organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages o974-o975

14-Benzoyl­mesaconine hydro­chloride methanol monosolvate

aCollege of Light Industry and Food Sciences, South China University of Technology, Guangzhou 510640, People's Republic of China, and bAnalytical and Testing Center, South China University of Technology, Guangzhou 510640, People's Republic of China
*Correspondence e-mail: fesqhu@scut.edu.cn

(Received 18 February 2011; accepted 18 March 2011; online 26 March 2011)

The title compound, C31H44N3O10+·Cl·CH4O, is the methanol solvate of 8-benzo­yloxy-,9,11,11a-tetra­hydroxy-6,10,13-trimeth­oxy-3-meth­oxy­methyl-1-methyl­tetra­deca­hydro-1H-3,6a,12-(epiethane-1,1,2-tri­yl)-7,9-methanona­phtho[2,3-b]azocin-1-ium chloride, the amine-protonated hydro­chloride of 14-benzoyl­mesaconine hydro­chloride. The cation has an aconitine carbon skeleton with four six-membered rings of which three display chair conformations and one a boat conformation, and two five-membered rings with envelope conformations. In the crystal, the components are connected into an infinite chain by inter- and intra­molecular O—H⋯O, N—H⋯O and O—H⋯Cl hydrogen bonds.

Related literature

For general background to diterpenoid alkaloids, see: Ameri (1998[Ameri, A. (1998). Eur. J. Pharmacol. 342, 183-191.]); Desai et al. (1998[Desai, H. K., Hart, B. P., Caldwell, R. W., Huang, J. Z. & Pelletier, S. W. (1998). J. Nat. Prod. 61, 743-748.]); Suzuki et al. (1994[Suzuki, Y., Oyama, T., Ishige, A., Isono, T., Asami, A., Ikeda, Y., Noguchi, M. & Omiya, Y. (1994). Planta Med. 60, 391-394.]). For the chemical structure of the title compound established from MS data, see: Zhang et al. (2005[Zhang, H. G., Sun, Y., Duan, M. Y., Chen, Y. J., Zhong, D. F. & Zhang, H. Q. (2005). Toxicon, 46, 500-506.]); Wang et al. (2009[Wang, J., van der Heijden, R., Spijksma, G., Reijmers, T., Wang, M., Xu, G., Hankemeier, T. & van der Greef, J. (2009). J. Chromatogr. A, 1216, 2169-2178.]); Yue et al. (2009[Yue, H., Pi, Z., Song, F., Liu, Z., Cai, Z. & Liu, S. (2009). Talanta, 77, 1800-1807.]). For background to the strong toxicity of Aconitum alkaloids, see: Zhang et al. (2002[Zhang, H. G., Shi, X. G., Sun, Y., Duan, M. Y. & Zhong, D. F. (2002). Chin. Chem. Lett. 13, 758-760.]). For ring numbering and ring conformations of the title compound, see: He et al. (2008[He, D.-H., Zhu, Y.-C. & Hu, A.-X. (2008). Acta Cryst. E64, o1033-o1034.]).

[Scheme 1]

Experimental

Crystal data
  • C31H44NO10+·Cl·CH4O

  • Mr = 658.16

  • Orthorhombic, P 21 21 21

  • a = 12.919 (3) Å

  • b = 15.748 (3) Å

  • c = 16.045 (3) Å

  • V = 3264.2 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 123 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Rigaku/MSC Mercury CCD diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.]) Tmin = 0.969, Tmax = 0.977

  • 29100 measured reflections

  • 6908 independent reflections

  • 4585 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.151

  • S = 1.10

  • 6908 reflections

  • 422 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.50 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1726 Friedel pairs

  • Flack parameter: −0.01 (11)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O5 0.82 2.11 2.612 (4) 119
O3—H3A⋯O11 0.82 2.22 2.923 (4) 144
O4—H4A⋯Cl1 0.82 2.30 3.083 (3) 161
O6—H6⋯Cl1 0.82 2.40 3.197 (3) 165
O9—H9⋯O11i 0.82 1.98 2.776 (4) 163
N1—H1⋯O8 0.90 (2) 2.11 (4) 2.808 (4) 134 (4)
N1—H1⋯O9 0.90 (2) 2.20 (4) 2.795 (5) 123 (4)
O11—H11⋯Cl1ii 0.82 2.30 3.084 (3) 158
Symmetry codes: (i) x+1, y, z; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Aconitum species such as e.g. Aconitum Caremichaeli Debx. have been widely used in Chinese Traditional Medicine, and its tubers and roots have found therapeutical use for the treatment of for example rheumatic pain, rheumatoid arthritis and some other inflammations. Aconitine-type alkaloid extracts from the roots of Aconitum Caremichaeli Debx. are reported to have, among others, analgetic, diuretics, anti-inflammatory and cardiotonic properties (Ameri, 1998; Desai et al., 1998; Suzuki et al., 1994). At the same time, owing to their strong toxicity, poisoning with these Aconitum alkaloids does frequently happen (Zhang et al., 2002). Therefore, in order to better understand the pharmacology of the Aconitum alkaloids it is desirable to establish their molecular structures. The diterpenoid alkaloid 14-benzoylmesaconine, the title compound, was previously isolated from Aconitum Caremichaeli Debx., and its structure was established from the MS data (Zhang et al., 2005; Wang et al., 2009; Yue et al., 2009). However, there are no reports on the crystal structure or the NMR data of 14-benzoylmesaconine. In this paper, we would like to present the crystal structure and NMR data of the title compound, the hydrochloride salt of 14-benzoylmesaconine as its mono methanol solvate.

The molecular structure of the title compound is shown in Fig. 1. There is one cation, protonated at the amine N atom, one chloride anion and one methanol solvate molecule in the asymmetric unit of the structure. The bond lengths and angles are in good agreement with expected values. For ring naming (Figure 2) and ring conformations please refer to He et al. (2008). The cation of the title compound has an aconitine carbon skeleton with four six-membered rings and two five-membered rings. Six-membered rings A (C16/C21/C23/C24/C25/C26) and B (C9/C10/C15/C16/C17/C18) adopt chair conformations, six-membered heterocyclic ring E (N1/C17/C21/C22/C23) adopts a chair conformation, and the six-membered ring D (C8/C9/C12/C13/C14/C15) adopts a boat conformation. The two five-membered rings C (C16/C17/C18/C19/C21) and F (C8/C9/C10/C11/C12) adopt envelope conformations (Fig. 2). Intermolecular O—H···O hydrogen bonds between the hydroxyls of the cations and the hydroxy O atoms of the methanol solvate molecules lead to infinite chains. The chains are further connected with each other via intermolecular O—H···Cl hydrogen bonding interactions involving the hydroxyls of methanol molecules and the cations as donors and the chloride anions as acceptors to form 1D double-chains along to the a axis (Table 1, Fig. 3). Within the hydrogen-bonded double-chain the chloride anions are bonded to three hydroxyl groups, two from one cation and another one from a methanol solvate molecule. Each cation donates four hydrogen bonds to two methanol solvate molecules and one chloride anion, whilst each methanol solvate molecule donates one hydrogen bond to chloride anion and acceptes two hydrogen bonds from two hydroxyl groups of two cations. In addition, intramolecular N—H···O and O—H···O hydrogen bonds are also observed within the double-chain. Finally, the chains are linked into a three-dimensional supramolecular network through intermolecular O—H···O and O—H···Cl hydrogen-bonding interactions.

Related literature top

For general background to diterpenoid alkaloids, see: Ameri (1998); Desai et al. (1998); Suzuki et al. (1994). For the chemical structure of the title compound established from MS data, see: Zhang et al. (2005); Wang et al. (2009); Yue et al. (2009). For background to the strong toxicity of Aconitum alkaloids, see: Zhang et al. (2002). For ring numbering and ring conformations of the title compound, see: He et al. (2008).

Experimental top

Air-dried and powdered roots of Aconitum Caremichaeli Debx. (20 kg) were extracted with 90% EtOH (40 L) under reflux with a Soxhlet extractor. After the removal of solvent, the extract residue (200 g) was successively eluted in a macroporous resin by elution with water (5 L), 30% EtOH (5 L), 60% EtOH (5 L) and 90% EtOH (5 L), and different extract fractions were obtained. From the 30% EtOH fraction, a black amorphous powder (50 g) was obtained after the removal of the solvent under reduced pressure, which then was chromatographed on a silica gel (200–300 mesh) column, eluted with a chloroform-MeOH (99:1 to 1:1) gradient system, to give 25 fractions (2 L per fraction). The title compound (2 g) can be isolated between the eighteenth and twentieth fractions (yield 0.01%). Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in CHCl3 at room temperature. [1H NMR(CDCl3, δ, p.p.m.) 8.08 (d, 2H), 7.58 (t, 1H), 7.45 (t, 2H), 5.01 (d, 1H), 4.58 (d, 1H), 4.17 (t, 2H), 3.70 (s, 3H), 3.57 (d, 2H), 3.39 (t, 2H), 3.30–3.34 (m, 15H), 3.21 (d, 1H), 2.94 (s, 3H), 2.56 (s, 2H), 2.40 (d, 2H), 2.23 (t, 2H), 1.81 (d, 1H), 1.56 (d, 1H); 13C NMR (CDCl3, δ, p.p.m.) 167.88, 134.45, 131.68, 131.20, 129.66, 93.60, 83.20, 81.48, 83.20, 81.48, 80.90, 79.15, 78.38, 76.36, 70.79, 68.38, 62.44, 59.67, 58.76, 55.76, 53.13, 52.06, 50.07, 45.55, 44.86, 43.76, 42.20, 41.91, 37.41, 30.62].

Refinement top

The hydrogen atoms of the NH group were refined using bond distance restraints (N—H = 0.87 (2) Å). All other H atoms were located in difference density maps, and were treated as riding atoms with C—H and O—H distances of 0.93, 0.96, 0.97, 0.98 and 0.82 Å, for aryl, methyl, methine, CH and OH, respectively, with Uiso(H) = 1.5Ueq(C) for methyl and 1.5Ueq(O) for hydroxy, and 1.2Ueq(C) for the others. Methyl and hydroxyl hydrogen atoms were allowed to rotate at a fixed angle around the C—O bond to best fit the experimental electron density.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. All H atoms were omitted for clarity.
[Figure 2] Fig. 2. View of the structure of the title compound with naming of the rings (He et al., 2008), showing 50% probability displacement ellipsoids.
[Figure 3] Fig. 3. View of a one-dimensional chain of the title compound that stretches along to the a axis of the cell. O—H···O, N—H···O and O—H···Cl hydrogen bonds interactions are shown as dashed pink lines.
8-benzoyloxy-4,9,11,11a-tetrahydroxy-6,10,13-trimethoxy-3-methoxymethyl- 1-methyltetradecahydro-1H-3,6a,12-(epiethane-1,1,2-triyl)-7,9- methanonaphtho[2,3-b]azocin-1-ium chloride methanol monosolvate top
Crystal data top
C31H44NO10+·Cl·CH4OF(000) = 1408
Mr = 658.16Dx = 1.339 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 5837 reflections
a = 12.919 (3) Åθ = 2.8–27.9°
b = 15.748 (3) ŵ = 0.18 mm1
c = 16.045 (3) ÅT = 123 K
V = 3264.2 (11) Å3Block, colorless
Z = 40.30 × 0.20 × 0.20 mm
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
6908 independent reflections
Radiation source: fine-focus sealed tube4585 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
ω scansθmax = 26.8°, θmin = 3.0°
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
h = 1616
Tmin = 0.969, Tmax = 0.977k = 1919
29100 measured reflectionsl = 2020
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.047 w = 1/[σ2(Fo2) + (0.040P)2 + 3.5P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.151(Δ/σ)max = 0.001
S = 1.10Δρmax = 0.36 e Å3
6908 reflectionsΔρmin = 0.50 e Å3
422 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.0187 (13)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1726 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.01 (11)
Crystal data top
C31H44NO10+·Cl·CH4OV = 3264.2 (11) Å3
Mr = 658.16Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 12.919 (3) ŵ = 0.18 mm1
b = 15.748 (3) ÅT = 123 K
c = 16.045 (3) Å0.30 × 0.20 × 0.20 mm
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
6908 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
4585 reflections with I > 2σ(I)
Tmin = 0.969, Tmax = 0.977Rint = 0.050
29100 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.047H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.151Δρmax = 0.36 e Å3
S = 1.10Δρmin = 0.50 e Å3
6908 reflectionsAbsolute structure: Flack (1983), 1726 Friedel pairs
422 parametersAbsolute structure parameter: 0.01 (11)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2155 (3)0.3580 (2)0.1441 (2)0.0676 (9)
O20.2226 (2)0.37571 (18)0.28249 (16)0.0457 (7)
O30.2193 (2)0.53973 (19)0.3747 (2)0.0562 (8)
H3A0.17910.51380.40500.084*
O40.4338 (2)0.30793 (17)0.47185 (17)0.0462 (7)
H4A0.43590.25600.46930.069*
O50.2329 (2)0.40600 (19)0.47032 (18)0.0525 (7)
O60.4216 (2)0.26331 (16)0.27517 (17)0.0448 (7)
H60.43520.22200.30440.067*
O70.6872 (2)0.28611 (17)0.23706 (19)0.0500 (7)
O80.6159 (2)0.59029 (17)0.42349 (19)0.0523 (7)
O90.8284 (2)0.5542 (2)0.4047 (2)0.0591 (8)
H90.89010.54510.41260.089*
O100.8654 (2)0.4637 (2)0.1640 (2)0.0633 (9)
N10.6874 (2)0.4220 (2)0.4292 (2)0.0434 (8)
H10.696 (4)0.4762 (16)0.446 (3)0.076 (17)*
C10.0994 (3)0.2805 (2)0.2312 (2)0.0414 (9)
C20.0520 (3)0.2385 (3)0.1659 (3)0.0452 (9)
H20.07580.24690.11180.054*
C30.0302 (3)0.1842 (3)0.1797 (3)0.0560 (11)
H30.06190.15660.13530.067*
C40.0649 (4)0.1712 (3)0.2602 (3)0.0586 (11)
H40.12050.13490.26990.070*
C50.0174 (4)0.2119 (3)0.3265 (3)0.0595 (12)
H50.04040.20270.38070.071*
C60.0649 (3)0.2668 (3)0.3116 (3)0.0517 (10)
H6A0.09680.29430.35590.062*
C70.1852 (3)0.3401 (3)0.2127 (3)0.0450 (9)
C80.2993 (3)0.4412 (3)0.2759 (2)0.0410 (9)
H80.27950.48100.23170.049*
C90.4112 (3)0.4122 (2)0.2622 (2)0.0394 (8)
H9A0.42090.39460.20420.047*
C100.4718 (3)0.4964 (2)0.2794 (3)0.0410 (9)
H100.47360.52840.22700.049*
C110.3996 (3)0.5450 (2)0.3401 (3)0.0468 (10)
H11A0.43600.55780.39150.056*
H11B0.37710.59800.31520.056*
C120.3068 (3)0.4881 (2)0.3577 (3)0.0423 (9)
C130.3285 (3)0.4250 (2)0.4295 (3)0.0424 (9)
H130.37490.45230.46970.051*
C140.3773 (3)0.3403 (2)0.4020 (2)0.0380 (8)
H140.31970.30090.39270.046*
C150.4424 (3)0.3400 (2)0.3210 (2)0.0380 (8)
C160.5854 (3)0.4909 (2)0.3125 (2)0.0403 (9)
C170.5845 (3)0.4256 (2)0.3837 (2)0.0388 (9)
H170.52830.43820.42290.047*
C180.5609 (3)0.3453 (2)0.3357 (2)0.0379 (8)
H18A0.58590.29520.36580.045*
C190.6176 (3)0.3550 (2)0.2510 (3)0.0411 (9)
H190.56530.35380.20670.049*
C200.7003 (4)0.2693 (3)0.1503 (3)0.0655 (13)
H20A0.63480.25410.12630.098*
H20B0.74830.22340.14310.098*
H20C0.72650.31920.12310.098*
C210.6640 (3)0.4455 (2)0.2540 (3)0.0413 (9)
H210.66400.47150.19850.050*
C220.7736 (3)0.3949 (3)0.3727 (3)0.0470 (10)
H22A0.76450.33580.35740.056*
H22B0.83930.40040.40150.056*
C230.7741 (3)0.4501 (3)0.2944 (3)0.0449 (9)
C240.8054 (3)0.5448 (3)0.3170 (3)0.0510 (10)
H240.86720.56010.28500.061*
C250.7206 (3)0.6064 (3)0.2961 (3)0.0488 (10)
H25A0.71300.60900.23600.059*
H25B0.74050.66250.31530.059*
C260.6178 (3)0.5833 (2)0.3343 (3)0.0450 (9)
H260.56530.62180.31170.054*
C270.6260 (5)0.6758 (3)0.4529 (4)0.0805 (17)
H27A0.69570.69500.44420.121*
H27B0.61010.67780.51130.121*
H27C0.57910.71180.42300.121*
C280.8615 (3)0.4165 (3)0.2395 (3)0.0529 (11)
H28A0.92700.42150.26880.064*
H28B0.84990.35690.22720.064*
C290.9648 (4)0.4617 (4)0.1275 (3)0.0717 (15)
H29A1.01400.48710.16480.108*
H29B0.96380.49270.07600.108*
H29C0.98420.40380.11680.108*
C300.6832 (4)0.3678 (3)0.5058 (3)0.0565 (11)
H30A0.66650.31050.49040.085*
H30B0.63110.38930.54290.085*
H30C0.74920.36880.53320.085*
C310.2372 (4)0.4038 (5)0.5574 (3)0.093 (2)
H31A0.28420.36000.57480.140*
H31B0.16950.39220.57930.140*
H31C0.26090.45760.57800.140*
Cl10.44750 (9)0.12099 (7)0.41575 (8)0.0623 (3)
O110.0250 (2)0.51954 (19)0.46583 (18)0.0553 (8)
H110.01250.47380.48820.083*
C320.0388 (5)0.5825 (4)0.5277 (3)0.0859 (18)
H32A0.11120.58880.53940.129*
H32B0.00300.56590.57760.129*
H32C0.01150.63550.50810.129*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.065 (2)0.091 (3)0.0468 (18)0.0232 (19)0.0066 (16)0.0031 (17)
O20.0363 (14)0.0545 (16)0.0463 (16)0.0098 (13)0.0066 (12)0.0044 (13)
O30.0364 (15)0.0546 (18)0.078 (2)0.0108 (14)0.0071 (15)0.0074 (15)
O40.0481 (16)0.0467 (15)0.0437 (16)0.0047 (13)0.0087 (13)0.0078 (12)
O50.0400 (15)0.0694 (19)0.0480 (17)0.0030 (14)0.0094 (13)0.0029 (14)
O60.0535 (16)0.0353 (13)0.0455 (16)0.0068 (13)0.0035 (13)0.0059 (12)
O70.0474 (15)0.0444 (16)0.0583 (19)0.0102 (13)0.0082 (14)0.0005 (13)
O80.0550 (17)0.0406 (14)0.0613 (19)0.0047 (13)0.0044 (15)0.0061 (13)
O90.0442 (16)0.0607 (19)0.073 (2)0.0027 (15)0.0088 (15)0.0015 (16)
O100.0484 (17)0.078 (2)0.064 (2)0.0129 (16)0.0109 (15)0.0216 (17)
N10.0363 (17)0.047 (2)0.047 (2)0.0004 (15)0.0043 (14)0.0067 (16)
C10.0357 (19)0.044 (2)0.044 (2)0.0035 (17)0.0020 (17)0.0013 (17)
C20.038 (2)0.049 (2)0.049 (2)0.0003 (18)0.0015 (18)0.0070 (18)
C30.049 (2)0.056 (3)0.063 (3)0.003 (2)0.002 (2)0.010 (2)
C40.051 (3)0.055 (3)0.069 (3)0.008 (2)0.009 (2)0.000 (2)
C50.051 (2)0.070 (3)0.058 (3)0.015 (2)0.005 (2)0.008 (2)
C60.049 (2)0.063 (3)0.042 (2)0.009 (2)0.001 (2)0.001 (2)
C70.0338 (19)0.052 (2)0.049 (2)0.0007 (18)0.0068 (18)0.0001 (19)
C80.0301 (18)0.044 (2)0.049 (2)0.0122 (16)0.0049 (16)0.0044 (18)
C90.0366 (19)0.040 (2)0.042 (2)0.0006 (16)0.0022 (16)0.0031 (16)
C100.0326 (19)0.0377 (19)0.053 (2)0.0016 (16)0.0046 (17)0.0052 (17)
C110.034 (2)0.039 (2)0.067 (3)0.0009 (17)0.0008 (18)0.0007 (19)
C120.0273 (17)0.043 (2)0.056 (2)0.0056 (16)0.0023 (17)0.0014 (18)
C130.0355 (19)0.045 (2)0.046 (2)0.0002 (17)0.0008 (17)0.0011 (17)
C140.0357 (18)0.044 (2)0.0344 (19)0.0005 (17)0.0001 (16)0.0054 (16)
C150.0406 (19)0.0355 (18)0.038 (2)0.0005 (17)0.0038 (16)0.0002 (15)
C160.040 (2)0.0340 (19)0.047 (2)0.0036 (16)0.0041 (17)0.0042 (16)
C170.0305 (18)0.040 (2)0.046 (2)0.0014 (16)0.0049 (16)0.0057 (16)
C180.0368 (19)0.0338 (17)0.043 (2)0.0000 (16)0.0075 (17)0.0036 (15)
C190.039 (2)0.038 (2)0.046 (2)0.0066 (16)0.0077 (17)0.0015 (16)
C200.069 (3)0.065 (3)0.063 (3)0.004 (3)0.011 (3)0.010 (2)
C210.036 (2)0.039 (2)0.049 (2)0.0008 (16)0.0003 (17)0.0087 (17)
C220.0331 (19)0.052 (2)0.056 (3)0.0042 (18)0.0018 (18)0.0094 (19)
C230.038 (2)0.043 (2)0.054 (2)0.0018 (17)0.0015 (18)0.0083 (18)
C240.037 (2)0.052 (2)0.064 (3)0.0022 (19)0.002 (2)0.008 (2)
C250.038 (2)0.042 (2)0.066 (3)0.0072 (18)0.0068 (19)0.0109 (19)
C260.039 (2)0.041 (2)0.055 (3)0.0004 (17)0.0077 (18)0.0049 (18)
C270.102 (4)0.052 (3)0.087 (4)0.016 (3)0.001 (3)0.017 (3)
C280.040 (2)0.055 (3)0.063 (3)0.006 (2)0.008 (2)0.009 (2)
C290.060 (3)0.080 (3)0.075 (3)0.007 (3)0.028 (3)0.020 (3)
C300.057 (3)0.066 (3)0.047 (2)0.003 (2)0.005 (2)0.014 (2)
C310.062 (3)0.171 (7)0.047 (3)0.008 (4)0.011 (2)0.017 (4)
Cl10.0678 (7)0.0509 (6)0.0683 (8)0.0090 (6)0.0048 (6)0.0101 (5)
O110.0571 (18)0.0564 (18)0.0523 (18)0.0034 (16)0.0013 (15)0.0072 (14)
C320.128 (5)0.073 (3)0.057 (3)0.012 (4)0.008 (3)0.008 (3)
Geometric parameters (Å, º) top
O1—C71.202 (5)C13—H130.9800
O2—C71.342 (5)C14—C151.548 (5)
O2—C81.434 (4)C14—H140.9800
O3—C121.420 (4)C15—C181.552 (5)
O3—H3A0.8200C16—C171.537 (5)
O4—C141.431 (4)C16—C261.553 (5)
O4—H4A0.8200C16—C211.557 (6)
O5—C311.399 (5)C17—C181.512 (5)
O5—C131.430 (4)C17—H170.9800
O6—C151.439 (4)C18—C191.551 (5)
O6—H60.8200C18—H18A0.9800
O7—C191.426 (4)C19—C211.548 (5)
O7—C201.427 (5)C19—H190.9800
O8—C271.433 (5)C20—H20A0.9600
O8—C261.436 (5)C20—H20B0.9600
O9—C241.445 (5)C20—H20C0.9600
O9—H90.8200C21—C231.565 (5)
O10—C291.412 (5)C21—H210.9800
O10—C281.423 (5)C22—C231.528 (5)
N1—C221.498 (5)C22—H22A0.9700
N1—C301.497 (5)C22—H22B0.9700
N1—C171.518 (5)C23—C281.526 (6)
N1—H10.901 (19)C23—C241.587 (6)
C1—C21.382 (5)C24—C251.501 (5)
C1—C61.383 (6)C24—H240.9800
C1—C71.482 (5)C25—C261.507 (5)
C2—C31.381 (6)C25—H25A0.9700
C2—H20.9300C25—H25B0.9700
C3—C41.383 (7)C26—H260.9800
C3—H30.9300C27—H27A0.9600
C4—C51.386 (6)C27—H27B0.9600
C4—H40.9300C27—H27C0.9600
C5—C61.390 (6)C28—H28A0.9700
C5—H50.9300C28—H28B0.9700
C6—H6A0.9300C29—H29A0.9600
C8—C121.509 (6)C29—H29B0.9600
C8—C91.532 (5)C29—H29C0.9600
C8—H80.9800C30—H30A0.9600
C9—C151.531 (5)C30—H30B0.9600
C9—C101.564 (5)C30—H30C0.9600
C9—H9A0.9800C31—H31A0.9600
C10—C111.552 (6)C31—H31B0.9600
C10—C161.563 (5)C31—H31C0.9600
C10—H100.9800O11—C321.414 (6)
C11—C121.523 (5)O11—H110.8200
C11—H11A0.9700C32—H32A0.9600
C11—H11B0.9700C32—H32B0.9600
C12—C131.547 (5)C32—H32C0.9600
C13—C141.540 (5)
C7—O2—C8119.2 (3)N1—C17—H17110.3
C12—O3—H3A109.5C16—C17—H17110.3
C14—O4—H4A109.5C17—C18—C19105.6 (3)
C31—O5—C13115.3 (4)C17—C18—C15108.7 (3)
C15—O6—H6109.5C19—C18—C15109.8 (3)
C19—O7—C20111.6 (3)C17—C18—H18A110.9
C27—O8—C26113.5 (3)C19—C18—H18A110.9
C24—O9—H9109.5C15—C18—H18A110.9
C29—O10—C28111.9 (3)O7—C19—C21117.5 (3)
C22—N1—C30111.2 (3)O7—C19—C18111.1 (3)
C22—N1—C17111.8 (3)C21—C19—C18104.2 (3)
C30—N1—C17112.6 (3)O7—C19—H19107.9
C22—N1—H1111 (3)C21—C19—H19107.9
C30—N1—H1108 (3)C18—C19—H19107.9
C17—N1—H1103 (3)O7—C20—H20A109.5
C2—C1—C6119.3 (4)O7—C20—H20B109.5
C2—C1—C7118.9 (4)H20A—C20—H20B109.5
C6—C1—C7121.8 (4)O7—C20—H20C109.5
C1—C2—C3121.0 (4)H20A—C20—H20C109.5
C1—C2—H2119.5H20B—C20—H20C109.5
C3—C2—H2119.5C19—C21—C16100.9 (3)
C2—C3—C4119.4 (4)C19—C21—C23114.0 (3)
C2—C3—H3120.3C16—C21—C23108.8 (3)
C4—C3—H3120.3C19—C21—H21110.9
C3—C4—C5120.3 (4)C16—C21—H21110.9
C3—C4—H4119.9C23—C21—H21110.9
C5—C4—H4119.9N1—C22—C23109.8 (3)
C4—C5—C6119.6 (4)N1—C22—H22A109.7
C4—C5—H5120.2C23—C22—H22A109.7
C6—C5—H5120.2N1—C22—H22B109.7
C1—C6—C5120.3 (4)C23—C22—H22B109.7
C1—C6—H6A119.8H22A—C22—H22B108.2
C5—C6—H6A119.8C28—C23—C22106.3 (3)
O1—C7—O2123.3 (4)C28—C23—C21114.7 (3)
O1—C7—C1125.1 (4)C22—C23—C21108.1 (3)
O2—C7—C1111.5 (3)C28—C23—C24105.6 (3)
O2—C8—C12109.4 (3)C22—C23—C24110.3 (3)
O2—C8—C9116.6 (3)C21—C23—C24111.7 (3)
C12—C8—C9102.1 (3)O9—C24—C25107.5 (4)
O2—C8—H8109.5O9—C24—C23111.8 (3)
C12—C8—H8109.5C25—C24—C23111.7 (3)
C9—C8—H8109.5O9—C24—H24108.6
C8—C9—C15112.4 (3)C25—C24—H24108.6
C8—C9—C10101.2 (3)C23—C24—H24108.6
C15—C9—C10112.9 (3)C24—C25—C26113.3 (3)
C8—C9—H9A110.0C24—C25—H25A108.9
C15—C9—H9A110.0C26—C25—H25A108.9
C10—C9—H9A110.0C24—C25—H25B108.9
C11—C10—C16112.2 (3)C26—C25—H25B108.9
C11—C10—C9103.2 (3)H25A—C25—H25B107.7
C16—C10—C9118.9 (3)O8—C26—C25113.7 (3)
C11—C10—H10107.3O8—C26—C16107.0 (3)
C16—C10—H10107.3C25—C26—C16111.9 (3)
C9—C10—H10107.3O8—C26—H26108.0
C12—C11—C10107.3 (3)C25—C26—H26108.0
C12—C11—H11A110.2C16—C26—H26108.0
C10—C11—H11A110.2O8—C27—H27A109.5
C12—C11—H11B110.2O8—C27—H27B109.5
C10—C11—H11B110.2H27A—C27—H27B109.5
H11A—C11—H11B108.5O8—C27—H27C109.5
O3—C12—C8113.3 (3)H27A—C27—H27C109.5
O3—C12—C11109.0 (3)H27B—C27—H27C109.5
C8—C12—C11100.3 (3)O10—C28—C23109.6 (3)
O3—C12—C13111.6 (3)O10—C28—H28A109.7
C8—C12—C13110.2 (3)C23—C28—H28A109.7
C11—C12—C13111.9 (3)O10—C28—H28B109.7
O5—C13—C14107.7 (3)C23—C28—H28B109.7
O5—C13—C12108.6 (3)H28A—C28—H28B108.2
C14—C13—C12114.6 (3)O10—C29—H29A109.5
O5—C13—H13108.6O10—C29—H29B109.5
C14—C13—H13108.6H29A—C29—H29B109.5
C12—C13—H13108.6O10—C29—H29C109.5
O4—C14—C13107.0 (3)H29A—C29—H29C109.5
O4—C14—C15112.3 (3)H29B—C29—H29C109.5
C13—C14—C15117.7 (3)N1—C30—H30A109.5
O4—C14—H14106.4N1—C30—H30B109.5
C13—C14—H14106.4H30A—C30—H30B109.5
C15—C14—H14106.4N1—C30—H30C109.5
O6—C15—C9105.0 (3)H30A—C30—H30C109.5
O6—C15—C14109.3 (3)H30B—C30—H30C109.5
C9—C15—C14111.8 (3)O5—C31—H31A109.5
O6—C15—C18107.8 (3)O5—C31—H31B109.5
C9—C15—C18108.3 (3)H31A—C31—H31B109.5
C14—C15—C18114.1 (3)O5—C31—H31C109.5
C17—C16—C26117.4 (3)H31A—C31—H31C109.5
C17—C16—C2198.4 (3)H31B—C31—H31C109.5
C26—C16—C21112.9 (3)C32—O11—H11109.5
C17—C16—C10106.4 (3)O11—C32—H32A109.5
C26—C16—C10106.2 (3)O11—C32—H32B109.5
C21—C16—C10115.6 (3)H32A—C32—H32B109.5
C18—C17—N1112.9 (3)O11—C32—H32C109.5
C18—C17—C16100.5 (3)H32A—C32—H32C109.5
N1—C17—C16112.1 (3)H32B—C32—H32C109.5
C18—C17—H17110.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O50.822.112.612 (4)119
O3—H3A···O110.822.222.923 (4)144
O4—H4A···Cl10.822.303.083 (3)161
O6—H6···Cl10.822.403.197 (3)165
O9—H9···O11i0.821.982.776 (4)163
N1—H1···O80.90 (2)2.11 (4)2.808 (4)134 (4)
N1—H1···O90.90 (2)2.20 (4)2.795 (5)123 (4)
O11—H11···Cl1ii0.822.303.084 (3)158
Symmetry codes: (i) x+1, y, z; (ii) x1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC31H44NO10+·Cl·CH4O
Mr658.16
Crystal system, space groupOrthorhombic, P212121
Temperature (K)123
a, b, c (Å)12.919 (3), 15.748 (3), 16.045 (3)
V3)3264.2 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerRigaku/MSC Mercury CCD
diffractometer
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.969, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
29100, 6908, 4585
Rint0.050
(sin θ/λ)max1)0.633
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.151, 1.10
No. of reflections6908
No. of parameters422
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.36, 0.50
Absolute structureFlack (1983), 1726 Friedel pairs
Absolute structure parameter0.01 (11)

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O50.822.112.612 (4)119
O3—H3A···O110.822.222.923 (4)144
O4—H4A···Cl10.822.303.083 (3)161
O6—H6···Cl10.822.403.197 (3)165
O9—H9···O11i0.821.982.776 (4)163
N1—H1···O80.901 (19)2.11 (4)2.808 (4)134 (4)
N1—H1···O90.901 (19)2.20 (4)2.795 (5)123 (4)
O11—H11···Cl1ii0.822.303.084 (3)158
Symmetry codes: (i) x+1, y, z; (ii) x1/2, y+1/2, z+1.
 

Acknowledgements

This project was supported by the Fundamental Research Funds for the Central Universities, SCUT (grant No. 20092Z0011). We thank Dr Yan-Wei Ren and Professor Lei Zhang for technical support.

References

First citationAmeri, A. (1998). Eur. J. Pharmacol. 342, 183–191.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDesai, H. K., Hart, B. P., Caldwell, R. W., Huang, J. Z. & Pelletier, S. W. (1998). J. Nat. Prod. 61, 743–748.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHe, D.-H., Zhu, Y.-C. & Hu, A.-X. (2008). Acta Cryst. E64, o1033–o1034.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuzuki, Y., Oyama, T., Ishige, A., Isono, T., Asami, A., Ikeda, Y., Noguchi, M. & Omiya, Y. (1994). Planta Med. 60, 391–394.  CrossRef CAS PubMed Web of Science Google Scholar
First citationWang, J., van der Heijden, R., Spijksma, G., Reijmers, T., Wang, M., Xu, G., Hankemeier, T. & van der Greef, J. (2009). J. Chromatogr. A, 1216, 2169–2178.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYue, H., Pi, Z., Song, F., Liu, Z., Cai, Z. & Liu, S. (2009). Talanta, 77, 1800–1807.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhang, H. G., Shi, X. G., Sun, Y., Duan, M. Y. & Zhong, D. F. (2002). Chin. Chem. Lett. 13, 758–760.  CAS Google Scholar
First citationZhang, H. G., Sun, Y., Duan, M. Y., Chen, Y. J., Zhong, D. F. & Zhang, H. Q. (2005). Toxicon, 46, 500–506.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages o974-o975
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds