metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages m494-m495

(1H-Benzimidazole-5-carb­­oxy­lic acid-κN3)(1H-benzimidazole-6-carb­­oxy­lic acid-κN3)silver(I) perchlorate

aSchool of Chemistry and Environment, South China Nomal University, Guangzhou 510006, People's Republic of China
*Correspondence e-mail: dh@scnu.edu.cn

(Received 8 March 2011; accepted 20 March 2011; online 26 March 2011)

The reaction of 1H-benzimidazole-5-carb­oxy­lic acid with silver nitrate in the presence of perchloric acid under hydro­thermal conditions yielded the title complex, [Ag(C8H6N2O2)2]ClO4, which comprises of an [Ag(C8H6N2O2)2] mononuclear cation and a perchlorate anion. The AgI ion is coordinated by two N atoms from two different neutral 1H-benzimidazole-5-carb­oxy­lic acid ligands with an N—Ag—N bond angle of 163.21 (14)°, forming an [Ag(C8H6N2O2)2] mononuclear cation. Although both ligands in the mononuclear cation are monodentate with one N atom coordinated to the metal ion, they are different: one is N3 coordinated to the Ag I ion and the N1 atom protonated, the other with the N1 coordinated to the Ag I ion and the N3 atom protonated (and thus formally a 1H-benzimidazole-6-carb­oxy­lic acid rather than a 1H-benzimidazole-5-carb­oxy­lic acid ligand). The planes of the two planar ligands are roughly perpendicular, making a dihedral angle of 84.97 (2)°. The packing of the ions is stablized by extensive O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds, and by remote Ag⋯O inter­actions [3.002 (3), 3.581 (5) and 3.674 (5) Å].

Related literature

For related structures, see: Guo, Cao et al. (2007[Guo, Z. G., Cao, R., Li, X. J., Yuan, D. Q., Bi, W. H., Zhu, X. D. & Li, Y. F. (2007). Eur. J. Inorg. Chem. pp. 742-748.]); Guo, Li et al. (2007[Guo, Z. G., Li, X. J., Gao, S. Y. & Li, Y. F. (2007). J. Mol. Struct. 846, 123-127.]); Liu et al. (2005[Liu, Z., Chen, Y., Liu, P., Wang, J. & Huang, M. H. (2005). J. Solid State Chem. 178, 2306-2312.]); Peng, Ma et al. (2010[Peng, G., Ma, L., Liu, B., Cai, J. B. & Deng, H. (2010). Inorg. Chem. Commun. 13, 599-602.]); Peng, Qiu et al. (2010[Peng, G., Qiu, Y. C., Liu, Z. H., Liu, B. & Deng, H. (2010). Cryst. Growth Des. 10, 114-121.]). For graph-set motifs of hydrogen bonds, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Eppel & Bernstein (2008[Eppel, S. & Bernstein, J. (2008). Acta Cryst. B64, 50-56.]); Grell et al. (1999[Grell, J., Bernstein, J. & Tinhofer, G. (1999). Acta Cryst. B55, 1030-1043.]). For van der Waals radii, see: Bondi (1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-452.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag(C8H6N2O2)2]ClO4

  • Mr = 531.62

  • Triclinic, [P \overline 1]

  • a = 4.933 (2) Å

  • b = 13.330 (5) Å

  • c = 14.498 (6) Å

  • α = 78.566 (5)°

  • β = 89.111 (5)°

  • γ = 82.554 (5)°

  • V = 926.5 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.29 mm−1

  • T = 296 K

  • 0.26 × 0.24 × 0.22 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.746, Tmax = 0.774

  • 4604 measured reflections

  • 3247 independent reflections

  • 2630 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.103

  • S = 1.04

  • 3247 reflections

  • 273 parameters

  • H-atom parameters constrained

  • Δρmax = 0.62 e Å−3

  • Δρmin = −0.70 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O2i 0.82 1.82 2.634 (5) 173
N2—H2⋯O5ii 0.86 2.15 2.983 (6) 163
O3—H3⋯O4iii 0.82 1.80 2.608 (6) 168
N4—H4A⋯O6iv 0.86 2.14 2.935 (6) 153
C14—H14⋯O1v 0.93 2.60 3.491 (6) 162
C15—H15⋯O2vi 0.93 2.51 3.398 (5) 161
Symmetry codes: (i) -x-1, -y+1, -z+1; (ii) -x+2, -y+1, -z+1; (iii) -x+3, -y+2, -z+1; (iv) -x+1, -y+2, -z+1; (v) -x+1, -y+1, -z+1; (vi) x+1, y, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, N-heterocyclic carboxylic acids as organic ligands attracted significant attention not only due to their versatile coordination modes but also because of their ability to facilitate the formation of high-dimensional coordination compounds. 1H-benzimidazole-5-carboxylic acid is such an organic ligand, with four donor atoms (two N and two O atoms) and variable coordination modes. As a potential multidentate ligand, 1H-benzimidazole-5-carboxylic acid is an excellent candidate for the construction of three-dimensional architectures. Up to this date, reported compounds based on this ligand are still quite rare, but have recently started to attract some interest (Guo, Cao et al. (2007); Guo, Li et al. (2007); Liu et al. (2005); Peng, Ma et al. (2010); Peng, Qiu et al. (2010).). According to these precedents in the literature and experience, the nature of the final metal coordination framework is still hard to predict. To gain more insight into this system we thus chose 1H-benzimidazole-5-carboxylic acid and silver nitrate in a 1:1 ratio in the presence of perchloric acid under hydrothermal conditions to construct a new framework. Herein, we report an Ag coordination complex salt based on this ligand, namely [Ag(C8H6N2O2)2].ClO4, with a three-dimensional supramolecular network created by O—H···O, N—H···O, and C—H···O hydrogen bonds, and by Ag···O interactions [3.002 (3), 3.581 (5) and 3.674 (5) Å].

As shown in Figure 1, the title compound contains an AgI ion, two silver coordinated different neutral 1H-benzimidazole-5-carboxylic acid ligands and a perchlorate anion. The AgI ion is coordinated by two N atoms from two different 1H-benzimidazole-5-carboxylic acid ligands with Ag—N bond lengths of 2.106 (4) Å, and an N—Ag—N bond angle 163.23 °. Although both of the two ligands in the mononuclear cation are monodentate ligands with one nitrogen atom coordinated to the metal ion, they are different: one with the N3 coordinated to the Ag I ion and the N1 atom protonated, the other with the N1 coordinated to the Ag I ion and the N3 atom protonated (and thus formally a 1H-benzimidazole -6-carboxylic acid rather than a 1H-benzimidazole-5-carboxylic acid ligand), thus forming a mononuclear [Ag(C8H6N2O2)2] cation.

Adjacent [Ag(C8H6N2O2)2] mononuclear cations are linked to each other through O—H···O hydrogen bonds with the R228 graph set motif typical for carboxylic acids (Bernstein et al. (1995); Eppel & Bernstein (2008); Grell et al. (1999)) to form a ribbon-like chain of [Ag(C8H6N2O2)2] units that stretch along the (1 1 0) direction of the structure (Figure 2). Adjacent chains are further linked to each other by weak C—H···O hydrogen bonds leading to the formation of layers of [Ag(C8H6N2O2)2] cations. The perchlorate anions are bonded to these layers through strong N—H···O hydrogen bonds originating from the imidazole rings, and through short O···Ag interactions (Figure 3). The O6···Ag, O7···Ag, O8···Ag, distances are 3.002 (3), 3.581 (5), 3.674 (5) Å, respectively, which is shorter than the sum of the van der Waals radii for silver and oxygen atoms (3.91 Å) (Bondi (1964)).

Related literature top

For related structures, see: Guo, Cao et al. (2007); Guo, Li et al. (2007); Liu et al. (2005); Peng, Ma et al. (2010); Peng, Qiu et al. (2010). For graph-set motifs of hydrogen bonds, see: Bernstein et al. (1995); Eppel & Bernstein (2008); Grell et al. (1999). For van der Waals radii, see: Bondi (1964).

Experimental top

An aqueous mixture (10 ml) of 1H-benzimidazole-5-carboxylic acid (0.05 g 0.3 mmol), silver nitrate (0.05 g 0.3 mmol) and perchloric acid (pH=2) was placed in a 23 ml Teflon-lined stainless-steel autoclave, heated to 443 K for 3 days, then cooled to room temperature at 5 K/h. Yellow prism-shaped single crystals were collected (yield 0.06 g, 0.1 mmol, 75% based on 1H-benzimidazole-5-carboxylic acid).

Refinement top

All H-atoms attached to C, N and O atoms were fixed geometrically and treated as riding with C—H = 0.93 Å, N—H = 0.86 Å and O—H = 0.82 Å and Uiso(H) = 1.2Ueq(C,N) and Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing the atomic numbering scheme. Non-H atoms are shown with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. One of the ribbon like [Ag(C8H6N2O2)2] chains linked by O—H···O hydrogen bonds along the (1 1 0) direction.
[Figure 3] Fig. 3. A packing view of title compound along the a axis, showing the O—H···O, O—H···N and C—H···O hydrogen bonds and the Ag···O interactions.
(1H-Benzimidazole-5-carboxylic acid-κN3)(1H- benzimidazole-6-carboxylic acid-κN3)silver(I) perchlorate top
Crystal data top
[Ag(C8H6N2O2)2]ClO4Z = 2
Mr = 531.62F(000) = 528.0
Triclinic, P1Dx = 1.906 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.933 (2) ÅCell parameters from 3317 reflections
b = 13.330 (5) Åθ = 1.6–25.2°
c = 14.498 (6) ŵ = 1.29 mm1
α = 78.566 (5)°T = 296 K
β = 89.111 (5)°Prism, yellow
γ = 82.554 (5)°0.26 × 0.24 × 0.22 mm
V = 926.5 (6) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
3247 independent reflections
Radiation source: fine-focus sealed tube2630 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ω scansθmax = 25.2°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 55
Tmin = 0.746, Tmax = 0.774k = 1513
4604 measured reflectionsl = 1617
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0581P)2 + 0.3563P]
where P = (Fo2 + 2Fc2)/3
3247 reflections(Δ/σ)max = 0.001
273 parametersΔρmax = 0.62 e Å3
0 restraintsΔρmin = 0.70 e Å3
Crystal data top
[Ag(C8H6N2O2)2]ClO4γ = 82.554 (5)°
Mr = 531.62V = 926.5 (6) Å3
Triclinic, P1Z = 2
a = 4.933 (2) ÅMo Kα radiation
b = 13.330 (5) ŵ = 1.29 mm1
c = 14.498 (6) ÅT = 296 K
α = 78.566 (5)°0.26 × 0.24 × 0.22 mm
β = 89.111 (5)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3247 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2630 reflections with I > 2σ(I)
Tmin = 0.746, Tmax = 0.774Rint = 0.017
4604 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.04Δρmax = 0.62 e Å3
3247 reflectionsΔρmin = 0.70 e Å3
273 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.44123 (8)0.70811 (3)0.15898 (2)0.04721 (15)
C10.6189 (10)0.4842 (4)0.1256 (3)0.0466 (11)
H10.74300.50570.07930.056*
C20.3124 (8)0.4843 (3)0.2325 (3)0.0346 (9)
C30.3830 (9)0.3825 (3)0.2238 (3)0.0408 (10)
C40.2654 (10)0.3021 (4)0.2792 (3)0.0509 (12)
H40.31520.23380.27380.061*
C50.0729 (10)0.3286 (3)0.3421 (3)0.0471 (11)
H50.00920.27660.38040.057*
C60.0052 (9)0.4309 (3)0.3509 (3)0.0396 (10)
C70.1163 (9)0.5103 (3)0.2959 (3)0.0391 (10)
H70.06750.57860.30160.047*
C80.2186 (10)0.4595 (3)0.4175 (3)0.0446 (11)
C90.4393 (10)0.9464 (4)0.1285 (3)0.0456 (11)
H90.31700.96040.07800.055*
C100.6828 (9)0.8675 (3)0.2492 (3)0.0371 (10)
C110.7374 (9)0.9692 (3)0.2309 (3)0.0381 (10)
C120.9185 (9)1.0038 (3)0.2866 (3)0.0421 (10)
H120.95431.07190.27470.050*
C131.0426 (9)0.9313 (3)0.3608 (3)0.0390 (10)
C140.9860 (10)0.8291 (4)0.3798 (3)0.0482 (11)
H141.07090.78270.43080.058*
C150.8066 (10)0.7964 (3)0.3241 (3)0.0460 (11)
H150.76940.72840.33640.055*
C161.2386 (10)0.9636 (4)0.4219 (3)0.0457 (11)
Cl10.9204 (2)0.77011 (9)0.97296 (8)0.0448 (3)
N10.4642 (7)0.5474 (3)0.1693 (2)0.0408 (9)
N20.5791 (8)0.3854 (3)0.1548 (3)0.0493 (10)
H20.66100.33330.13430.059*
N30.4956 (8)0.8550 (3)0.1829 (2)0.0415 (9)
N40.5779 (8)1.0176 (3)0.1536 (3)0.0470 (9)
H4A0.56861.08150.12640.056*
O10.3280 (8)0.3835 (2)0.4671 (3)0.0581 (9)
H1A0.45570.40620.49720.087*
O20.2846 (7)0.5503 (2)0.4241 (2)0.0608 (10)
O31.3333 (8)0.8956 (3)0.4925 (3)0.0672 (10)
H31.45220.91780.51870.101*
O41.3026 (8)1.0534 (3)0.4028 (2)0.0630 (10)
O51.0476 (7)0.7959 (3)0.8839 (2)0.0603 (9)
O60.6290 (6)0.7811 (3)0.9620 (2)0.0577 (9)
O71.0171 (10)0.6657 (4)1.0117 (4)0.1079 (18)
O80.9910 (9)0.8361 (5)1.0309 (4)0.117 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0531 (3)0.0393 (2)0.0526 (2)0.01424 (16)0.00379 (16)0.01219 (16)
C10.042 (3)0.052 (3)0.049 (3)0.009 (2)0.008 (2)0.013 (2)
C20.031 (2)0.035 (2)0.038 (2)0.0045 (17)0.0032 (17)0.0080 (18)
C30.043 (3)0.039 (2)0.043 (2)0.005 (2)0.0001 (19)0.014 (2)
C40.060 (3)0.033 (2)0.060 (3)0.004 (2)0.006 (2)0.013 (2)
C50.056 (3)0.035 (2)0.050 (3)0.013 (2)0.006 (2)0.005 (2)
C60.039 (3)0.038 (2)0.040 (2)0.0033 (19)0.0002 (19)0.0044 (19)
C70.041 (3)0.031 (2)0.046 (2)0.0022 (19)0.0006 (19)0.0109 (19)
C80.047 (3)0.038 (3)0.047 (3)0.008 (2)0.005 (2)0.002 (2)
C90.048 (3)0.048 (3)0.042 (2)0.006 (2)0.003 (2)0.013 (2)
C100.038 (3)0.037 (2)0.037 (2)0.0034 (19)0.0048 (18)0.0102 (18)
C110.041 (3)0.035 (2)0.038 (2)0.0028 (19)0.0024 (19)0.0081 (18)
C120.047 (3)0.034 (2)0.045 (3)0.005 (2)0.003 (2)0.007 (2)
C130.035 (2)0.041 (2)0.040 (2)0.0063 (19)0.0032 (18)0.0078 (19)
C140.057 (3)0.043 (3)0.040 (3)0.001 (2)0.004 (2)0.001 (2)
C150.057 (3)0.032 (2)0.049 (3)0.008 (2)0.001 (2)0.006 (2)
C160.048 (3)0.051 (3)0.038 (2)0.002 (2)0.000 (2)0.010 (2)
Cl10.0334 (6)0.0542 (7)0.0455 (6)0.0021 (5)0.0026 (5)0.0084 (5)
N10.041 (2)0.038 (2)0.044 (2)0.0047 (17)0.0058 (16)0.0087 (17)
N20.055 (3)0.040 (2)0.056 (2)0.0027 (18)0.0131 (19)0.0196 (18)
N30.046 (2)0.037 (2)0.043 (2)0.0096 (17)0.0016 (16)0.0109 (17)
N40.058 (3)0.033 (2)0.047 (2)0.0052 (18)0.0090 (18)0.0014 (17)
O10.059 (2)0.0433 (19)0.068 (2)0.0067 (16)0.0241 (17)0.0017 (16)
O20.071 (3)0.0371 (19)0.071 (2)0.0037 (17)0.0301 (19)0.0084 (16)
O30.079 (3)0.066 (2)0.054 (2)0.016 (2)0.0255 (19)0.0008 (19)
O40.072 (3)0.054 (2)0.064 (2)0.0176 (19)0.0196 (18)0.0074 (18)
O50.060 (2)0.067 (2)0.052 (2)0.0115 (19)0.0080 (16)0.0069 (17)
O60.0317 (18)0.064 (2)0.075 (2)0.0046 (16)0.0046 (15)0.0080 (18)
O70.077 (3)0.087 (3)0.125 (4)0.011 (3)0.004 (3)0.051 (3)
O80.060 (3)0.199 (6)0.128 (4)0.023 (3)0.010 (3)0.120 (4)
Geometric parameters (Å, º) top
Ag1—N12.106 (4)C10—C151.383 (6)
Ag1—N32.106 (4)C10—C111.390 (6)
C1—N11.313 (6)C10—N31.391 (5)
C1—N21.340 (6)C11—N41.379 (5)
C1—H10.9300C11—C121.393 (6)
C2—C71.383 (6)C12—C131.386 (6)
C2—C31.387 (6)C12—H120.9300
C2—N11.394 (5)C13—C141.399 (6)
C3—N21.379 (6)C13—C161.480 (6)
C3—C41.392 (6)C14—C151.373 (6)
C4—C51.368 (7)C14—H140.9300
C4—H40.9300C15—H150.9300
C5—C61.399 (6)C16—O41.255 (6)
C5—H50.9300C16—O31.275 (5)
C6—C71.390 (6)Cl1—O81.408 (4)
C6—C81.482 (6)Cl1—O71.416 (4)
C7—H70.9300Cl1—O51.426 (4)
C8—O21.234 (5)Cl1—O61.434 (3)
C8—O11.294 (5)N2—H20.8600
C9—N31.312 (6)N4—H4A0.8600
C9—N41.348 (6)O1—H1A0.8200
C9—H90.9300O3—H30.8200
N1—Ag1—N3163.21 (14)C13—C12—H12121.7
N1—C1—N2112.9 (4)C11—C12—H12121.7
N1—C1—H1123.6C12—C13—C14121.9 (4)
N2—C1—H1123.6C12—C13—C16118.8 (4)
C7—C2—C3121.0 (4)C14—C13—C16119.3 (4)
C7—C2—N1129.7 (4)C15—C14—C13120.8 (4)
C3—C2—N1109.3 (4)C15—C14—H14119.6
N2—C3—C2105.3 (4)C13—C14—H14119.6
N2—C3—C4132.8 (4)C14—C15—C10118.1 (4)
C2—C3—C4122.0 (4)C14—C15—H15121.0
C5—C4—C3116.6 (4)C10—C15—H15121.0
C5—C4—H4121.7O4—C16—O3123.8 (4)
C3—C4—H4121.7O4—C16—C13120.1 (4)
C4—C5—C6122.4 (4)O3—C16—C13116.1 (4)
C4—C5—H5118.8O8—Cl1—O7111.1 (4)
C6—C5—H5118.8O8—Cl1—O5108.7 (3)
C7—C6—C5120.4 (4)O7—Cl1—O5107.5 (3)
C7—C6—C8117.4 (4)O8—Cl1—O6109.9 (2)
C5—C6—C8122.3 (4)O7—Cl1—O6109.1 (3)
C2—C7—C6117.7 (4)O5—Cl1—O6110.6 (2)
C2—C7—H7121.2C1—N1—C2105.0 (4)
C6—C7—H7121.2C1—N1—Ag1131.1 (3)
O2—C8—O1123.2 (4)C2—N1—Ag1123.9 (3)
O2—C8—C6121.2 (4)C1—N2—C3107.5 (4)
O1—C8—C6115.6 (4)C1—N2—H2126.2
N3—C9—N4112.7 (4)C3—N2—H2126.2
N3—C9—H9123.7C9—N3—C10105.3 (4)
N4—C9—H9123.7C9—N3—Ag1130.1 (3)
C15—C10—C11121.0 (4)C10—N3—Ag1121.7 (3)
C15—C10—N3129.7 (4)C9—N4—C11107.4 (4)
C11—C10—N3109.2 (4)C9—N4—H4A126.3
N4—C11—C10105.4 (4)C11—N4—H4A126.3
N4—C11—C12133.0 (4)C8—O1—H1A109.5
C10—C11—C12121.7 (4)C16—O3—H3109.5
C13—C12—C11116.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O2i0.821.822.634 (5)173
N2—H2···O5ii0.862.152.983 (6)163
O3—H3···O4iii0.821.802.608 (6)168
N4—H4A···O6iv0.862.142.935 (6)153
C14—H14···O30.932.412.729 (6)100
C14—H14···O1v0.932.603.491 (6)162
C15—H15···O2vi0.932.513.398 (5)161
Symmetry codes: (i) x1, y+1, z+1; (ii) x+2, y+1, z+1; (iii) x+3, y+2, z+1; (iv) x+1, y+2, z+1; (v) x+1, y+1, z+1; (vi) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Ag(C8H6N2O2)2]ClO4
Mr531.62
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)4.933 (2), 13.330 (5), 14.498 (6)
α, β, γ (°)78.566 (5), 89.111 (5), 82.554 (5)
V3)926.5 (6)
Z2
Radiation typeMo Kα
µ (mm1)1.29
Crystal size (mm)0.26 × 0.24 × 0.22
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.746, 0.774
No. of measured, independent and
observed [I > 2σ(I)] reflections
4604, 3247, 2630
Rint0.017
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.103, 1.04
No. of reflections3247
No. of parameters273
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.62, 0.70

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O2i0.821.822.634 (5)173
N2—H2···O5ii0.862.152.983 (6)163
O3—H3···O4iii0.821.802.608 (6)168
N4—H4A···O6iv0.862.142.935 (6)153
C14—H14···O30.932.412.729 (6)100
C14—H14···O1v0.932.603.491 (6)162
C15—H15···O2vi0.932.513.398 (5)161
Symmetry codes: (i) x1, y+1, z+1; (ii) x+2, y+1, z+1; (iii) x+3, y+2, z+1; (iv) x+1, y+2, z+1; (v) x+1, y+1, z+1; (vi) x+1, y, z.
 

Acknowledgements

The authors acknowledge South China Normal University for supporting this work.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441–452.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEppel, S. & Bernstein, J. (2008). Acta Cryst. B64, 50–56.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGrell, J., Bernstein, J. & Tinhofer, G. (1999). Acta Cryst. B55, 1030–1043.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGuo, Z. G., Cao, R., Li, X. J., Yuan, D. Q., Bi, W. H., Zhu, X. D. & Li, Y. F. (2007). Eur. J. Inorg. Chem. pp. 742–748.  Web of Science CSD CrossRef Google Scholar
First citationGuo, Z. G., Li, X. J., Gao, S. Y. & Li, Y. F. (2007). J. Mol. Struct. 846, 123–127.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, Z., Chen, Y., Liu, P., Wang, J. & Huang, M. H. (2005). J. Solid State Chem. 178, 2306–2312.  CrossRef CAS Google Scholar
First citationPeng, G., Ma, L., Liu, B., Cai, J. B. & Deng, H. (2010). Inorg. Chem. Commun. 13, 599–602.  Web of Science CSD CrossRef CAS Google Scholar
First citationPeng, G., Qiu, Y. C., Liu, Z. H., Liu, B. & Deng, H. (2010). Cryst. Growth Des. 10, 114–121.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages m494-m495
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds