organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,4′,5,5′-Tetra­kis(benzyl­sulfan­yl)tetra­thia­fulvalene

aDepartment of Chemistry, Northeast Normal University, Changchun 130021, People's Republic of China, and bJiangsu Key Laboratory for the Chemistry of Low-Dimensional Materials, Huaiyin Normal University, Huaian 223300, People's Republic of China
*Correspondence e-mail: yulanzhu2008@126.com

(Received 24 January 2011; accepted 2 March 2011; online 9 March 2011)

The asymmetric unit of the title compound, C34H28S8, contains two crystallographically independent half-mol­ecules. The mol­ecules lie on centers of inversion. The four benzene rings of each mol­ecule are substantially twisted from the planes of the 1,3-dithiole rings, forming dihedral angles of 43.6 (2) and 61.4 (1)° in one mol­ecule and 54.2 (1) and 65.2 (1)° in the other.

Related literature

For related structures, see: Abashev et al. (2003[Abashev, G. G., Shklyaeva, E. V., Tenishev, A. G., Kazheva, O. N., Shilov, G. V. & Dyachenko, O. A. (2003). Synth. Met. 133, 329-331.]); Wang et al. (1997[Wang, C., Bryce, M. R., Batsanov, A. S., Goldenberg, L. M. & Howard, J. A. K. (1997). J. Mater. Chem. 7, 1189-1197.]). For the synthesis of 4,5-bis­(3-picolyl­thio)-1,3-dithiole-2-thione, see: see: Jia et al. (2001[Jia, C.-Y., Zhang, D.-Q., Xu, W. & Zhu, D.-B. (2001). Org. Lett. 12, 1941-1944.]). For tetra­thia­fulvalene derivatives, see: Shibaeva & Yagubskii (2004[Shibaeva, R. P. & Yagubskii, E. B. (2004). Chem. Rev. 104, 5347-5378.]); Varma et al. (1987[Varma, K. S., Bury, A., Harris, N. J. & Underhill, A. E. (1987). Synthesis pp. 837-838.]); Williams et al. (1984[Williams, J. M., Emge, T. J., Wang, H. H., Beno, M. A., Copps, P. T., Hall, L. N., Carlson, K. D. & Crabtree, G. W. (1984). Inorg. Chem. 23, 2558-2560.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C34H28S8

  • Mr = 693.04

  • Triclinic, [P \overline 1]

  • a = 5.7450 (7) Å

  • b = 17.052 (2) Å

  • c = 18.701 (3) Å

  • α = 115.199 (2)°

  • β = 95.238 (2)°

  • γ = 95.922 (2)°

  • V = 1630.1 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.57 mm−1

  • T = 296 K

  • 0.3 × 0.2 × 0.1 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.871, Tmax = 0.944

  • 11631 measured reflections

  • 5688 independent reflections

  • 3518 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.157

  • S = 1.06

  • 5688 reflections

  • 379 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.33 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Many researchers have focused on a particularly important class of complexes with TTF (tetrathiafulvalene) and BEDT-TTF [bis(ethylenedithio)tetrathiafulvalene] derivatives (Shibaeva & Yagubskii, 2004; Varma et al., 1987). They have found related the wide range of technological applications, such as high electronic conductivity or superconductivity (Williams et al., 1984). In order to obtain materials involved in nonlinear optics, opto-electronics, molecular electronics, currently, our research is focused on the synthesis and crystal structures of TTF derivatives.

The asymmetric unit of the title compound, C34H28S8, contains two crystallographically independent half-molecules. The molecules lie on centers of inversion. They adopt chair-like conformations and the four benzene rings of each molecule are severely twisted from the planarity of the 1,3-dithiole rings (Fig. 1). Due to the Ci symmetry of the molecules, the substituent groups of the TTF core are located in opposite directions, resulting in chair-like molecular conformations. The four benzene rings of each molecule are severely twisted from the planarity of the 1,3-dithiole rings. The C—S bonds in the five-membered rings fall in the range of 1.742 (4)–1.761 (4) Å and are shorter than a typical C—S single bond (1.82 Å; Allen et al., 1987), revealing the high degree of conjugation into the five-membered rings of the title compound. On the other hand, the S—C(CH2Ph) bond distances are longer than the C-S bonds of the rings falling in the range of 1.794 (5)-1.837 (5) Å, similar to a typical C—S single bond. The mean planes of the C5–C10 and C12–C13 benzene rings [C22–C27 and C29–C34] form dihedral angles of 43.6 (2) and 61.4 (1)° [54.2 (1) and 65.2 (1)°] with the least-squares plane of the central dithiolane ring, respectively. The crystal packing diagram of the title compound is shown in Fig. 2. The shortest intermolecular S-S distances, S(1)—S(2) and S(5)—S(6) distances, are 3.793 (2) Å and 3.855 (2) Å, respectively.

Related literature top

For related structures, see: Abashev et al. (2003); Wang et al. (1997). For the synthesis of 4,5-bis(3-picolylthio)-1,3-dithiole-2-thione, see: see: Jia et al. (2001). For tetrathiafulvalene derivatives, see: Shibaeva & Yagubskii (2004); Varma et al. (1987); Williams et al. (1984). For bond-length data, see: Allen et al. (1987).

Experimental top

A total of 42.15 mg (0.3 mmol) of K2CO3 was dissolved in less than 5 ml of water, and 100 mg (0.61 mmol) of 3-picolyl chloride hydrochloride was added at room temperature. After the gas evolution was stopped, a colorless dense liquid was present. Subsequently, 143.35 mg (0.15 mmol) of TBA2[Zn(DMIT)2] dissolved in 15 ml of acetonitrile was mixed with this dense liquid, and the solution was stirred at 50–60 °C for 1.5–2 h. The reaction mixture was filtered, and the solid residue was washed twice with dichloromethane (20 ml). The combined filtrate and washings were decolorized by activated charcoal. After removing the solvent, column chromatography of the crude reaction mixture on silica gel with ethyl acetate/methanol (10:1) afforded compound 1a as a yellow solid (85.5 mg, 75%). Benzyl chloride (12 ml) was added dropwise to a solution of TBA2[Zn(DMIT)2] (10 mmol) in acetone (100 ml). The mixture was refluxed under N2 for 24 h. Stirring was continued overnight. The resulting orange precipitate was filtered off. The product was further purified by recrystallization from methanol to give yellow needle like crystals (yield 76%). All solvent were distilled before use. 95 mg (0.25 mmol) of 4,5-bis(3-picolylthio)-1,3-dithiole-2-thione and 144 mg (0.4 mmol) of 4,5- bis(benzylthio)-1,3-dithione- 2-thione (0.3 mmol) were stirred in 30 ml of dry toluene under N2. Then, 2.5 ml of P(OEt)3 was added and the yellowish suspension was refluxed for 4 h at 120 °C. The resulting orange yellow precipitate that formed was filtered off. The red filtrate was left to stand for several days, giving pale red crystals suitable for a X-ray structure analysis.

Refinement top

All non-hydrogen atoms were located from the difference Fourier maps, and were refined anisotropically. All H atoms were positioned geometrically, and were allowed to ride on their corresponding parent atoms with Uiso = 1.2 Ueq.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 30% probability ellipsoids.
[Figure 2] Fig. 2. Packing diagram.
4,4',5,5'-Tetrakis(benzylsulfanyl)tetrathiafulvalene top
Crystal data top
C34H28S8V = 1630.1 (4) Å3
Mr = 693.04Z = 2
Triclinic, P1F(000) = 720
Hall symbol: -P 1Dx = 1.412 Mg m3
a = 5.7450 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 17.052 (2) Åθ = 1.2–25.0°
c = 18.701 (3) ŵ = 0.57 mm1
α = 115.199 (2)°T = 296 K
β = 95.238 (2)°Needle, red
γ = 95.922 (2)°0.3 × 0.2 × 0.1 mm
Data collection top
Bruker SMART APEXII
diffractometer
5688 independent reflections
Radiation source: fine-focus sealed tube3518 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 10.0 pixels mm-1θmax = 25.0°, θmin = 1.2°
ω–scanh = 66
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
k = 1920
Tmin = 0.871, Tmax = 0.944l = 2219
11631 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.157H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0745P)2]
where P = (Fo2 + 2Fc2)/3
5688 reflections(Δ/σ)max = 0.001
379 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C34H28S8γ = 95.922 (2)°
Mr = 693.04V = 1630.1 (4) Å3
Triclinic, P1Z = 2
a = 5.7450 (7) ÅMo Kα radiation
b = 17.052 (2) ŵ = 0.57 mm1
c = 18.701 (3) ÅT = 296 K
α = 115.199 (2)°0.3 × 0.2 × 0.1 mm
β = 95.238 (2)°
Data collection top
Bruker SMART APEXII
diffractometer
5688 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3518 reflections with I > 2σ(I)
Tmin = 0.871, Tmax = 0.944Rint = 0.033
11631 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.157H-atom parameters constrained
S = 1.06Δρmax = 0.32 e Å3
5688 reflectionsΔρmin = 0.33 e Å3
379 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.76116 (19)0.45649 (8)0.06508 (7)0.0626 (3)
S20.7452 (2)0.41173 (8)0.10618 (7)0.0624 (3)
S30.2978 (2)0.28449 (8)0.15494 (7)0.0675 (4)
S40.30556 (19)0.33663 (8)0.03726 (7)0.0634 (3)
S51.18791 (19)0.39890 (7)0.44406 (7)0.0604 (3)
S61.37020 (19)0.51995 (7)0.61260 (7)0.0634 (3)
S70.9859 (2)0.44729 (8)0.67531 (7)0.0707 (4)
S80.77397 (19)0.31193 (7)0.48536 (8)0.0666 (4)
C10.8989 (7)0.4720 (3)0.0086 (2)0.0521 (10)
C20.5204 (7)0.3564 (3)0.0793 (3)0.0525 (10)
C30.5289 (7)0.3773 (2)0.0010 (3)0.0503 (10)
C40.4542 (9)0.1914 (3)0.2040 (3)0.0772 (14)
H4A0.35420.14860.25250.093*
H4B0.59660.21200.21920.093*
C50.5204 (8)0.1480 (3)0.1528 (3)0.0588 (11)
C60.3653 (9)0.0843 (3)0.1473 (3)0.0846 (16)
H60.21510.06740.17730.101*
C70.4232 (10)0.0452 (3)0.0998 (4)0.0864 (16)
H70.31480.00200.09770.104*
C80.6399 (11)0.0697 (4)0.0556 (4)0.0893 (16)
H80.68090.04320.02290.107*
C90.7975 (10)0.1321 (4)0.0583 (3)0.0893 (16)
H90.94650.14850.02760.107*
C100.7390 (8)0.1713 (3)0.1062 (3)0.0745 (14)
H100.84900.21460.10740.089*
C110.4694 (8)0.3179 (3)0.1146 (3)0.0768 (14)
H11A0.58600.28030.09280.092*
H11B0.55030.37300.15730.092*
C120.2902 (7)0.2742 (3)0.1453 (3)0.0576 (11)
C130.2587 (10)0.1853 (4)0.1199 (3)0.0823 (15)
H130.35780.15250.08620.099*
C140.0888 (10)0.1439 (3)0.1422 (3)0.0807 (15)
H140.06900.08330.12360.097*
C150.0532 (9)0.1920 (4)0.1922 (3)0.0787 (15)
H150.17150.16370.20780.094*
C160.0264 (9)0.2797 (4)0.2199 (3)0.0754 (14)
H160.12430.31200.25440.090*
C170.1477 (9)0.3207 (3)0.1963 (3)0.0734 (13)
H170.16840.38140.21560.088*
C181.4097 (7)0.4832 (2)0.5118 (2)0.0515 (10)
C191.1169 (7)0.4427 (2)0.5933 (2)0.0524 (10)
C201.0339 (7)0.3877 (2)0.5165 (3)0.0519 (10)
C211.1842 (9)0.3938 (3)0.7156 (3)0.0731 (13)
H21A1.34450.42470.72650.088*
H21B1.13980.39820.76580.088*
C221.1795 (7)0.2990 (3)0.6602 (2)0.0538 (10)
C231.3551 (8)0.2731 (3)0.6152 (3)0.0731 (13)
H231.47910.31470.61850.088*
C241.3509 (10)0.1866 (4)0.5652 (3)0.0910 (17)
H241.47140.16960.53450.109*
C251.1736 (12)0.1262 (3)0.5603 (3)0.0902 (18)
H251.17430.06730.52690.108*
C260.9954 (9)0.1488 (3)0.6025 (3)0.0768 (15)
H260.87150.10650.59790.092*
C270.9989 (8)0.2348 (3)0.6522 (3)0.0738 (14)
H270.87560.25080.68170.089*
C280.8508 (9)0.2203 (3)0.4031 (3)0.0909 (18)
H28A0.88380.23670.36100.109*
H28B0.99150.20240.42060.109*
C290.6469 (8)0.1459 (3)0.3725 (3)0.0634 (12)
C300.4469 (9)0.1446 (3)0.3250 (3)0.0723 (13)
H300.43720.19010.31040.087*
C310.2629 (8)0.0768 (3)0.2992 (3)0.0754 (14)
H310.12790.07630.26740.090*
C320.2775 (9)0.0106 (3)0.3199 (3)0.0768 (14)
H320.15160.03530.30240.092*
C330.4706 (9)0.0101 (3)0.3652 (3)0.0744 (14)
H330.47860.03580.37920.089*
C340.6527 (9)0.0760 (3)0.3904 (3)0.0784 (14)
H340.78730.07430.42100.094*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0595 (7)0.0670 (7)0.0542 (7)0.0072 (5)0.0140 (5)0.0227 (6)
S20.0632 (7)0.0664 (7)0.0577 (7)0.0015 (6)0.0148 (5)0.0287 (6)
S30.0635 (7)0.0725 (8)0.0667 (8)0.0025 (6)0.0086 (6)0.0371 (7)
S40.0483 (6)0.0828 (8)0.0765 (8)0.0003 (6)0.0072 (5)0.0541 (7)
S50.0561 (7)0.0603 (7)0.0583 (7)0.0096 (5)0.0001 (5)0.0257 (6)
S60.0623 (7)0.0568 (7)0.0607 (7)0.0053 (5)0.0011 (6)0.0214 (6)
S70.0860 (9)0.0560 (7)0.0689 (8)0.0178 (6)0.0295 (7)0.0214 (6)
S80.0556 (7)0.0486 (6)0.0825 (8)0.0014 (5)0.0199 (6)0.0167 (6)
C10.051 (2)0.051 (2)0.056 (3)0.0040 (18)0.014 (2)0.025 (2)
C20.049 (2)0.054 (2)0.062 (3)0.0076 (19)0.010 (2)0.032 (2)
C30.046 (2)0.050 (2)0.060 (3)0.0034 (18)0.0080 (19)0.029 (2)
C40.092 (4)0.070 (3)0.055 (3)0.000 (3)0.001 (3)0.019 (3)
C50.066 (3)0.048 (2)0.055 (3)0.003 (2)0.011 (2)0.017 (2)
C60.068 (3)0.069 (3)0.105 (4)0.006 (3)0.008 (3)0.032 (3)
C70.092 (4)0.063 (3)0.118 (5)0.002 (3)0.027 (4)0.053 (3)
C80.097 (4)0.082 (4)0.103 (4)0.027 (3)0.025 (4)0.050 (3)
C90.074 (4)0.100 (4)0.103 (4)0.015 (3)0.005 (3)0.055 (4)
C100.060 (3)0.073 (3)0.088 (4)0.002 (2)0.012 (3)0.035 (3)
C110.063 (3)0.105 (4)0.085 (4)0.009 (3)0.006 (3)0.065 (3)
C120.057 (3)0.072 (3)0.055 (3)0.014 (2)0.009 (2)0.038 (2)
C130.104 (4)0.085 (4)0.081 (4)0.036 (3)0.042 (3)0.047 (3)
C140.116 (4)0.058 (3)0.083 (4)0.019 (3)0.038 (3)0.040 (3)
C150.085 (4)0.096 (4)0.079 (4)0.006 (3)0.020 (3)0.060 (3)
C160.086 (4)0.094 (4)0.063 (3)0.032 (3)0.032 (3)0.043 (3)
C170.091 (4)0.065 (3)0.063 (3)0.012 (3)0.007 (3)0.028 (3)
C180.054 (2)0.044 (2)0.060 (3)0.0030 (18)0.001 (2)0.028 (2)
C190.057 (2)0.043 (2)0.057 (3)0.0114 (19)0.011 (2)0.021 (2)
C200.052 (2)0.043 (2)0.061 (3)0.0092 (18)0.011 (2)0.023 (2)
C210.101 (4)0.065 (3)0.049 (3)0.011 (3)0.011 (2)0.021 (2)
C220.064 (3)0.060 (3)0.041 (2)0.008 (2)0.005 (2)0.027 (2)
C230.066 (3)0.073 (3)0.076 (3)0.003 (3)0.017 (3)0.030 (3)
C240.092 (4)0.086 (4)0.089 (4)0.035 (3)0.029 (3)0.026 (3)
C250.104 (5)0.059 (3)0.092 (4)0.009 (3)0.021 (4)0.026 (3)
C260.067 (3)0.064 (3)0.096 (4)0.017 (3)0.010 (3)0.043 (3)
C270.062 (3)0.093 (4)0.076 (3)0.003 (3)0.011 (2)0.048 (3)
C280.074 (3)0.074 (3)0.082 (4)0.020 (3)0.026 (3)0.001 (3)
C290.060 (3)0.060 (3)0.049 (3)0.004 (2)0.015 (2)0.006 (2)
C300.084 (3)0.060 (3)0.077 (3)0.009 (3)0.009 (3)0.035 (3)
C310.061 (3)0.066 (3)0.088 (4)0.003 (2)0.008 (3)0.028 (3)
C320.075 (3)0.059 (3)0.080 (4)0.006 (2)0.001 (3)0.021 (3)
C330.089 (4)0.053 (3)0.074 (3)0.001 (3)0.005 (3)0.027 (3)
C340.074 (3)0.079 (4)0.069 (3)0.012 (3)0.004 (3)0.022 (3)
Geometric parameters (Å, º) top
S1—C31.742 (4)C13—H130.9300
S1—C11.750 (4)C14—C151.356 (7)
S2—C21.756 (4)C14—H140.9300
S2—C11.757 (4)C15—C161.344 (7)
S3—C21.735 (4)C15—H150.9300
S3—C41.837 (5)C16—C171.372 (6)
S4—C31.745 (4)C16—H160.9300
S4—C111.813 (4)C17—H170.9300
S5—C201.749 (4)C18—C18ii1.333 (7)
S5—C181.752 (4)C19—C201.344 (6)
S6—C191.757 (4)C21—C221.499 (6)
S6—C181.761 (4)C21—H21A0.9700
S7—C191.745 (4)C21—H21B0.9700
S7—C211.827 (5)C22—C231.360 (6)
S8—C201.744 (4)C22—C271.376 (6)
S8—C281.794 (5)C23—C241.366 (7)
C1—C1i1.343 (7)C23—H230.9300
C2—C31.347 (6)C24—C251.339 (7)
C4—C51.486 (6)C24—H240.9300
C4—H4A0.9700C25—C261.337 (7)
C4—H4B0.9700C25—H250.9300
C5—C61.377 (6)C26—C271.358 (7)
C5—C101.378 (6)C26—H260.9300
C6—C71.356 (7)C27—H270.9300
C6—H60.9300C28—C291.505 (6)
C7—C81.349 (7)C28—H28A0.9700
C7—H70.9300C28—H28B0.9700
C8—C91.345 (7)C29—C341.371 (7)
C8—H80.9300C29—C301.379 (6)
C9—C101.365 (7)C30—C311.366 (6)
C9—H90.9300C30—H300.9300
C10—H100.9300C31—C321.348 (6)
C11—C121.503 (6)C31—H310.9300
C11—H11A0.9700C32—C331.336 (6)
C11—H11B0.9700C32—H320.9300
C12—C171.357 (6)C33—C341.340 (6)
C12—C131.368 (6)C33—H330.9300
C13—C141.345 (6)C34—H340.9300
C3—S1—C195.58 (19)C17—C16—H16120.5
C2—S2—C195.26 (19)C12—C17—C16121.1 (5)
C2—S3—C4100.3 (2)C12—C17—H17119.4
C3—S4—C11102.9 (2)C16—C17—H17119.4
C20—S5—C1895.82 (19)C18ii—C18—S5122.4 (4)
C19—S6—C1895.26 (18)C18ii—C18—S6123.4 (4)
C19—S7—C21101.0 (2)S5—C18—S6114.2 (2)
C20—S8—C28102.0 (2)C20—C19—S7125.4 (3)
C1i—C1—S1122.5 (4)C20—C19—S6117.4 (3)
C1i—C1—S2122.9 (4)S7—C19—S6117.1 (2)
S1—C1—S2114.5 (2)C19—C20—S8123.9 (3)
C3—C2—S3125.7 (3)C19—C20—S5117.2 (3)
C3—C2—S2116.9 (3)S8—C20—S5118.8 (2)
S3—C2—S2117.3 (2)C22—C21—S7113.2 (3)
C2—C3—S1117.6 (3)C22—C21—H21A108.9
C2—C3—S4123.0 (3)S7—C21—H21A108.9
S1—C3—S4119.1 (2)C22—C21—H21B108.9
C5—C4—S3113.3 (3)S7—C21—H21B108.9
C5—C4—H4A108.9H21A—C21—H21B107.8
S3—C4—H4A108.9C23—C22—C27117.2 (4)
C5—C4—H4B108.9C23—C22—C21120.8 (4)
S3—C4—H4B108.9C27—C22—C21122.0 (4)
H4A—C4—H4B107.7C22—C23—C24120.6 (5)
C6—C5—C10116.2 (5)C22—C23—H23119.7
C6—C5—C4122.2 (4)C24—C23—H23119.7
C10—C5—C4121.5 (4)C25—C24—C23120.1 (5)
C7—C6—C5122.6 (5)C25—C24—H24120.0
C7—C6—H6118.7C23—C24—H24120.0
C5—C6—H6118.7C26—C25—C24121.3 (5)
C8—C7—C6119.2 (5)C26—C25—H25119.3
C8—C7—H7120.4C24—C25—H25119.3
C6—C7—H7120.4C25—C26—C27118.7 (5)
C9—C8—C7120.7 (6)C25—C26—H26120.7
C9—C8—H8119.7C27—C26—H26120.7
C7—C8—H8119.7C26—C27—C22122.0 (5)
C8—C9—C10120.1 (5)C26—C27—H27119.0
C8—C9—H9120.0C22—C27—H27119.0
C10—C9—H9120.0C29—C28—S8108.6 (3)
C9—C10—C5121.3 (5)C29—C28—H28A110.0
C9—C10—H10119.3S8—C28—H28A110.0
C5—C10—H10119.3C29—C28—H28B110.0
C12—C11—S4106.2 (3)S8—C28—H28B110.0
C12—C11—H11A110.5H28A—C28—H28B108.3
S4—C11—H11A110.5C34—C29—C30117.1 (4)
C12—C11—H11B110.5C34—C29—C28121.2 (5)
S4—C11—H11B110.5C30—C29—C28121.7 (5)
H11A—C11—H11B108.7C31—C30—C29120.3 (5)
C17—C12—C13117.8 (4)C31—C30—H30119.9
C17—C12—C11121.4 (4)C29—C30—H30119.9
C13—C12—C11120.7 (4)C32—C31—C30119.9 (5)
C14—C13—C12121.9 (5)C32—C31—H31120.1
C14—C13—H13119.0C30—C31—H31120.1
C12—C13—H13119.0C33—C32—C31120.8 (5)
C13—C14—C15118.9 (5)C33—C32—H32119.6
C13—C14—H14120.5C31—C32—H32119.6
C15—C14—H14120.5C32—C33—C34119.9 (5)
C16—C15—C14121.3 (5)C32—C33—H33120.1
C16—C15—H15119.4C34—C33—H33120.1
C14—C15—H15119.4C33—C34—C29122.1 (5)
C15—C16—C17118.9 (5)C33—C34—H34119.0
C15—C16—H16120.5C29—C34—H34119.0
C3—S1—C1—C1i178.8 (5)C20—S5—C18—C18ii177.2 (5)
C3—S1—C1—S23.6 (3)C20—S5—C18—S63.6 (3)
C2—S2—C1—C1i178.7 (5)C19—S6—C18—C18ii177.2 (5)
C2—S2—C1—S13.7 (3)C19—S6—C18—S53.6 (3)
C4—S3—C2—C3108.3 (4)C21—S7—C19—C20104.9 (4)
C4—S3—C2—S275.8 (3)C21—S7—C19—S678.2 (3)
C1—S2—C2—C32.3 (4)C18—S6—C19—C202.2 (4)
C1—S2—C2—S3178.6 (2)C18—S6—C19—S7179.4 (2)
S3—C2—C3—S1176.1 (2)S7—C19—C20—S81.4 (6)
S2—C2—C3—S10.2 (5)S6—C19—C20—S8175.4 (2)
S3—C2—C3—S42.2 (6)S7—C19—C20—S5176.9 (2)
S2—C2—C3—S4173.7 (2)S6—C19—C20—S50.1 (5)
C1—S1—C3—C22.1 (4)C28—S8—C20—C19143.4 (4)
C1—S1—C3—S4176.2 (2)C28—S8—C20—S541.1 (3)
C11—S4—C3—C2141.7 (4)C18—S5—C20—C192.1 (4)
C11—S4—C3—S144.4 (3)C18—S5—C20—S8177.9 (2)
C2—S3—C4—C565.9 (4)C19—S7—C21—C2265.1 (4)
S3—C4—C5—C684.5 (5)S7—C21—C22—C23101.7 (5)
S3—C4—C5—C1093.5 (5)S7—C21—C22—C2778.0 (5)
C10—C5—C6—C70.9 (8)C27—C22—C23—C240.7 (7)
C4—C5—C6—C7179.0 (5)C21—C22—C23—C24179.6 (4)
C5—C6—C7—C80.5 (9)C22—C23—C24—C250.3 (8)
C6—C7—C8—C90.0 (9)C23—C24—C25—C261.3 (9)
C7—C8—C9—C100.0 (9)C24—C25—C26—C271.2 (8)
C8—C9—C10—C50.4 (8)C25—C26—C27—C220.2 (7)
C6—C5—C10—C90.9 (7)C23—C22—C27—C260.8 (7)
C4—C5—C10—C9179.0 (5)C21—C22—C27—C26179.5 (4)
C3—S4—C11—C12174.6 (3)C20—S8—C28—C29176.3 (4)
S4—C11—C12—C1777.4 (5)S8—C28—C29—C34103.0 (5)
S4—C11—C12—C1399.8 (5)S8—C28—C29—C3077.3 (5)
C17—C12—C13—C141.9 (7)C34—C29—C30—C311.4 (7)
C11—C12—C13—C14175.4 (5)C28—C29—C30—C31178.9 (4)
C12—C13—C14—C150.9 (8)C29—C30—C31—C320.4 (8)
C13—C14—C15—C160.2 (8)C30—C31—C32—C330.3 (8)
C14—C15—C16—C170.3 (8)C31—C32—C33—C340.1 (8)
C13—C12—C17—C161.7 (7)C32—C33—C34—C291.3 (8)
C11—C12—C17—C16175.5 (4)C30—C29—C34—C331.9 (7)
C15—C16—C17—C120.7 (7)C28—C29—C34—C33178.4 (4)
Symmetry codes: (i) x+2, y+1, z; (ii) x+3, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC34H28S8
Mr693.04
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)5.7450 (7), 17.052 (2), 18.701 (3)
α, β, γ (°)115.199 (2), 95.238 (2), 95.922 (2)
V3)1630.1 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.57
Crystal size (mm)0.3 × 0.2 × 0.1
Data collection
DiffractometerBruker SMART APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.871, 0.944
No. of measured, independent and
observed [I > 2σ(I)] reflections
11631, 5688, 3518
Rint0.033
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.157, 1.06
No. of reflections5688
No. of parameters379
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.33

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Acknowledgements

The authors thank the National Natural Science Foundation of China (Nos. 20671038, 20975043) and the Jiangsu Key Laboratory for the Chemistry of Low Dimensional Materials (No. JSKC09061). They also thank Dr K.-R. Ma for assistance with the crystallographic analysis.

References

First citationAbashev, G. G., Shklyaeva, E. V., Tenishev, A. G., Kazheva, O. N., Shilov, G. V. & Dyachenko, O. A. (2003). Synth. Met. 133, 329–331.  CrossRef Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2000). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJia, C.-Y., Zhang, D.-Q., Xu, W. & Zhu, D.-B. (2001). Org. Lett. 12, 1941–1944.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShibaeva, R. P. & Yagubskii, E. B. (2004). Chem. Rev. 104, 5347–5378.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVarma, K. S., Bury, A., Harris, N. J. & Underhill, A. E. (1987). Synthesis pp. 837–838.  Google Scholar
First citationWang, C., Bryce, M. R., Batsanov, A. S., Goldenberg, L. M. & Howard, J. A. K. (1997). J. Mater. Chem. 7, 1189–1197.  CrossRef CAS Google Scholar
First citationWilliams, J. M., Emge, T. J., Wang, H. H., Beno, M. A., Copps, P. T., Hall, L. N., Carlson, K. D. & Crabtree, G. W. (1984). Inorg. Chem. 23, 2558–2560.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds