organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ammonium 2-amino­pyrazine-3-carboxyl­ate

aBijvoet Center for Biomolecular Research, Crystal and Structural Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
*Correspondence e-mail: m.lutz@uu.nl

(Received 18 March 2011; accepted 23 March 2011; online 26 March 2011)

The title compound NH4+·C5H4N3O2 crystallizes with two formula units in the asymmetric unit. In each anion, the carboxyl­ate is deprotonated and the planar amino group [angle sums of 359 (3) and 355 (3)° at N] remains protonated. In the crystal, the cations and anions are bridged by N—H⋯O and N—H⋯N hydrogen bonds, forming a three-dimensional network.

Related literature

For the crystal structure of the free acid, see: Dobson & Gerkin (1996[Dobson, A. J. & Gerkin, R. E. (1996). Acta Cryst. C52, 1512-1514.]); Ptasiewicz-Bak & Leciejewicz (1997[Ptasiewicz-Bak, H. & Leciejewicz, J. (1997). Pol. J. Chem. 71, 1350-1358.]). For the metal complex with nickel, see: Ptasiewicz-Bak & Leciejewicz (1999[Ptasiewicz-Bak, H. & Leciejewicz, J. (1999). Pol. J. Chem. 73, 717-725.]). For the coordination chemistry of 2-pyrazine­carb­oxy­lic acid, see: Ptasiewicz-Bak et al. (1995[Ptasiewicz-Bak, H., Leciejewicz, J. & Zachara, J. (1995). J. Coord. Chem. 36, 317-326.]); Ellsworth & zur Loye (2008[Ellsworth, J. M. & zur Loye, H.-C. (2008). Dalton Trans. pp. 5823-5835.]). In the present study a half-normal probability plot (Abrahams & Keve, 1971[Abrahams, S. C. & Keve, E. T. (1971). Acta Cryst. A27, 157-165.]), a quaternion fit (Mackay, 1984[Mackay, A. L. (1984). Acta Cryst. A40, 165-166.]) and rigid-body analysis (Schomaker & Trueblood, 1998[Schomaker, V. & Trueblood, K. N. (1998). Acta Cryst. B54, 507-514.]) have been used.

[Scheme 1]

Experimental

Crystal data
  • NH4+·C5H4N3O2

  • Mr = 156.15

  • Orthorhombic, P c a 21

  • a = 12.5066 (6) Å

  • b = 3.8833 (2) Å

  • c = 27.9659 (14) Å

  • V = 1358.22 (12) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 150 K

  • 0.40 × 0.19 × 0.09 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008a[Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.]) Tmin = 0.70, Tmax = 0.75

  • 16898 measured reflections

  • 1580 independent reflections

  • 1540 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.072

  • S = 1.05

  • 1580 reflections

  • 247 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N31—H31A⋯N22i 0.92 (3) 2.20 (3) 3.103 (2) 169 (2)
N31—H31B⋯O21 0.90 (3) 2.07 (3) 2.726 (2) 129 (2)
N32—H32A⋯N21ii 0.88 (3) 2.23 (3) 3.100 (2) 168 (2)
N32—H32B⋯O22 0.86 (3) 2.06 (3) 2.686 (2) 129 (2)
N3—H3B⋯O21 0.93 (3) 1.97 (3) 2.849 (2) 157 (2)
N3—H3C⋯O11iii 0.96 (3) 2.58 (3) 3.287 (2) 131 (2)
N3—H3C⋯N11iii 0.96 (3) 2.00 (3) 2.909 (2) 159 (2)
N3—H3D⋯O11iv 0.89 (3) 2.13 (3) 2.944 (2) 152 (2)
N4—H4A⋯O12 0.86 (3) 2.13 (3) 2.897 (2) 148 (3)
N4—H4A⋯N12 0.86 (3) 2.23 (3) 2.912 (2) 135 (3)
N4—H4B⋯O11 0.95 (4) 1.86 (4) 2.793 (2) 166 (3)
N4—H4C⋯O11v 0.84 (3) 2.01 (4) 2.839 (2) 170 (3)
N4—H4D⋯O22vi 0.87 (3) 1.87 (3) 2.742 (2) 176 (3)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+1, z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y, z-{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+1, z]; (iv) [x-{\script{1\over 2}}, -y+2, z]; (v) x, y-1, z; (vi) [x+{\script{1\over 2}}, -y+1, z].

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: manual editing of SHELXL cif file.

Supporting information


Comment top

2-Pyrazinecarboxylic acid is a complexation reagent in transition metal chemistry (Ptasiewicz-Bak et al., 1995) with a large variety of coordination modes (Ellsworth & zur Loye, 2008). The corresponding 3-aminopyrazine-2-carboxylic has been used in a similar way for the complexation of nickel (Ptasiewicz-Bak & Leciejewicz, 1999). The crystal structure of the free acid has been determined by Dobson & Gerkin (1996) and Ptasiewicz-Bak & Leciejewicz (1997).

The asymmetric unit of the crystal structure of the title compound (I) consists of two formula units (Z' = 2). The anions are essentially planar with a maximal deviation from the least-squares plane of 0.059 (2) and 0.093 (1) Å for the two molecules, respectively (Fig. 1). The molecular planes form angles of 5.54 (3) and 0.58 (3)° with the c axis. Also the amino moieties are planar with angle sums of 359 (3) and 355 (3)° at N31 and N32.

The two independent molecules are very similar, as can be seen in a quaternion fit (Fig. 2). This allows the generation of a half-normal probability plot (Fig. 3). The largest differences between the two molecules are in the C–O distances (Δ = 3.5σ). A possible explanation is the different hydrogen bonding situation of the four O atoms. If the anions in (I) are compared with the neutral molecule of the free acid (Dobson & Gerkin, 1996) the geometries are again very similar. As expected, the only difference is in the carboxylate, which is deprotonated in (I) and protonated in the free acid. The distances C51–O11 and C52–O12 in (I) are 1.266 (2) and 1.256 (2)Å compared to the C–OH distance of 1.328 (2)Å in the free acid. This is accompanied by a change of the corresponding C–C–O angles, which are 116.01 (14) and 116.79 (14)° in (I) compared to 118.20 (10)° in the free acid.

The two independent molecules in (I) can be modelled by rigid body model using the program THMA11 (Schomaker & Trueblood, 1998). The fit of this TLS model is good, as indicated by R-values (R={[Σ(wΔU)2]/[Σ(wUobs)2]}1/2) of 0.080 and 0.085 for the two molecules. The two molecules can thus be appropriately described as rigid bodies. The T tensor has eigenvalues of 0.01925, 0.01329, and 0.01076 Å2 for the first independent molecule in (I), and 0.02060, 0.01368, and 0.01227 Å2 for the second molecule. The L tensor has eigenvalues of 13.62, 6.42, and 4.28 deg.2 for the first molecule, and 12.96, 7.20, and 4.22 deg.2 for the second molecule.

The amino moieties of the anions act as donors of two hydrogen bonds, respecively. One is intramolecular to the carboxylate [graph set S11(6)], and one is intermolecular to a pyrazine N atom [graph set D11(2)]. Overall, this results in one-dimensional hydrogen-bonded chains along the b axis. These chains are interconnected by the ammonium cations to form a three-dimensional network. Hydrogen atoms H3C and H4A of the ammonium cations are involved in bifurcated hydrogen bonds (Table 1, Fig. 4).

Related literature top

For the crystal structure of the free acid, see: Dobson & Gerkin (1996); Ptasiewicz-Bak & Leciejewicz (1997). For the metal complex with nickel, see: Ptasiewicz-Bak & Leciejewicz (1999). For the coordination chemistry of 2-pyrazinecarboxylic acid, see: Ptasiewicz-Bak et al. (1995); Ellsworth & zur Loye (2008). In the present study a half-normal probability plot (Abrahams & Keve, 1971), a quaternion fit (Mackay, 1984) and rigid-body analysis (Schomaker & Trueblood, 1998) have been used.

Experimental top

212 mg of 2-aminopyrazine-3-carboxylic acid were suspended in 20 ml water. A concentrated solution of ammonium hydroxide was added dropwise until the suspension became clear. Slow evaporation at room temperature gave crystals of (I) suitable for the diffraction experiment.

Refinement top

During the intensity integration, a small second crystal fragment has been ignored (less than 5% occupancy). Friedel pairs have been averaged prior to the refinement.

Hydrogen atoms were located in difference Fourier maps. N—H hydrogen atoms were refined freely with isotropic displacement parameters. C—H hydrogen atoms were refined using a riding model with C—H = 0.95 Å and with Uiso(H) = 1.2 times Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: manual editing of SHELXL cif file.

Figures top
[Figure 1] Fig. 1. : Displacement ellipsoid plot of (I). View along the b axis. Non-hydrogen atoms are drawn at the 50% probability level; H atoms are drawn as spheres with arbitrary radii.
[Figure 2] Fig. 2. : Quaternion fit (Mackay, 1984) of the two independent anions in (I). One of the molecules is inverted. The r.m.s. deviation of the fit is 0.041 Å.
[Figure 3] Fig. 3. : Half-normal probability plot (Abrahams & Keve, 1971) of the bond lengths of the two independent molecules of (I). On the vertical axis are the experimental Δ/σ data, on the horizontal axis the theoretical expectation values. Linear regression results in a slope of 2.2 and an intercept of 0.08.
[Figure 4] Fig. 4. : Hydrogen bonding interactions in the crystal structure of (I). View along the b axis.
Ammonium 2-aminopyrazine-3-carboxylate top
Crystal data top
NH4+·C5H4N3O2F(000) = 656
Mr = 156.15Dx = 1.527 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 9416 reflections
a = 12.5066 (6) Åθ = 2.9–27.5°
b = 3.8833 (2) ŵ = 0.12 mm1
c = 27.9659 (14) ÅT = 150 K
V = 1358.22 (12) Å3Plate, colourless
Z = 80.40 × 0.19 × 0.09 mm
Data collection top
Bruker Kappa APEXII
diffractometer
1580 independent reflections
Radiation source: fine-focus sealed tube1540 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ϕ and ω scansθmax = 27.5°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
h = 1615
Tmin = 0.70, Tmax = 0.75k = 45
16898 measured reflectionsl = 3636
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: difference Fourier map
wR(F2) = 0.072H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0562P)2 + 0.1369P]
where P = (Fo2 + 2Fc2)/3
1580 reflections(Δ/σ)max = 0.001
247 parametersΔρmax = 0.33 e Å3
1 restraintΔρmin = 0.16 e Å3
Crystal data top
NH4+·C5H4N3O2V = 1358.22 (12) Å3
Mr = 156.15Z = 8
Orthorhombic, Pca21Mo Kα radiation
a = 12.5066 (6) ŵ = 0.12 mm1
b = 3.8833 (2) ÅT = 150 K
c = 27.9659 (14) Å0.40 × 0.19 × 0.09 mm
Data collection top
Bruker Kappa APEXII
diffractometer
1580 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
1540 reflections with I > 2σ(I)
Tmin = 0.70, Tmax = 0.75Rint = 0.018
16898 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0261 restraint
wR(F2) = 0.072H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.33 e Å3
1580 reflectionsΔρmin = 0.16 e Å3
247 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O110.42965 (10)0.7629 (3)0.54691 (4)0.0224 (3)
O210.30439 (11)0.9858 (4)0.59468 (5)0.0238 (3)
N110.55372 (12)0.5954 (4)0.62042 (5)0.0188 (3)
N210.50221 (12)0.7550 (4)0.71454 (5)0.0200 (3)
N310.34689 (13)1.0186 (4)0.69017 (5)0.0224 (3)
H31A0.338 (2)1.088 (7)0.7212 (11)0.031 (6)*
H31B0.304 (2)1.100 (7)0.6670 (10)0.032 (7)*
C110.61962 (15)0.5125 (5)0.65636 (6)0.0211 (3)
H110.68540.39960.64980.025*
C210.59216 (14)0.5908 (5)0.70302 (6)0.0209 (3)
H210.63950.52460.72790.025*
C310.43627 (13)0.8473 (4)0.67848 (6)0.0164 (3)
C410.46320 (13)0.7604 (4)0.63013 (6)0.0156 (3)
C510.39253 (13)0.8432 (4)0.58752 (6)0.0174 (3)
O120.14633 (10)0.3689 (4)0.46142 (4)0.0245 (3)
O220.02147 (11)0.5588 (4)0.41050 (5)0.0281 (3)
N120.26120 (11)0.1003 (4)0.39032 (5)0.0188 (3)
N220.21177 (12)0.2151 (4)0.29449 (5)0.0207 (3)
N320.05731 (12)0.4997 (4)0.31616 (6)0.0232 (3)
H32A0.0512 (19)0.574 (6)0.2864 (10)0.026 (6)*
H32B0.020 (2)0.611 (7)0.3371 (10)0.035 (7)*
C120.32517 (14)0.0150 (5)0.35539 (7)0.0211 (3)
H120.38830.13860.36320.025*
C220.29979 (14)0.0451 (5)0.30788 (7)0.0216 (4)
H220.34690.03790.28380.026*
C320.14642 (13)0.3310 (4)0.32951 (6)0.0175 (3)
C420.17362 (13)0.2711 (4)0.37884 (5)0.0163 (3)
C520.10825 (13)0.4099 (4)0.42027 (6)0.0189 (3)
N30.12272 (12)0.8079 (4)0.53838 (5)0.0201 (3)
H3A0.133 (2)0.702 (7)0.5094 (11)0.032 (6)*
H3B0.189 (2)0.888 (7)0.5486 (10)0.032 (6)*
H3C0.086 (2)0.660 (7)0.5602 (11)0.037 (6)*
H3D0.079 (2)0.986 (7)0.5356 (9)0.034 (7)*
N40.37274 (14)0.2716 (5)0.47857 (6)0.0249 (3)
H4A0.312 (3)0.249 (7)0.4640 (11)0.043 (8)*
H4B0.380 (2)0.443 (10)0.5025 (14)0.057 (9)*
H4C0.388 (2)0.102 (8)0.4961 (12)0.043 (8)*
H4D0.420 (2)0.315 (7)0.4564 (10)0.032 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O110.0230 (6)0.0326 (7)0.0115 (5)0.0014 (5)0.0003 (4)0.0001 (5)
O210.0174 (6)0.0355 (7)0.0184 (6)0.0022 (5)0.0026 (4)0.0009 (5)
N110.0193 (7)0.0201 (7)0.0169 (7)0.0002 (5)0.0015 (5)0.0005 (5)
N210.0234 (7)0.0226 (7)0.0140 (6)0.0029 (6)0.0012 (6)0.0007 (5)
N310.0204 (7)0.0308 (8)0.0160 (7)0.0036 (6)0.0001 (5)0.0042 (6)
C110.0186 (8)0.0222 (8)0.0225 (8)0.0031 (6)0.0017 (6)0.0005 (6)
C210.0224 (8)0.0214 (8)0.0189 (8)0.0019 (6)0.0049 (6)0.0019 (7)
C310.0190 (8)0.0168 (7)0.0133 (7)0.0055 (6)0.0001 (5)0.0000 (6)
C410.0158 (7)0.0179 (7)0.0131 (7)0.0029 (6)0.0006 (6)0.0006 (5)
C510.0178 (8)0.0201 (7)0.0145 (7)0.0060 (6)0.0006 (5)0.0014 (6)
O120.0280 (6)0.0322 (7)0.0133 (5)0.0041 (5)0.0000 (5)0.0021 (5)
O220.0226 (6)0.0423 (8)0.0193 (6)0.0091 (6)0.0021 (5)0.0012 (6)
N120.0183 (6)0.0220 (7)0.0162 (6)0.0019 (5)0.0004 (5)0.0018 (5)
N220.0234 (7)0.0237 (7)0.0151 (6)0.0040 (6)0.0019 (5)0.0016 (5)
N320.0227 (7)0.0325 (8)0.0144 (7)0.0024 (6)0.0005 (6)0.0043 (6)
C120.0190 (8)0.0224 (9)0.0220 (8)0.0008 (6)0.0014 (6)0.0026 (7)
C220.0228 (8)0.0217 (8)0.0203 (8)0.0029 (6)0.0055 (6)0.0050 (6)
C320.0187 (8)0.0192 (7)0.0146 (7)0.0054 (6)0.0004 (6)0.0004 (6)
C420.0176 (7)0.0187 (8)0.0126 (7)0.0032 (6)0.0006 (6)0.0012 (6)
C520.0198 (8)0.0211 (8)0.0158 (7)0.0014 (6)0.0025 (6)0.0017 (6)
N30.0196 (7)0.0230 (7)0.0178 (7)0.0004 (6)0.0007 (5)0.0002 (6)
N40.0227 (7)0.0348 (9)0.0174 (7)0.0044 (6)0.0042 (6)0.0037 (7)
Geometric parameters (Å, º) top
O11—C511.266 (2)N22—C221.337 (2)
O21—C511.250 (2)N22—C321.353 (2)
N11—C411.329 (2)N32—C321.346 (2)
N11—C111.339 (2)N32—H32A0.88 (3)
N21—C211.333 (2)N32—H32B0.86 (3)
N21—C311.351 (2)C12—C221.386 (3)
N31—C311.341 (2)C12—H120.9500
N31—H31A0.92 (3)C22—H220.9500
N31—H31B0.90 (3)C32—C421.440 (2)
C11—C211.383 (2)C42—C521.517 (2)
C11—H110.9500N3—H3A0.92 (3)
C21—H210.9500N3—H3B0.93 (3)
C31—C411.434 (2)N3—H3C0.96 (3)
C41—C511.518 (2)N3—H3D0.89 (3)
O12—C521.256 (2)N4—H4A0.86 (3)
O22—C521.260 (2)N4—H4B0.95 (4)
N12—C421.320 (2)N4—H4C0.84 (3)
N12—C121.340 (2)N4—H4D0.87 (3)
C41—N11—C11119.14 (15)N12—C12—H12119.8
C21—N21—C31117.49 (15)C22—C12—H12119.8
C31—N31—H31A118.4 (17)N22—C22—C12122.70 (16)
C31—N31—H31B119.6 (17)N22—C22—H22118.7
H31A—N31—H31B121 (2)C12—C22—H22118.7
N11—C11—C21120.16 (16)N32—C32—N22117.48 (15)
N11—C11—H11119.9N32—C32—C42122.70 (16)
C21—C11—H11119.9N22—C32—C42119.81 (15)
N21—C21—C11122.88 (16)N12—C42—C32120.68 (15)
N21—C21—H21118.6N12—C42—C52116.10 (14)
C11—C21—H21118.6C32—C42—C52123.17 (15)
N31—C31—N21117.27 (15)O12—C52—O22125.71 (15)
N31—C31—C41122.85 (15)O12—C52—C42116.79 (14)
N21—C31—C41119.88 (15)O22—C52—C42117.50 (15)
N11—C41—C31120.42 (15)H3A—N3—H3B107 (2)
N11—C41—C51115.96 (14)H3A—N3—H3C111 (2)
C31—C41—C51123.62 (14)H3B—N3—H3C116 (2)
O21—C51—O11125.19 (15)H3A—N3—H3D111 (2)
O21—C51—C41118.80 (14)H3B—N3—H3D108 (2)
O11—C51—C41116.01 (14)H3C—N3—H3D103 (2)
C42—N12—C12119.08 (15)H4A—N4—H4B119 (3)
C22—N22—C32117.32 (15)H4A—N4—H4C113 (3)
C32—N32—H32A119.4 (16)H4B—N4—H4C97 (3)
C32—N32—H32B119.9 (18)H4A—N4—H4D106 (3)
H32A—N32—H32B116 (2)H4B—N4—H4D107 (3)
N12—C12—C22120.40 (16)H4C—N4—H4D114 (3)
C41—N11—C11—C211.6 (3)C42—N12—C12—C220.1 (2)
C31—N21—C21—C110.2 (3)C32—N22—C22—C120.2 (3)
N11—C11—C21—N211.4 (3)N12—C12—C22—N220.5 (3)
C21—N21—C31—N31178.70 (15)C22—N22—C32—N32179.47 (15)
C21—N21—C31—C411.5 (2)C22—N22—C32—C420.5 (2)
C11—N11—C41—C310.2 (2)C12—N12—C42—C320.5 (2)
C11—N11—C41—C51179.62 (15)C12—N12—C42—C52176.88 (15)
N31—C31—C41—N11178.87 (16)N32—C32—C42—N12179.09 (15)
N21—C31—C41—N111.3 (2)N22—C32—C42—N120.8 (2)
N31—C31—C41—C511.8 (2)N32—C32—C42—C523.7 (2)
N21—C31—C41—C51178.00 (15)N22—C32—C42—C52176.38 (14)
N11—C41—C51—O21177.16 (15)N12—C42—C52—O124.3 (2)
C31—C41—C51—O212.2 (2)C32—C42—C52—O12173.05 (16)
N11—C41—C51—O113.6 (2)N12—C42—C52—O22176.49 (15)
C31—C41—C51—O11177.04 (15)C32—C42—C52—O226.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N31—H31A···N22i0.92 (3)2.20 (3)3.103 (2)169 (2)
N31—H31B···O210.90 (3)2.07 (3)2.726 (2)129 (2)
N32—H32A···N21ii0.88 (3)2.23 (3)3.100 (2)168 (2)
N32—H32B···O220.86 (3)2.06 (3)2.686 (2)129 (2)
N3—H3B···O210.93 (3)1.97 (3)2.849 (2)157 (2)
N3—H3C···O11iii0.96 (3)2.58 (3)3.287 (2)131 (2)
N3—H3C···N11iii0.96 (3)2.00 (3)2.909 (2)159 (2)
N3—H3D···O11iv0.89 (3)2.13 (3)2.944 (2)152 (2)
N4—H4A···O120.86 (3)2.13 (3)2.897 (2)148 (3)
N4—H4A···N120.86 (3)2.23 (3)2.912 (2)135 (3)
N4—H4B···O110.95 (4)1.86 (4)2.793 (2)166 (3)
N4—H4C···O11v0.84 (3)2.01 (4)2.839 (2)170 (3)
N4—H4D···O22vi0.87 (3)1.87 (3)2.742 (2)176 (3)
Symmetry codes: (i) x+1/2, y+1, z+1/2; (ii) x+1/2, y, z1/2; (iii) x1/2, y+1, z; (iv) x1/2, y+2, z; (v) x, y1, z; (vi) x+1/2, y+1, z.

Experimental details

Crystal data
Chemical formulaNH4+·C5H4N3O2
Mr156.15
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)150
a, b, c (Å)12.5066 (6), 3.8833 (2), 27.9659 (14)
V3)1358.22 (12)
Z8
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.40 × 0.19 × 0.09
Data collection
DiffractometerBruker Kappa APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008a)
Tmin, Tmax0.70, 0.75
No. of measured, independent and
observed [I > 2σ(I)] reflections
16898, 1580, 1540
Rint0.018
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.072, 1.05
No. of reflections1580
No. of parameters247
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.16

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008b), SHELXL97 (Sheldrick, 2008b), PLATON (Spek, 2009) and Mercury (Macrae et al., 2006), manual editing of SHELXL cif file.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N31—H31A···N22i0.92 (3)2.20 (3)3.103 (2)169 (2)
N31—H31B···O210.90 (3)2.07 (3)2.726 (2)129 (2)
N32—H32A···N21ii0.88 (3)2.23 (3)3.100 (2)168 (2)
N32—H32B···O220.86 (3)2.06 (3)2.686 (2)129 (2)
N3—H3B···O210.93 (3)1.97 (3)2.849 (2)157 (2)
N3—H3C···O11iii0.96 (3)2.58 (3)3.287 (2)131 (2)
N3—H3C···N11iii0.96 (3)2.00 (3)2.909 (2)159 (2)
N3—H3D···O11iv0.89 (3)2.13 (3)2.944 (2)152 (2)
N4—H4A···O120.86 (3)2.13 (3)2.897 (2)148 (3)
N4—H4A···N120.86 (3)2.23 (3)2.912 (2)135 (3)
N4—H4B···O110.95 (4)1.86 (4)2.793 (2)166 (3)
N4—H4C···O11v0.84 (3)2.01 (4)2.839 (2)170 (3)
N4—H4D···O22vi0.87 (3)1.87 (3)2.742 (2)176 (3)
Symmetry codes: (i) x+1/2, y+1, z+1/2; (ii) x+1/2, y, z1/2; (iii) x1/2, y+1, z; (iv) x1/2, y+2, z; (v) x, y1, z; (vi) x+1/2, y+1, z.
 

References

First citationAbrahams, S. C. & Keve, E. T. (1971). Acta Cryst. A27, 157–165.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDobson, A. J. & Gerkin, R. E. (1996). Acta Cryst. C52, 1512–1514.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationEllsworth, J. M. & zur Loye, H.-C. (2008). Dalton Trans. pp. 5823–5835.  Web of Science CrossRef Google Scholar
First citationMackay, A. L. (1984). Acta Cryst. A40, 165–166.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPtasiewicz-Bak, H. & Leciejewicz, J. (1997). Pol. J. Chem. 71, 1350–1358.  CAS Google Scholar
First citationPtasiewicz-Bak, H. & Leciejewicz, J. (1999). Pol. J. Chem. 73, 717–725.  CAS Google Scholar
First citationPtasiewicz-Bak, H., Leciejewicz, J. & Zachara, J. (1995). J. Coord. Chem. 36, 317–326.  CrossRef CAS Web of Science Google Scholar
First citationSchomaker, V. & Trueblood, K. N. (1998). Acta Cryst. B54, 507–514.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008b). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds