organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N′-(2-Bromo­benzyl­­idene)-2-fluoro­benzohydrazide

aCollege of Pharmaceutical Science, China Medical University, Shenyang 110001, People's Republic of China, bDepartment of Chemistry and Chemical Engineering, Huanghuai University, Henan 463000, People's Republic of China, and cSchool of Pharmacy, Dalian Medical University, Dalian 116044, People's Republic of China
*Correspondence e-mail: changeliuhao@126.com

(Received 3 March 2011; accepted 16 March 2011; online 23 March 2011)

The title compound, C14H10BrFN2O, adopts an E geometry about the C=N bond. The dihedral angle between the mean planes of the two benzene rings is 81.5 (6)°. In the crystal, mol­ecules are linked through inter­molecular N—H⋯O hydrogen bonds, forming chains running along the b axis.

Related literature

For general background to the biological activity of Schiff bases, see: Bernardino et al. (2006[Bernardino, A. M. R., Gomes, A. O., Charret, K. S., Freita, A. C. C., Machado, G. M. C., Canto-Cavalheiro, M. M., Leon, L. L. & Amaral, V. F. (2006). Eur. J. Med. Chem. 41, 80-87.]); Ganjali et al. (2006[Ganjali, M. R., Faridbod, F., Norouzi, P. & Adib, M. (2006). Sens. Actuators B, 120, 119-124.]). For related structures, see: Jiang (2006[Jiang, Y.-Z. (2006). Hecheng Huaxue (Chin. J. Synth. Chem.), 14, 355-359.]); Wardell et al. (2007[Wardell, S. M. S. V., de Souza, M. V. N., Wardell, J. L., Low, J. N. & Glidewell, C. (2007). Acta Cryst. B63, 879-895.]); Zhu & He (2008[Zhu, Y.-C. & He, D.-H. (2008). Acta Cryst. E64, o1630.]); Li et al. (2009[Li, H., Sarojini, B. K., Narayana, B., Yathirajan, H. S. & Harrison, W. T. A. (2009). Acta Cryst. E65, o1750.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin. Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C14H10BrFN2O

  • Mr = 321.14

  • Orthorhombic, P b c a

  • a = 11.853 (2) Å

  • b = 9.6507 (18) Å

  • c = 22.921 (4) Å

  • V = 2621.9 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 3.14 mm−1

  • T = 295 K

  • 0.44 × 0.12 × 0.07 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.633, Tmax = 0.798

  • 15028 measured reflections

  • 3111 independent reflections

  • 1892 reflections with I > 2σ(I)

  • Rint = 0.064

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.096

  • S = 1.00

  • 2094 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.57 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.80 2.04 2.827 (3) 167
Symmetry code: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2003[Bruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases have attracted much attention due to their diverse range of bioactivities in pharmaceutical and agrochemical field (e.g. Bernardino et al., 2006; Ganjali et al., 2006). We now report the synthesis and crystal structure of the title compound (Fig. 1).

In the title compound, the Schiff base molecule adopts an E geometry with respect to the C=N bond, as shown in Fig. 1.The bond lengths and bond angles for (I) are within normal ranges (Allen et al., 1987). The dihedral angle between the mean planes of the two benzene rings is 98.5 (6)°. The Schiff base moieties through intermolecular N—H···O hydrogen bonds form chains along the b axis, which helps to consolidate the crystal packing (Fig 2).

Related literature top

For general background to the biological activity of Schiff bases, see: Bernardino et al. (2006); Ganjali et al. (2006). For related structures, see: Jiang (2006); Wardell et al. (2007); Zhu & He (2008); Li et al. (2009). For standard bond lengths, see: Allen et al. (1987).

Experimental top

2-Fluorobenzohydrazide (0.1 mmol,15.4 mg) and 2-bromobenzaldehyde (0.1 mmol, 18.4 mg) were dissolved in a methanol solution (10 ml). The mixture was stirred at room temperature for 1 h and filtered. After keeping the filtrate in air for three days, colorless block-like crystals were formed.

Refinement top

The H1A atom bonded to N1 was located in a difference map and refined freely, other H atoms were placed in geometrically idealized positions and allowed to ride on their parent atoms, with C—H = 0.93 for phenyl, 0.97 Å for methylene H atoms, and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound (thermal ellipsoids are shown at the 30% probability level).
[Figure 2] Fig. 2. The crystal packing of the title compound viewed down the b axis. The dashed lines represent the hydrogen bonding interactions. Hydrogen atoms have been omitted for clarity.
(E)-N'-(2-Bromobenzylidene)-2-fluorobenzohydrazide top
Crystal data top
C14H10BrFN2OF(000) = 1280
Mr = 321.14Dx = 1.627 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2094 reflections
a = 11.853 (2) Åθ = 2.5–21.5°
b = 9.6507 (18) ŵ = 3.14 mm1
c = 22.921 (4) ÅT = 295 K
V = 2621.9 (8) Å3Block, yellow
Z = 80.44 × 0.12 × 0.07 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3111 independent reflections
Radiation source: fine-focus sealed tube1892 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
ϕ and ω scansθmax = 27.8°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1515
Tmin = 0.633, Tmax = 0.798k = 1212
15028 measured reflectionsl = 3023
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0385P)2 + 0.3692P]
where P = (Fo2 + 2Fc2)/3
2094 reflections(Δ/σ)max = 0.001
172 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.57 e Å3
Crystal data top
C14H10BrFN2OV = 2621.9 (8) Å3
Mr = 321.14Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 11.853 (2) ŵ = 3.14 mm1
b = 9.6507 (18) ÅT = 295 K
c = 22.921 (4) Å0.44 × 0.12 × 0.07 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3111 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1892 reflections with I > 2σ(I)
Tmin = 0.633, Tmax = 0.798Rint = 0.064
15028 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.00Δρmax = 0.31 e Å3
2094 reflectionsΔρmin = 0.57 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.71246 (3)0.03729 (4)1.026973 (15)0.05866 (15)
F10.93107 (15)0.5216 (2)0.78445 (10)0.0708 (6)
O10.71146 (17)0.5201 (2)0.83914 (9)0.0438 (5)
N10.69850 (17)0.2891 (2)0.85414 (10)0.0328 (5)
H1A0.72210.21500.84420.039*
N20.64592 (18)0.3061 (2)0.90719 (9)0.0328 (5)
C10.7828 (2)0.3676 (3)0.76568 (12)0.0348 (7)
C20.8798 (3)0.4319 (3)0.74739 (15)0.0463 (8)
C30.9276 (3)0.4075 (4)0.69309 (17)0.0674 (11)
H30.99280.45340.68150.081*
C40.8758 (4)0.3137 (5)0.65694 (17)0.0805 (13)
H40.90650.29610.62030.097*
C50.7808 (4)0.2461 (4)0.67351 (16)0.0708 (11)
H50.74730.18180.64870.085*
C60.7341 (3)0.2737 (3)0.72758 (13)0.0503 (9)
H60.66830.22810.73860.060*
C70.7291 (2)0.4011 (3)0.82290 (12)0.0313 (6)
C80.6410 (2)0.1979 (3)0.93891 (12)0.0343 (7)
H80.67140.11480.92570.041*
C90.5869 (2)0.2055 (3)0.99638 (12)0.0323 (6)
C100.5124 (2)0.3127 (3)1.00943 (12)0.0396 (7)
H100.49540.37790.98090.047*
C110.6079 (2)0.1080 (3)1.03970 (12)0.0365 (7)
C120.5580 (3)0.1179 (4)1.09390 (13)0.0493 (8)
H120.57280.05141.12230.059*
C130.4864 (2)0.2259 (4)1.10586 (14)0.0503 (9)
H130.45330.23291.14250.060*
C140.4631 (2)0.3244 (3)1.06384 (13)0.0459 (8)
H140.41470.39781.07210.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0711 (3)0.0520 (2)0.0528 (2)0.02188 (19)0.01343 (18)0.01330 (17)
F10.0498 (11)0.0695 (14)0.0930 (16)0.0141 (10)0.0000 (11)0.0123 (13)
O10.0615 (14)0.0263 (12)0.0437 (12)0.0043 (10)0.0116 (10)0.0023 (10)
N10.0453 (13)0.0249 (13)0.0281 (13)0.0038 (10)0.0084 (11)0.0023 (10)
N20.0380 (13)0.0312 (14)0.0292 (13)0.0003 (11)0.0066 (11)0.0022 (11)
C10.0383 (16)0.0328 (16)0.0334 (16)0.0023 (14)0.0075 (14)0.0047 (13)
C20.0417 (18)0.043 (2)0.054 (2)0.0023 (15)0.0002 (16)0.0109 (16)
C30.047 (2)0.085 (3)0.070 (3)0.014 (2)0.029 (2)0.029 (2)
C40.087 (3)0.111 (4)0.044 (2)0.032 (3)0.022 (2)0.006 (2)
C50.087 (3)0.083 (3)0.043 (2)0.013 (2)0.012 (2)0.012 (2)
C60.061 (2)0.050 (2)0.040 (2)0.0027 (16)0.0093 (16)0.0049 (16)
C70.0342 (15)0.0264 (16)0.0332 (16)0.0022 (12)0.0005 (13)0.0016 (13)
C80.0373 (16)0.0333 (17)0.0324 (16)0.0012 (14)0.0028 (13)0.0018 (13)
C90.0356 (15)0.0326 (17)0.0288 (15)0.0048 (13)0.0056 (13)0.0037 (13)
C100.0430 (17)0.0382 (18)0.0375 (18)0.0015 (15)0.0023 (14)0.0005 (14)
C110.0377 (16)0.0353 (17)0.0364 (17)0.0014 (13)0.0061 (13)0.0010 (13)
C120.054 (2)0.056 (2)0.0378 (19)0.0018 (17)0.0098 (16)0.0104 (16)
C130.0483 (19)0.065 (2)0.0377 (19)0.0014 (18)0.0157 (16)0.0007 (17)
C140.0407 (17)0.051 (2)0.046 (2)0.0024 (16)0.0131 (15)0.0069 (16)
Geometric parameters (Å, º) top
Br1—C111.894 (3)C5—C61.383 (4)
F1—C21.356 (4)C5—H50.9300
O1—C71.226 (3)C6—H60.9300
N1—C71.346 (3)C8—C91.467 (4)
N1—N21.376 (3)C8—H80.9300
N1—H1A0.8011C9—C111.390 (4)
N2—C81.274 (3)C9—C101.393 (4)
C1—C21.372 (4)C10—C141.382 (4)
C1—C61.385 (4)C10—H100.9300
C1—C71.494 (4)C11—C121.379 (4)
C2—C31.387 (5)C12—C131.372 (4)
C3—C41.372 (5)C12—H120.9300
C3—H30.9300C13—C141.381 (4)
C4—C51.355 (6)C13—H130.9300
C4—H40.9300C14—H140.9300
C7—N1—N2119.7 (2)O1—C7—C1122.8 (3)
C7—N1—H1A118.1N1—C7—C1114.1 (2)
N2—N1—H1A121.1N2—C8—C9119.4 (3)
C8—N2—N1115.3 (2)N2—C8—H8120.3
C2—C1—C6116.9 (3)C9—C8—H8120.3
C2—C1—C7121.9 (3)C11—C9—C10117.6 (3)
C6—C1—C7121.1 (3)C11—C9—C8122.0 (3)
F1—C2—C1118.2 (3)C10—C9—C8120.5 (3)
F1—C2—C3119.2 (3)C14—C10—C9121.5 (3)
C1—C2—C3122.6 (3)C14—C10—H10119.2
C4—C3—C2118.1 (3)C9—C10—H10119.2
C4—C3—H3121.0C12—C11—C9121.3 (3)
C2—C3—H3121.0C12—C11—Br1118.1 (2)
C5—C4—C3121.3 (4)C9—C11—Br1120.5 (2)
C5—C4—H4119.3C13—C12—C11119.8 (3)
C3—C4—H4119.3C13—C12—H12120.1
C4—C5—C6119.4 (4)C11—C12—H12120.1
C4—C5—H5120.3C12—C13—C14120.5 (3)
C6—C5—H5120.3C12—C13—H13119.8
C5—C6—C1121.6 (3)C14—C13—H13119.8
C5—C6—H6119.2C13—C14—C10119.2 (3)
C1—C6—H6119.2C13—C14—H14120.4
O1—C7—N1123.0 (2)C10—C14—H14120.4
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.802.042.827 (3)167
Symmetry code: (i) x+3/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC14H10BrFN2O
Mr321.14
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)295
a, b, c (Å)11.853 (2), 9.6507 (18), 22.921 (4)
V3)2621.9 (8)
Z8
Radiation typeMo Kα
µ (mm1)3.14
Crystal size (mm)0.44 × 0.12 × 0.07
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.633, 0.798
No. of measured, independent and
observed [I > 2σ(I)] reflections
15028, 3111, 1892
Rint0.064
(sin θ/λ)max1)0.657
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.096, 1.00
No. of reflections2094
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.57

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2003), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.802.042.827 (3)167
Symmetry code: (i) x+3/2, y1/2, z.
 

Acknowledgements

This work was supported in part by a grant from China Medical University.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin. Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernardino, A. M. R., Gomes, A. O., Charret, K. S., Freita, A. C. C., Machado, G. M. C., Canto-Cavalheiro, M. M., Leon, L. L. & Amaral, V. F. (2006). Eur. J. Med. Chem. 41, 80–87.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGanjali, M. R., Faridbod, F., Norouzi, P. & Adib, M. (2006). Sens. Actuators B, 120, 119–124.  Web of Science CrossRef CAS Google Scholar
First citationJiang, Y.-Z. (2006). Hecheng Huaxue (Chin. J. Synth. Chem.), 14, 355–359.  CAS Google Scholar
First citationLi, H., Sarojini, B. K., Narayana, B., Yathirajan, H. S. & Harrison, W. T. A. (2009). Acta Cryst. E65, o1750.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWardell, S. M. S. V., de Souza, M. V. N., Wardell, J. L., Low, J. N. & Glidewell, C. (2007). Acta Cryst. B63, 879–895.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationZhu, Y.-C. & He, D.-H. (2008). Acta Cryst. E64, o1630.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds