organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages o898-o899

6,8-Di­chloro-N-methyl-3-nitro-4-nitro­methyl-4H-chromen-2-amine

aCentre for Bioinformatics, Pondicherry University, Puducherry 605 014, India, and bDepartment of Chemistry, Pondicherry University, Puducherry 605 014, India
*Correspondence e-mail: krishstrucbio@gmail.com

(Received 10 February 2011; accepted 11 March 2011; online 15 March 2011)

In the title compound, C11H9Cl2N3O5, the dihydro­pyran ring adopts a near-half-chair conformation. The benzene ring makes a torsion angle of 5.02 (5)° with the dihydro­pyran ring. Adjacent mol­ecules are inter­linked through inter­molecular C—H⋯O, N—H⋯O and C—Cl⋯π [3.4743 (9) Å] inter­actions. The inter­molecular N—H⋯O hydrogen bond generates an R22(12) motif, which is observed to contribute to the crystal packing stability. Moreover, the mol­ecular structure displays an S(6) motif formed by intra­molecular N—H⋯O hydrogen bonding.

Related literature

For related structures, see: Gayathri et al. (2006[Gayathri, D., Velmurugan, D., Ravikumar, K., Geetha, K. & Surya Prakash Rao, H. (2006). Acta Cryst. E62, o1961-o1963.]); Bhaskaran et al. (2006[Bhaskaran, S., Velmurugan, D., Ravikumar, K., Geetha, K. & Surya Prakash Rao, H. (2006). Acta Cryst. E62, o188-o190.]). For the biological importance of 4H-chromene derivatives, see: Cai (2007[Cai, S. X. (2007). Recent Patents Anticancer Drug Discov. 2, 79-101.], 2008[Cai, S. X. (2008). Bioorg. Med. Chem. Lett. 18, 603-607.]); Cai et al. (2006[Cai, S. X., Drewe, J. & Kasibhatla, S. (2006). Curr. Med. Chem. 13, 2627-2644.]); Gabor (1988[Gabor, M. (1988). The Pharmacology of Benzopyrone Derivatives and Related Compounds, pp. 91-126. Budapest: Akademiai Kiado.]); Brooks (1998[Brooks, G. T. (1998). Pestic. Sci. 22, 41-50.]); Valenti et al. (1993[Valenti, P., Da Re, P., Rampa, A., Montanari, P., Carrara, M. & Cima, L. (1993). Anticancer Drug. Des. 8, 349-360.]); Hyana & Saimoto (1987[Hyana, T. & Saimoto, H. (1987). Jpn Patent JP 621 812 768.]); Tang et al. (2007[Tang, Q.-G., Wu, W.-Y., He, W., Sun, H.-S. & Guo, C. (2007). Acta Cryst. E63, o1437-o1438.]). For ring-puckering analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C11H9Cl2N3O5

  • Mr = 334.11

  • Triclinic, [P \overline 1]

  • a = 8.7426 (7) Å

  • b = 9.2727 (7) Å

  • c = 9.3420 (7) Å

  • α = 70.017 (7)°

  • β = 72.609 (7)°

  • γ = 87.579 (6)°

  • V = 677.68 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.50 mm−1

  • T = 293 K

  • 0.4 × 0.35 × 0.2 mm

Data collection
  • Oxford Diffraction Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.792, Tmax = 1.000

  • 15150 measured reflections

  • 2385 independent reflections

  • 2072 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.110

  • S = 1.01

  • 2385 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.86 2.00 2.613 (2) 128
N1—H1⋯O2i 0.86 2.12 2.881 (2) 147
C7—H7⋯O3ii 0.98 2.50 3.1944 (19) 128
C11—H11B⋯O3ii 0.97 2.54 3.103 (2) 117
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+2, -y+2, -z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

4H-Chromenes are biologically important compounds used as synthetic ligands for drug designing and discovery process. They exhibit numerous biological and pharmacological properties such as anti-viral, anti-fungal, anti-inflammatory, anti-diabetic, cardionthonic, anti-anaphylactic and anti-cancer activity (Cai, 2008; Cai, 2007; Cai et al., 2006; Gabor et al., 1988; Brooks, 1998; Valenti et al., 1993; Hyana & Saimoto, 1987; Tang et al., 2007). In view of the growing medicinal importance of 4H-chromene derivatives, a single-crystal X-ray diffraction study on the title compound was carried out and analyzed.

The title compound (Fig. 1) contains the 4H-chromene moiety with four different substituents [–Cl2, –NO2, –CH2NO2 and –NHCH3]. The Cl1 group attached to C2 by an (+) anti-periplanar conformation with the torsion angle (Cl1/C2/C3/C4) of 178.76 (14) °, whereas another chlorine attached to C4 with the torsion angle (Cl2/C4/C3/C2) of -176.94 (14) °, which oriented in (-) anti-periplanar conformations. From the puckering analysis (Cremer & Pople, 1975), the fused dihydropyran ring (O1/C1/C6/C7/C8/C9) of 4H-chromene is very similar to half chair (H form) conformation with puckering parameters of Q = 0.1772 (17) Å, θ = 104.5 (5) ° and Φ = 11.6 (6) °. The molecular structure is stabilized by intramolecular N—H···O and C—H···O interactions. The intramolecular N1—H1···O2 interaction generates a graph-set motif S (6) (Fig. 2) with a D···A bond distance of 2.613 (2) Å. The crystal packing of the molecule (Fig. 3) is stabilized by intermolecular N1—H1···O2 (symmetry code: -x + 2, -y + 1, -z + 1), C7—H7···O3 (symmetry code: -x + 2, -y + 2, -z), C11—H11B···O3 (symmetry code:-x + 2, -y + 2, -z) and C—Cl··· π (symmetry code: 1 - x, 1 - y, -z) interactions (Fig. 4). The intermolecular N1—H1···O2 interaction generates a ring of graph-set R22 (12) with the bond distance of 2.881 (2) Å (Fig. 5).

Related literature top

For related structures, see: Gayathri et al. (2006); Bhaskaran et al. (2006). For the biological importance of 4H-chromene derivatives, see: Cai (2007, 2008); Cai et al. (2006); Gabor et al. (1988); Brooks (1998); Valenti et al. (1993); Hyana & Saimoto (1987); Tang et al. (2007). For ring-puckering analysis, see: Cremer & Pople (1975).

Experimental top

(E)-2,4-Dichloro-6-(2-nitrovinyl)phenol (100 mg, 0.427 mmol) was taken in a 25 ml round bottom flask in methanol (4 ml). To this solution, 1,8-diazabicyclo[5.4.0] undec-7-ene (DBU) (8 mg, 0.042 mmol) was added and stirred thoroughly for 10 minutes at room temperature. To this stirred solution, NMSM ((E) N-methyl-1-(methylthio)-2-nitroethenamine) was added and stirred for 10 h for completion (TLC, hexane: EtoAc, 3:2, Rf of I = 0.3). The reaction mixture was then kept in a refrigerator for 2 h to afford racemic mixture of the product (I), white precipitate, which was filtered. Good crystals were obtained by recrystallization with a solution of dichloromethane: hexane (9:3 v/v).

Refinement top

All hydrogen atoms were placed in calculated positions, with N—H=0.86 and C—H=0.97 and included in the final cycles of refinement using a riding model with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A view of intramolecular motif S (6) formed by N—H···O interaction in (I). The motif forming atoms are shown in ball and stick model and the Hydrogen bond are shown in blue dashed lines.
[Figure 3] Fig. 3. The crystal packing of (I) viewed down the XO-axis, showing intermolecular hydrogen bonding interactions as dashed lines.
[Figure 4] Fig. 4. The molecular interaction showing the weak C—Cl···pi interaction in (I). Cg is a centroid of C1—C6 ring in 4H-chromene moiety.
[Figure 5] Fig. 5. A view of intermolecular ring motif R22 (12) formed by N—H···O interaction in (I). The motif forming atoms are shown in ball and stick model and the hydrogen bond are shown in blue dashed lines.
6,8-dichloro-N-methyl-3-nitro-4-nitromethyl-4H-chromen-2-amine top
Crystal data top
C11H9Cl2N3O5Z = 2
Mr = 334.11F(000) = 340
Triclinic, P1Dx = 1.637 Mg m3
Hall symbol: -P 1Melting point: 485.65 K
a = 8.7426 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.2727 (7) ÅCell parameters from 8735 reflections
c = 9.3420 (7) Åθ = 2.7–29.2°
α = 70.017 (7)°µ = 0.50 mm1
β = 72.609 (7)°T = 293 K
γ = 87.579 (6)°Block, colourless
V = 677.68 (9) Å30.4 × 0.35 × 0.2 mm
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
2385 independent reflections
Radiation source: fine-focus sealed tube2072 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 15.9821 pixels mm-1θmax = 25.0°, θmin = 2.7°
ω scansh = 1010
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 1111
Tmin = 0.792, Tmax = 1.000l = 1111
15150 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.091P)2]
where P = (Fo2 + 2Fc2)/3
2385 reflections(Δ/σ)max = 0.046
191 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C11H9Cl2N3O5γ = 87.579 (6)°
Mr = 334.11V = 677.68 (9) Å3
Triclinic, P1Z = 2
a = 8.7426 (7) ÅMo Kα radiation
b = 9.2727 (7) ŵ = 0.50 mm1
c = 9.3420 (7) ÅT = 293 K
α = 70.017 (7)°0.4 × 0.35 × 0.2 mm
β = 72.609 (7)°
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
2385 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
2072 reflections with I > 2σ(I)
Tmin = 0.792, Tmax = 1.000Rint = 0.034
15150 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.01Δρmax = 0.34 e Å3
2385 reflectionsΔρmin = 0.30 e Å3
191 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.66030 (6)0.29149 (5)0.00059 (6)0.04277 (19)
Cl20.68824 (8)0.83939 (6)0.46350 (6)0.0599 (2)
O10.77375 (15)0.46548 (12)0.15081 (14)0.0344 (3)
C60.79885 (19)0.71693 (18)0.05514 (19)0.0273 (4)
O31.02216 (15)0.86894 (13)0.20553 (15)0.0389 (3)
N20.98248 (17)0.72806 (15)0.25417 (16)0.0321 (3)
O21.01949 (18)0.63676 (15)0.37199 (16)0.0494 (4)
O40.55005 (17)0.69199 (16)0.26437 (17)0.0502 (4)
C10.7612 (2)0.55977 (18)0.00458 (19)0.0283 (4)
C50.7793 (2)0.80191 (19)0.20214 (19)0.0312 (4)
H50.80460.90750.24500.037*
C70.8539 (2)0.79260 (17)0.04217 (19)0.0275 (4)
H70.95260.85540.02880.033*
N10.8653 (2)0.40896 (17)0.35814 (18)0.0383 (4)
H10.91390.43310.41520.046*
C30.6865 (2)0.5726 (2)0.2272 (2)0.0365 (4)
H30.64980.52530.28500.044*
C80.8987 (2)0.67447 (18)0.17785 (19)0.0285 (4)
C20.7067 (2)0.48781 (19)0.0813 (2)0.0316 (4)
C90.8488 (2)0.51877 (19)0.23183 (19)0.0298 (4)
N30.56967 (19)0.83127 (18)0.19612 (18)0.0373 (4)
C110.7329 (2)0.90325 (17)0.0935 (2)0.0326 (4)
H11A0.77590.95240.15100.039*
H11B0.72230.98310.00170.039*
C40.7221 (2)0.7293 (2)0.2847 (2)0.0355 (4)
C100.8075 (3)0.2491 (2)0.4088 (3)0.0485 (5)
H10A0.85840.20780.32630.073*
H10B0.69320.24330.42870.073*
H10C0.83250.19090.50490.073*
O50.4625 (2)0.9172 (2)0.2075 (2)0.0744 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0508 (3)0.0246 (3)0.0566 (3)0.0001 (2)0.0175 (2)0.0172 (2)
Cl20.0942 (5)0.0534 (4)0.0365 (3)0.0011 (3)0.0335 (3)0.0086 (2)
O10.0450 (7)0.0202 (6)0.0367 (6)0.0035 (5)0.0182 (5)0.0025 (5)
C60.0271 (8)0.0246 (8)0.0290 (8)0.0025 (6)0.0077 (6)0.0084 (6)
O30.0469 (8)0.0250 (7)0.0444 (7)0.0074 (5)0.0186 (6)0.0064 (5)
N20.0362 (8)0.0250 (8)0.0314 (7)0.0018 (6)0.0139 (6)0.0018 (6)
O20.0678 (10)0.0365 (8)0.0478 (8)0.0027 (7)0.0388 (7)0.0004 (6)
O40.0407 (8)0.0409 (8)0.0602 (9)0.0049 (6)0.0082 (7)0.0117 (7)
C10.0295 (9)0.0229 (8)0.0299 (8)0.0040 (6)0.0083 (7)0.0068 (6)
C50.0348 (9)0.0245 (9)0.0293 (8)0.0015 (7)0.0071 (7)0.0053 (7)
C70.0308 (9)0.0186 (8)0.0295 (8)0.0006 (6)0.0096 (7)0.0030 (6)
N10.0483 (9)0.0252 (8)0.0387 (8)0.0021 (6)0.0221 (7)0.0006 (6)
C30.0392 (10)0.0387 (11)0.0383 (10)0.0041 (8)0.0126 (8)0.0208 (8)
C80.0309 (9)0.0229 (8)0.0307 (8)0.0002 (7)0.0130 (7)0.0044 (6)
C20.0309 (9)0.0238 (9)0.0401 (9)0.0028 (7)0.0077 (7)0.0136 (7)
C90.0296 (9)0.0248 (9)0.0322 (9)0.0021 (7)0.0109 (7)0.0050 (7)
N30.0405 (9)0.0388 (9)0.0378 (8)0.0085 (7)0.0150 (7)0.0177 (7)
C110.0397 (10)0.0210 (8)0.0383 (9)0.0022 (7)0.0163 (7)0.0078 (7)
C40.0409 (10)0.0369 (10)0.0277 (8)0.0045 (8)0.0101 (7)0.0106 (7)
C100.0579 (13)0.0245 (10)0.0514 (11)0.0055 (9)0.0192 (10)0.0047 (8)
O50.0539 (10)0.0656 (11)0.0901 (13)0.0263 (9)0.0061 (9)0.0262 (9)
Geometric parameters (Å, º) top
Cl1—C21.7287 (16)C7—H70.9800
Cl2—C41.7391 (17)N1—C91.311 (2)
O1—C91.352 (2)N1—C101.455 (2)
O1—C11.3812 (19)N1—H10.8600
C6—C11.385 (2)C3—C21.381 (2)
C6—C51.388 (2)C3—C41.379 (2)
C6—C71.509 (2)C3—H30.9300
O3—N21.2537 (17)C8—C91.398 (2)
N2—O21.2593 (18)N3—O51.208 (2)
N2—C81.370 (2)N3—C111.492 (2)
O4—N31.222 (2)C11—H11A0.9700
C1—C21.392 (2)C11—H11B0.9700
C5—C41.383 (2)C10—H10A0.9600
C5—H50.9300C10—H10B0.9600
C7—C81.507 (2)C10—H10C0.9600
C7—C111.531 (2)
C9—O1—C1120.56 (13)N2—C8—C7116.78 (13)
C1—C6—C5118.53 (15)C9—C8—C7122.28 (14)
C1—C6—C7119.89 (14)C3—C2—C1120.45 (15)
C5—C6—C7121.54 (14)C3—C2—Cl1120.48 (13)
O3—N2—O2120.24 (13)C1—C2—Cl1119.04 (13)
O3—N2—C8119.38 (12)N1—C9—O1111.86 (15)
O2—N2—C8120.38 (13)N1—C9—C8127.76 (16)
O1—C1—C6123.02 (14)O1—C9—C8120.38 (14)
O1—C1—C2116.01 (14)O5—N3—O4123.38 (17)
C6—C1—C2120.97 (15)O5—N3—C11116.64 (16)
C4—C5—C6119.86 (15)O4—N3—C11119.98 (14)
C4—C5—H5120.1N3—C11—C7115.17 (13)
C6—C5—H5120.1N3—C11—H11A108.5
C8—C7—C6110.98 (13)C7—C11—H11A108.5
C8—C7—C11114.16 (13)N3—C11—H11B108.5
C6—C7—C11111.64 (13)C7—C11—H11B108.5
C8—C7—H7106.5H11A—C11—H11B107.5
C6—C7—H7106.5C3—C4—C5121.98 (15)
C11—C7—H7106.5C3—C4—Cl2118.91 (13)
C9—N1—C10124.73 (17)C5—C4—Cl2119.08 (13)
C9—N1—H1117.6N1—C10—H10A109.5
C10—N1—H1117.6N1—C10—H10B109.5
C2—C3—C4118.19 (15)H10A—C10—H10B109.5
C2—C3—H3120.9N1—C10—H10C109.5
C4—C3—H3120.9H10A—C10—H10C109.5
N2—C8—C9120.80 (14)H10B—C10—H10C109.5
C9—O1—C1—C610.9 (2)C4—C3—C2—Cl1178.69 (13)
C9—O1—C1—C2169.50 (14)O1—C1—C2—C3178.49 (15)
C5—C6—C1—O1178.84 (15)C6—C1—C2—C31.1 (2)
C7—C6—C1—O11.1 (2)O1—C1—C2—Cl10.0 (2)
C5—C6—C1—C20.8 (2)C6—C1—C2—Cl1179.62 (13)
C7—C6—C1—C2178.55 (15)C10—N1—C9—O11.3 (3)
C1—C6—C5—C40.5 (2)C10—N1—C9—C8178.82 (18)
C7—C6—C5—C4177.25 (15)C1—O1—C9—N1172.63 (14)
C1—C6—C7—C814.2 (2)C1—O1—C9—C87.2 (2)
C5—C6—C7—C8168.08 (15)N2—C8—C9—N13.4 (3)
C1—C6—C7—C11114.39 (16)C7—C8—C9—N1172.13 (17)
C5—C6—C7—C1163.3 (2)N2—C8—C9—O1176.45 (15)
O3—N2—C8—C9178.20 (15)C7—C8—C9—O18.0 (2)
O2—N2—C8—C91.9 (2)O5—N3—C11—C7163.02 (15)
O3—N2—C8—C72.4 (2)O4—N3—C11—C717.5 (2)
O2—N2—C8—C7177.65 (15)C8—C7—C11—N365.94 (19)
C6—C7—C8—N2166.39 (14)C6—C7—C11—N360.95 (17)
C11—C7—C8—N266.4 (2)C2—C3—C4—C51.1 (3)
C6—C7—C8—C917.9 (2)C2—C3—C4—Cl2176.92 (14)
C11—C7—C8—C9109.33 (17)C6—C5—C4—C31.4 (3)
C4—C3—C2—C10.2 (3)C6—C5—C4—Cl2176.55 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.862.002.613 (2)128
N1—H1···O2i0.862.122.881 (2)147
C7—H7···O3ii0.982.503.1944 (19)128
C11—H11B···O3ii0.972.543.103 (2)117
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+2, y+2, z.

Experimental details

Crystal data
Chemical formulaC11H9Cl2N3O5
Mr334.11
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.7426 (7), 9.2727 (7), 9.3420 (7)
α, β, γ (°)70.017 (7), 72.609 (7), 87.579 (6)
V3)677.68 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.50
Crystal size (mm)0.4 × 0.35 × 0.2
Data collection
DiffractometerOxford Diffraction Xcalibur Eos
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.792, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
15150, 2385, 2072
Rint0.034
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.110, 1.01
No. of reflections2385
No. of parameters191
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.30

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.862.002.613 (2)128
N1—H1···O2i0.862.122.881 (2)147.4
C7—H7···O3ii0.982.503.1944 (19)127.6
C11—H11B···O3ii0.972.543.103 (2)117.3
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+2, y+2, z.
 

Footnotes

Additional correspondence author, e-mail: hspr@yahoo.com.

Acknowledgements

RK, JM and MK thank the Centre for Bioinformatics (funded by the Department of Biotechnology and the Department of Information Technology, New Delhi, India), Pondicherry University for providing the computational facilities to carry out this research work. MK also thanks the University Grants Commission (UGC) for a Rajiv Gandhi National Fellowship. AP thanks Pondicherry University for a fellowship. HSPR thanks UGC for the SAP and the Department of Science and Technology (DST) for the FIST.

References

First citationBhaskaran, S., Velmurugan, D., Ravikumar, K., Geetha, K. & Surya Prakash Rao, H. (2006). Acta Cryst. E62, o188–o190.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrooks, G. T. (1998). Pestic. Sci. 22, 41–50.  CrossRef Web of Science Google Scholar
First citationCai, S. X. (2007). Recent Patents Anticancer Drug Discov. 2, 79–101.  Google Scholar
First citationCai, S. X. (2008). Bioorg. Med. Chem. Lett. 18, 603–607.  Web of Science PubMed Google Scholar
First citationCai, S. X., Drewe, J. & Kasibhatla, S. (2006). Curr. Med. Chem. 13, 2627–2644.  Web of Science PubMed CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGabor, M. (1988). The Pharmacology of Benzopyrone Derivatives and Related Compounds, pp. 91–126. Budapest: Akademiai Kiado.  Google Scholar
First citationGayathri, D., Velmurugan, D., Ravikumar, K., Geetha, K. & Surya Prakash Rao, H. (2006). Acta Cryst. E62, o1961–o1963.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHyana, T. & Saimoto, H. (1987). Jpn Patent JP 621 812 768.  Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTang, Q.-G., Wu, W.-Y., He, W., Sun, H.-S. & Guo, C. (2007). Acta Cryst. E63, o1437–o1438.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationValenti, P., Da Re, P., Rampa, A., Montanari, P., Carrara, M. & Cima, L. (1993). Anticancer Drug. Des. 8, 349–360.  CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages o898-o899
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds