by intramolecular N—H···N and N—H···Cl interactions (Table 1). Both molecules A and B are forming centrosymmetric dimers through π-stacking of their benzothiadiazole rings with interplanar distances of 3.3174 (7) and 3.2943 (6) Å [Cg1···Cg2ii = 3.6026 (10) Å and Cg3···Cg4iv = 3.5096 (9) Å; symmetry codes: (i) 1-x, 1-y, 1-z; (ii) 3-x, -y, 2-z; Cg1, Cg2, Cg3 and Cg4 are the centroids of the S1A/N1A/N2A/C4A/C5A, C1A–C6A, S1B/N1B/N2B/C4B/C5B and C1B–C6B rings, respectively]. These dimers are further tied together via pairs of N—H···N hydrogen-bonds with the dihydroimidazole rings as the hydrogen bonding donor (Table 1 and Fig. 3) and one of the benzothiadiazole N atoms as the acceptor, generating rings of graph set motifs of the type R22(16) (Bernstein et al., 1995). The A2 and B2 dimers do in turn form additional N—H···N hydrogen-bonds, with the secondary amine as the H donor and the dihydroimidazole N atom as the acceptor. These R22(8) type interactions connect the A2 and B2 dimers with each other to form infinite chains that stretch along the (1 -1 1) direction of the unit cell (Fig. 3).

Related literature top

For the medicinal importance of tizanidine, see: Koch et al. (1989); Shellenberger et al. (1999); Tse et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

To 0.3 g of tizanidine in 10 ml methanol were added several drops of sodium hydroxide solution (3%) to adjust the pH to 8. The resulting solution was left for slow evaporation. Orange crystals were obtained after three days.

Refinement top

In the last cycles of the refinement, 24 reflections were eliminated due to being poorly measured in the vicinity of the beam stop. The H atoms of the NH groups of the molecules A and B were located in a difference map and refined with a distance restraint of N—H = 0.86 (3) Å. Their isotropic displacement parameters were set to be 1.2Ueq(N). The HN3A···N5B distance was restrained to be 2.00 (2) Å. The other H atoms were positioned geometrically with C—H = 0.93 and 0.97 Å, and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the two crystallographically independent molecules, A and B, with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
[Figure 2] Fig. 2. An overlay of the two molecules A (black line) and B (red line).
[Figure 3] Fig. 3. A view of the π-π stacking interactions and the hydrogen bonding of the title compound. The H atoms not involved in the hydrogen bonds forming the complete motif were omitted. (Symmetry codes: (e) 1-x, 1-y, 1-z; (f) 3-x, -y, 2-z).
5-Chloro-N-(4,5-dihydro-1H-imidazol-2-yl)-2,1,3-benzothiadiazol- 4-amine top
Crystal data top
C9H8ClN5SZ = 4
Mr = 253.72F(000) = 520
Triclinic, P1Dx = 1.593 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.6927 (3) ÅCell parameters from 9959 reflections
b = 10.8558 (4) Åθ = 2.9–28.3°
c = 12.9969 (5) ŵ = 0.54 mm1
α = 95.790 (1)°T = 296 K
β = 101.126 (1)°Block, orange
γ = 92.192 (1)°0.29 × 0.18 × 0.08 mm
V = 1057.69 (7) Å3
Data collection top
Bruker APEXII CCD
diffractometer
4449 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.024
Graphite monochromatorθmax = 28.3°, θmin = 3.2°
ϕ and ω scansh = 1010
17897 measured reflectionsk = 1414
5104 independent reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0635P)2 + 0.4931P]
where P = (Fo2 + 2Fc2)/3
5104 reflections(Δ/σ)max = 0.001
302 parametersΔρmax = 0.65 e Å3
5 restraintsΔρmin = 0.43 e Å3
Crystal data top
C9H8ClN5Sγ = 92.192 (1)°
Mr = 253.72V = 1057.69 (7) Å3
Triclinic, P1Z = 4
a = 7.6927 (3) ÅMo Kα radiation
b = 10.8558 (4) ŵ = 0.54 mm1
c = 12.9969 (5) ÅT = 296 K
α = 95.790 (1)°0.29 × 0.18 × 0.08 mm
β = 101.126 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
4449 reflections with I > 2σ(I)
17897 measured reflectionsRint = 0.024
5104 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0425 restraints
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.65 e Å3
5104 reflectionsΔρmin = 0.43 e Å3
302 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl1A0.40681 (8)0.26166 (5)0.72358 (5)0.0597 (2)
S1A0.85136 (8)0.69598 (5)0.58255 (5)0.0609 (2)
N1A0.6430 (3)0.71482 (15)0.57232 (14)0.0518 (5)
N2A0.8692 (2)0.56543 (15)0.63157 (15)0.0504 (5)
N3A0.7911 (2)0.33724 (14)0.71346 (12)0.0441 (5)
N4A0.6996 (2)0.18129 (15)0.56630 (12)0.0426 (4)
N5A0.9113 (2)0.14570 (13)0.69909 (11)0.0393 (4)
C1A0.4819 (3)0.39656 (17)0.68103 (13)0.0410 (5)
C2A0.3519 (3)0.48262 (19)0.65002 (14)0.0449 (6)
C3A0.3954 (3)0.58968 (17)0.61257 (15)0.0452 (5)
C4A0.5753 (3)0.61502 (15)0.60785 (13)0.0407 (5)
C5A0.7058 (2)0.52907 (15)0.64166 (13)0.0378 (5)
C6A0.6584 (2)0.41428 (15)0.67789 (13)0.0375 (5)
C7A0.7965 (2)0.22922 (15)0.66323 (12)0.0333 (4)
C8A0.7270 (3)0.0496 (2)0.55046 (19)0.0588 (7)
C9A0.9066 (3)0.0408 (2)0.62174 (16)0.0526 (6)
Cl1B1.12566 (6)0.18138 (5)1.13956 (4)0.0505 (1)
S1B1.35483 (8)0.13008 (5)0.75206 (4)0.0509 (2)
N1B1.3845 (2)0.19353 (14)0.86079 (14)0.0469 (5)
N2B1.2747 (2)0.00089 (13)0.78769 (11)0.0380 (4)
N3B1.13963 (18)0.19625 (12)0.90223 (11)0.0321 (3)
N4B1.32552 (18)0.36020 (13)1.01366 (12)0.0352 (4)
N5B1.09790 (19)0.40512 (13)0.89434 (12)0.0388 (4)
C1B1.2069 (2)0.07385 (17)1.05470 (13)0.0359 (5)
C2B1.2668 (2)0.03721 (19)1.09644 (15)0.0452 (6)
C3B1.3290 (2)0.12898 (18)1.03814 (16)0.0454 (5)
C4B1.3311 (2)0.11275 (15)0.93194 (14)0.0367 (4)
C5B1.26880 (19)0.00179 (14)0.88987 (12)0.0306 (4)
C6B1.20705 (18)0.09766 (14)0.95246 (12)0.0288 (4)
C7B1.18549 (19)0.31124 (14)0.93720 (12)0.0297 (4)
C8B1.3016 (2)0.49159 (16)1.03987 (15)0.0406 (5)
C9B1.1930 (2)0.52377 (16)0.93606 (16)0.0424 (5)
H8AA0.730300.023100.477300.0710*
H8BA0.635200.000400.571900.0710*
H2A0.234900.465200.655500.0540*
H9AA0.912900.036200.653700.0630*
H3A0.309500.644600.590700.0540*
H9BA1.002500.047800.583500.0630*
HN3A0.887 (3)0.368 (3)0.7644 (17)0.0720*
HN4A0.597 (3)0.209 (3)0.544 (2)0.0720*
H2B1.262700.046601.166300.0540*
H3B1.368900.200301.066800.0550*
H8AB1.414400.539401.058800.0490*
H8BB1.237300.504601.096900.0490*
H9AB1.112200.587800.947600.0510*
H9BB1.268700.550200.889700.0510*
HN3B1.072 (3)0.179 (2)0.8391 (15)0.0610*
HN4B1.370 (3)0.317 (2)1.0608 (18)0.0610*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl1A0.0697 (3)0.0577 (3)0.0579 (3)0.0072 (2)0.0179 (3)0.0245 (2)
S1A0.0653 (3)0.0384 (3)0.0738 (4)0.0043 (2)0.0007 (3)0.0089 (2)
N1A0.0690 (11)0.0306 (7)0.0500 (9)0.0073 (7)0.0036 (8)0.0047 (7)
N2A0.0487 (9)0.0364 (8)0.0591 (10)0.0036 (6)0.0049 (7)0.0019 (7)
N3A0.0512 (9)0.0320 (7)0.0401 (8)0.0131 (6)0.0144 (6)0.0016 (6)
N4A0.0459 (8)0.0443 (8)0.0320 (7)0.0146 (6)0.0074 (6)0.0016 (6)
N5A0.0450 (8)0.0329 (7)0.0348 (7)0.0129 (6)0.0057 (6)0.0016 (6)
C1A0.0548 (10)0.0375 (9)0.0300 (8)0.0107 (7)0.0041 (7)0.0054 (6)
C2A0.0492 (10)0.0483 (10)0.0367 (9)0.0146 (8)0.0070 (7)0.0002 (7)
C3A0.0545 (10)0.0386 (9)0.0392 (9)0.0227 (8)0.0003 (8)0.0008 (7)
C4A0.0570 (10)0.0274 (7)0.0320 (8)0.0130 (7)0.0048 (7)0.0017 (6)
C5A0.0466 (9)0.0286 (7)0.0324 (8)0.0089 (6)0.0053 (6)0.0021 (6)
C6A0.0496 (9)0.0305 (8)0.0275 (7)0.0119 (7)0.0054 (6)0.0008 (6)
C7A0.0368 (7)0.0328 (7)0.0286 (7)0.0056 (6)0.0007 (6)0.0082 (6)
C8A0.0549 (12)0.0512 (11)0.0555 (12)0.0199 (9)0.0183 (9)0.0148 (9)
C9A0.0517 (11)0.0503 (11)0.0456 (10)0.0224 (9)0.0109 (8)0.0116 (8)
Cl1B0.0461 (2)0.0679 (3)0.0390 (2)0.0006 (2)0.0148 (2)0.0023 (2)
S1B0.0633 (3)0.0406 (3)0.0434 (3)0.0166 (2)0.0008 (2)0.0036 (2)
N1B0.0479 (9)0.0308 (7)0.0561 (10)0.0076 (6)0.0055 (7)0.0050 (7)
N2B0.0453 (8)0.0328 (7)0.0325 (7)0.0074 (6)0.0015 (6)0.0034 (5)
N3B0.0340 (6)0.0299 (6)0.0288 (6)0.0031 (5)0.0030 (5)0.0034 (5)
N4B0.0299 (6)0.0325 (7)0.0393 (7)0.0007 (5)0.0014 (5)0.0014 (5)
N5B0.0375 (7)0.0281 (6)0.0467 (8)0.0076 (5)0.0014 (6)0.0007 (6)
C1B0.0292 (7)0.0442 (9)0.0332 (8)0.0048 (6)0.0033 (6)0.0074 (7)
C2B0.0396 (9)0.0578 (11)0.0386 (9)0.0080 (8)0.0012 (7)0.0236 (8)
C3B0.0422 (9)0.0414 (9)0.0514 (10)0.0022 (7)0.0029 (8)0.0246 (8)
C4B0.0309 (7)0.0293 (7)0.0456 (9)0.0014 (6)0.0057 (6)0.0100 (6)
C5B0.0280 (7)0.0273 (7)0.0330 (7)0.0019 (5)0.0034 (5)0.0065 (6)
C6B0.0243 (6)0.0293 (7)0.0304 (7)0.0020 (5)0.0012 (5)0.0056 (5)
C7B0.0265 (6)0.0311 (7)0.0312 (7)0.0037 (5)0.0052 (5)0.0016 (6)
C8B0.0336 (8)0.0370 (8)0.0477 (10)0.0001 (6)0.0066 (7)0.0087 (7)
C9B0.0403 (9)0.0292 (8)0.0560 (11)0.0053 (6)0.0071 (7)0.0007 (7)
Geometric parameters (Å, º) top
Cl1A—C1A1.734 (2)C1A—C2A1.424 (3)
Cl1B—C1B1.7412 (18)C1A—C6A1.373 (3)
S1A—N2A1.6114 (18)C2A—C3A1.359 (3)
S1A—N1A1.605 (2)C3A—C4A1.415 (3)
S1B—N2B1.6145 (16)C4A—C5A1.434 (3)
S1B—N1B1.6148 (18)C5A—C6A1.434 (2)
N1A—C4A1.345 (3)C8A—C9A1.520 (3)
N2A—C5A1.338 (2)C2A—H2A0.9300
N3A—C7A1.290 (2)C3A—H3A0.9300
N3A—C6A1.384 (2)C8A—H8AA0.9700
N4A—C7A1.375 (2)C8A—H8BA0.9700
N4A—C8A1.453 (3)C9A—H9BA0.9700
N5A—C7A1.344 (2)C9A—H9AA0.9700
N5A—C9A1.436 (3)C1B—C6B1.379 (2)
N3A—HN3A0.92 (2)C1B—C2B1.428 (3)
N4A—HN4A0.86 (3)C2B—C3B1.349 (3)
N1B—C4B1.343 (2)C3B—C4B1.412 (3)
N2B—C5B1.339 (2)C4B—C5B1.434 (2)
N3B—C7B1.296 (2)C5B—C6B1.437 (2)
N3B—C6B1.376 (2)C8B—C9B1.524 (3)
N4B—C8B1.460 (2)C2B—H2B0.9300
N4B—C7B1.366 (2)C3B—H3B0.9300
N5B—C9B1.457 (2)C8B—H8AB0.9700
N5B—C7B1.351 (2)C8B—H8BB0.9700
N3B—HN3B0.88 (2)C9B—H9AB0.9700
N4B—HN4B0.84 (2)C9B—H9BB0.9700
N1A—S1A—N2A101.46 (9)N4A—C8A—H8BA111.00
N1B—S1B—N2B101.08 (8)C9A—C8A—H8AA111.00
S1A—N1A—C4A105.99 (15)C9A—C8A—H8BA111.00
S1A—N2A—C5A106.15 (13)N4A—C8A—H8AA111.00
C6A—N3A—C7A120.01 (15)H8AA—C8A—H8BA109.00
C7A—N4A—C8A108.65 (16)H9AA—C9A—H9BA109.00
C7A—N5A—C9A111.44 (15)C8A—C9A—H9BA111.00
C6A—N3A—HN3A120.0 (19)C8A—C9A—H9AA111.00
C7A—N3A—HN3A118.9 (18)N5A—C9A—H9AA111.00
C8A—N4A—HN4A121 (2)N5A—C9A—H9BA111.00
C7A—N4A—HN4A119.2 (19)Cl1B—C1B—C6B119.74 (13)
S1B—N1B—C4B106.09 (12)C2B—C1B—C6B123.76 (16)
S1B—N2B—C5B106.29 (11)Cl1B—C1B—C2B116.49 (13)
C6B—N3B—C7B123.72 (14)C1B—C2B—C3B122.33 (17)
C7B—N4B—C8B108.92 (13)C2B—C3B—C4B117.52 (17)
C7B—N5B—C9B110.47 (14)C3B—C4B—C5B120.03 (15)
C6B—N3B—HN3B117.1 (14)N1B—C4B—C3B126.69 (16)
C7B—N3B—HN3B118.8 (14)N1B—C4B—C5B113.27 (15)
C7B—N4B—HN4B119.4 (15)N2B—C5B—C6B124.10 (14)
C8B—N4B—HN4B120.4 (15)C4B—C5B—C6B122.63 (14)
C2A—C1A—C6A124.01 (18)N2B—C5B—C4B113.27 (14)
Cl1A—C1A—C6A119.56 (15)N3B—C6B—C1B128.30 (15)
Cl1A—C1A—C2A116.43 (17)N3B—C6B—C5B117.62 (14)
C1A—C2A—C3A121.3 (2)C1B—C6B—C5B113.69 (14)
C2A—C3A—C4A117.99 (19)N3B—C7B—N4B129.45 (15)
N1A—C4A—C3A126.55 (19)N4B—C7B—N5B108.75 (14)
N1A—C4A—C5A113.2 (2)N3B—C7B—N5B121.71 (14)
C3A—C4A—C5A120.22 (16)N4B—C8B—C9B101.13 (14)
C4A—C5A—C6A121.60 (15)N5B—C9B—C8B101.10 (14)
N2A—C5A—C6A125.17 (15)C1B—C2B—H2B119.00
N2A—C5A—C4A113.17 (16)C3B—C2B—H2B119.00
N3A—C6A—C1A125.98 (16)C2B—C3B—H3B121.00
N3A—C6A—C5A118.99 (14)C4B—C3B—H3B121.00
C1A—C6A—C5A114.83 (15)N4B—C8B—H8AB112.00
N3A—C7A—N5A122.83 (15)N4B—C8B—H8BB112.00
N3A—C7A—N4A128.44 (16)C9B—C8B—H8AB112.00
N4A—C7A—N5A108.66 (14)C9B—C8B—H8BB112.00
N4A—C8A—C9A102.08 (17)H8AB—C8B—H8BB109.00
N5A—C9A—C8A101.67 (17)N5B—C9B—H9AB112.00
C1A—C2A—H2A119.00N5B—C9B—H9BB112.00
C3A—C2A—H2A119.00C8B—C9B—H9AB112.00
C2A—C3A—H3A121.00C8B—C9B—H9BB112.00
C4A—C3A—H3A121.00H9AB—C9B—H9BB109.00
N2A—S1A—N1A—C4A0.35 (15)C2A—C1A—C6A—C5A0.8 (2)
N1A—S1A—N2A—C5A0.49 (16)Cl1A—C1A—C2A—C3A178.11 (15)
N2B—S1B—N1B—C4B0.13 (13)C6A—C1A—C2A—C3A1.2 (3)
N1B—S1B—N2B—C5B0.42 (13)Cl1A—C1A—C6A—C5A179.89 (12)
S1A—N1A—C4A—C5A0.10 (18)C1A—C2A—C3A—C4A1.7 (3)
S1A—N1A—C4A—C3A179.03 (15)C2A—C3A—C4A—C5A0.2 (3)
S1A—N2A—C5A—C6A176.96 (14)C2A—C3A—C4A—N1A179.23 (18)
S1A—N2A—C5A—C4A0.48 (19)C3A—C4A—C5A—N2A179.45 (17)
C6A—N3A—C7A—N4A10.0 (3)C3A—C4A—C5A—C6A1.9 (3)
C7A—N3A—C6A—C5A115.36 (18)N1A—C4A—C5A—N2A0.3 (2)
C7A—N3A—C6A—C1A70.1 (2)N1A—C4A—C5A—C6A177.28 (16)
C6A—N3A—C7A—N5A173.51 (15)C4A—C5A—C6A—N3A177.48 (15)
C8A—N4A—C7A—N3A169.83 (18)N2A—C5A—C6A—C1A179.54 (17)
C7A—N4A—C8A—C9A24.8 (2)C4A—C5A—C6A—C1A2.3 (2)
C8A—N4A—C7A—N5A13.3 (2)N2A—C5A—C6A—N3A5.3 (3)
C7A—N5A—C9A—C8A20.2 (2)N4A—C8A—C9A—N5A26.1 (2)
C9A—N5A—C7A—N3A171.84 (17)Cl1B—C1B—C6B—N3B4.3 (2)
C9A—N5A—C7A—N4A5.3 (2)C2B—C1B—C6B—C5B1.7 (2)
S1B—N1B—C4B—C5B0.18 (17)C6B—C1B—C2B—C3B0.1 (3)
S1B—N1B—C4B—C3B178.69 (15)Cl1B—C1B—C6B—C5B176.84 (11)
S1B—N2B—C5B—C6B179.30 (13)C2B—C1B—C6B—N3B174.28 (16)
S1B—N2B—C5B—C4B0.57 (17)Cl1B—C1B—C2B—C3B178.50 (14)
C7B—N3B—C6B—C1B55.9 (2)C1B—C2B—C3B—C4B0.9 (3)
C7B—N3B—C6B—C5B131.72 (16)C2B—C3B—C4B—N1B178.73 (17)
C6B—N3B—C7B—N5B170.11 (15)C2B—C3B—C4B—C5B0.1 (2)
C6B—N3B—C7B—N4B13.9 (3)N1B—C4B—C5B—N2B0.5 (2)
C8B—N4B—C7B—N5B14.92 (18)N1B—C4B—C5B—C6B179.36 (14)
C7B—N4B—C8B—C9B28.11 (16)C3B—C4B—C5B—N2B178.44 (15)
C8B—N4B—C7B—N3B168.70 (16)C3B—C4B—C5B—C6B1.7 (2)
C7B—N5B—C9B—C8B22.90 (17)C4B—C5B—C6B—C1B2.5 (2)
C9B—N5B—C7B—N3B170.68 (15)N2B—C5B—C6B—C1B177.67 (15)
C9B—N5B—C7B—N4B6.04 (19)C4B—C5B—C6B—N3B175.91 (14)
Cl1A—C1A—C6A—N3A5.1 (2)N2B—C5B—C6B—N3B4.2 (2)
C2A—C1A—C6A—N3A175.59 (17)N4B—C8B—C9B—N5B29.36 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3A—HN3A···N5B0.92 (2)2.10 (2)3.003 (2)168 (3)
N4A—HN4A···N1Ai0.86 (3)2.38 (3)3.205 (3)160 (2)
N3B—HN3B···N5A0.88 (2)1.98 (2)2.864 (2)177 (2)
N4B—HN4B···Cl1B0.84 (2)2.75 (2)3.1927 (15)114 (2)
N4B—HN4B···N1Bii0.84 (2)2.48 (2)3.227 (2)150 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+3, y, z+2.

Experimental details

Crystal data
Chemical formulaC9H8ClN5S
Mr253.72
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.6927 (3), 10.8558 (4), 12.9969 (5)
α, β, γ (°)95.790 (1), 101.126 (1), 92.192 (1)
V3)1057.69 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.54
Crystal size (mm)0.29 × 0.18 × 0.08
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
17897, 5104, 4449
Rint0.024
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.120, 1.03
No. of reflections5104
No. of parameters302
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.65, 0.43

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3A—HN3A···N5B0.92 (2)2.10 (2)3.003 (2)168 (3)
N4A—HN4A···N1Ai0.86 (3)2.38 (3)3.205 (3)160 (2)
N3B—HN3B···N5A0.88 (2)1.98 (2)2.864 (2)177.2 (19)
N4B—HN4B···Cl1B0.84 (2)2.75 (2)3.1927 (15)114.4 (19)
N4B—HN4B···N1Bii0.84 (2)2.48 (2)3.227 (2)150 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+3, y, z+2.
 

Acknowledgements

The authors are grateful to the Higher Education Commission (HEC), Pakistan, for providing funds for the single-crystal XRD facilities at GC University, Lahore.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKoch, P., Hirst, D. R. & Wartburg Von, B. R. (1989). Xenobiotica, 19, 1255–1260.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShellenberger, M. K., Groves, L., Shah, J. & Novak, G. D. (1999). Drug Metab. Dispos. 27, 201–205.  Web of Science CAS PubMed Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTse, F. L. S., Jaffe, J. M. & Bhuta, S. (1987). Fundam. Clin. Pharmacol. 1, 479–485.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages o838-o839
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds