metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[tetra­aqua­[trans-1,2-bis­­(4-pyrid­yl)ethene-κ2N:N′]nickel(II)] dinitrate]

aDepartment of Fine Chemistry, Seoul National University of Science and Technology, Seoul 139-743, Republic of Korea, bDepartment of Forest & Environment Resources, Kyungpook National University, Sangju 742-711, Republic of Korea, and cDepartment of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Republic of Korea
*Correspondence e-mail: chealkim@soultech.ac.kr, ymeekim@ewha.ac.kr

(Received 10 February 2011; accepted 24 February 2011; online 2 March 2011)

In the title compound, {[Ni(C12H10N2)(H2O)4](NO3)2}n, the NiII ion, lying on a crystallographic inversion center, has a distorted octa­hedral coordination sphere comprising four water ligands and two N-atom donors from the trans-related 1,2-bis­(4-pyrid­yl)ethene ligands, which also have crystallographic inversion symmetry. These ligands bridge the NiII complex units, forming chains extending along the [110] and [[\overline1]10] directions. The nitrate counter-anions stabilize the crystal structure through water–nitrate O—H⋯O hydrogen bonds.

Related literature

For inter­actions of metal ions with amino acids, see: Daniele et al. (2008[Daniele, P. G., Foti, C., Gianguzza, A., Prenesti, E. & Sammartano, S. (2008). Coord. Chem. Rev. 252, 1093-1107.]); Parkin (2004[Parkin, G. (2004). Chem. Rev. 104, 699-767.]); Tshuva & Lippard (2004[Tshuva, E. Y. & Lippard, S. J. (2004). Chem. Rev. 104, 987-1012.]). For related complexes,see: Lee et al. (2008[Lee, E. Y., Park, B. K., Kim, C., Kim, S.-J. & Kim, Y. (2008). Acta Cryst. E64, m286.]); Yu et al. (2008[Yu, S. M., Park, C.-H., Kim, P.-G., Kim, C. & Kim, Y. (2008). Acta Cryst. E64, m881-m882.]); Park et al. (2008[Park, B. K., Jang, K.-H., Kim, P.-G., Kim, C. & Kim, Y. (2008). Acta Cryst. E64, m1141.]); Shin et al. (2009[Shin, D. H., Han, S.-H., Kim, P.-G., Kim, C. & Kim, Y. (2009). Acta Cryst. E65, m658-m659.]); Yu et al. (2009[Yu, S. M., Shin, D. H., Kim, P.-G., Kim, C. & Kim, Y. (2009). Acta Cryst. E65, m1045-m1046.], 2010[Yu, S. M., Koo, K., Kim, P.-G., Kim, C. & Kim, Y. (2010). Acta Cryst. E66, m61-m62.]); Kim et al. (2011[Kim, J. H., Kim, C. & Kim, Y. (2011). Acta Cryst. E67, m3-m4.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C12H10N2)(H2O)4](NO3)2

  • Mr = 436.99

  • Monoclinic, P 21 /n

  • a = 7.415 (3) Å

  • b = 11.426 (4) Å

  • c = 10.950 (4) Å

  • β = 97.307 (7)°

  • V = 920.1 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.11 mm−1

  • T = 293 K

  • 0.15 × 0.08 × 0.08 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • 4954 measured reflections

  • 1799 independent reflections

  • 1116 reflections with I > 2σ(I)

  • Rint = 0.173

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.238

  • S = 1.14

  • 1799 reflections

  • 136 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.08 e Å−3

  • Δρmin = −1.86 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2B⋯O3i 0.93 (7) 2.28 (8) 3.176 (9) 162 (8)
O2—H2A⋯O5ii 0.93 (6) 2.14 (7) 3.068 (8) 176 (7)
O1—H1B⋯O3iii 0.93 (4) 2.29 (2) 3.212 (9) 170 (8)
O1—H1A⋯O4iv 0.93 (6) 2.37 (3) 3.252 (8) 158 (7)
Symmetry codes: (i) x, y, z-1; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+1, -y+2, -z+1; (iv) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The interaction of transition metal ions with biologically active molecules such as amino acids and various acids is very important in biological systems (Daniele et al., 2008; Parkin, 2004; Tshuva & Lippard, 2004). In attempting to model the interaction, we have extensively studied the interaction of the transition metal carboxylates e.g. copper(II), cadmium(II), and zinc(II) benzoates with a variety of spacers such as quinoxaline, 6-methylquinoline, 3-methylquinoline, trans-1-(2-pyridyl)-2-(4-pyridyl)ethylene, and di-2-pyridyl ketone (Lee et al., 2008; Yu et al., 2008; Park et al., 2008; Shin et al., 2009; Yu et al., 2009; Yu et al., 2010; Kim et al., 2011). However, nickel as a metal ion source has rarely been used. In this work, we have employed nickel(II) trimethylacetate as a building block and trans-1,2-bis(4-pyridyl)ethene as a ligand. We report here on the structure of a new complex poly[tetraqua[trans-1,2-bis(4-pyridyl)ethene]nickel(II) dinitrate].

In the crystal structure of the title compound, [Ni(C12H10N2)(H2O)4] . 2(NO3)]n, the NiII ion lies on a crystallographic inversion center with the distorted octahedral coordination sphere comprising four water ligands and two N donors from the trans-related 1,2-bis(4-pyridyl)ethene ligands, which also have crystallographic inversion symmetry (Fig. 1). These ligands bridge the NiII complex units to form a one-dimensional chain structure. The nitrate counter-anions stabilize the crystal structure through water O—H···Onitrate hydrogen bonds (Table 1).

Related literature top

For interactions of metal ions with amino acids, see: Daniele et al. (2008); Parkin (2004); Tshuva & Lippard (2004). For related complexes,see: Lee et al. (2008); Yu et al. (2008); Park et al. (2008); Shin et al. (2009); Yu et al. (2009, 2010); Kim et al. (2011).

Experimental top

36.4 mg (0.125 mmol) of Ni(NO3)2.6H2O and 29.0 mg (0.25 mmol) of (CH3)3CCOOH and 29.5 mg (0. 25 mmol) of NH4OH were dissolved in 4 ml of methanol and carefully layered with 4 ml of a chloroform solution of trans-1,2-bis(4-pyridyl)ethene (47.0 mg, 0.25 mmol). Crystals of the title compound suitable for X-ray analysis were obtained within a month.

Refinement top

H atoms were placed in calculated positions with C—H distances of 0.93 Å (pyridyl) and included in the refinement with a riding-motion approximation with Uiso(H) = 1.2Ueq(C). The water H atoms were located in a difference Fourier, and refined isotropically with O—H restraints (0.93 Å).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A fragment of one-dimensional chain structure of the title compound showing the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Inter-species hydrogen bonds are shown as dashed lines. For symmetry codes: (i) (-x + 1, -y + 1, -z); (ii) -x, -y + 2, -z). For other codes, see Table 1.
catena-Poly[[tetraaqua[trans-1,2-bis(4-pyridyl)ethene- κ2N:N']nickel(II)] dinitrate] top
Crystal data top
[Ni(C12H10N2)(H2O)4](NO3)2F(000) = 452
Mr = 436.99Dx = 1.577 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1268 reflections
a = 7.415 (3) Åθ = 2.6–23.4°
b = 11.426 (4) ŵ = 1.11 mm1
c = 10.950 (4) ÅT = 293 K
β = 97.307 (7)°Block, brown
V = 920.1 (6) Å30.15 × 0.08 × 0.08 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
1116 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.173
Graphite monochromatorθmax = 26.0°, θmin = 2.6°
ϕ and ω scansh = 89
4954 measured reflectionsk = 1114
1799 independent reflectionsl = 1113
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.238H atoms treated by a mixture of independent and constrained refinement
S = 1.14 w = 1/[σ2(Fo2) + (0.1257P)2]
where P = (Fo2 + 2Fc2)/3
1799 reflections(Δ/σ)max < 0.001
136 parametersΔρmax = 1.08 e Å3
4 restraintsΔρmin = 1.86 e Å3
Crystal data top
[Ni(C12H10N2)(H2O)4](NO3)2V = 920.1 (6) Å3
Mr = 436.99Z = 2
Monoclinic, P21/nMo Kα radiation
a = 7.415 (3) ŵ = 1.11 mm1
b = 11.426 (4) ÅT = 293 K
c = 10.950 (4) Å0.15 × 0.08 × 0.08 mm
β = 97.307 (7)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1116 reflections with I > 2σ(I)
4954 measured reflectionsRint = 0.173
1799 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0684 restraints
wR(F2) = 0.238H atoms treated by a mixture of independent and constrained refinement
S = 1.14Δρmax = 1.08 e Å3
1799 reflectionsΔρmin = 1.86 e Å3
136 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0496 (8)0.7389 (5)0.0578 (7)0.0346 (15)
H10.07050.74500.09390.042*
C20.1365 (8)0.6328 (5)0.0637 (7)0.0414 (18)
H20.07580.56970.10380.050*
C30.3181 (8)0.6207 (5)0.0086 (7)0.0364 (16)
C40.3954 (8)0.7169 (5)0.0524 (7)0.0374 (16)
H40.51370.71290.09230.045*
C50.2991 (7)0.8183 (5)0.0544 (7)0.0350 (16)
H50.35420.88140.09810.042*
C60.4117 (9)0.5087 (5)0.0174 (8)0.0431 (19)
H60.34290.44520.04950.052*
N10.1284 (6)0.8326 (4)0.0032 (5)0.0271 (11)
Ni10.00001.00000.00000.0287 (4)
O10.0809 (9)1.0135 (4)0.1951 (7)0.0630 (17)
H1A0.098 (12)0.946 (4)0.242 (7)0.076*
H1B0.200 (4)1.036 (7)0.189 (9)0.076*
O20.2381 (6)1.0811 (4)0.0466 (7)0.0666 (18)
H2A0.226 (11)1.148 (5)0.095 (7)0.080*
H2B0.306 (10)1.024 (6)0.080 (9)0.080*
N20.4686 (7)0.8286 (5)0.7660 (6)0.0481 (16)
O30.4935 (7)0.9318 (4)0.8009 (6)0.0684 (17)
O40.5938 (8)0.7571 (5)0.7875 (7)0.0699 (18)
O50.3209 (7)0.7990 (5)0.7106 (7)0.083 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.031 (3)0.026 (3)0.046 (4)0.005 (2)0.000 (3)0.002 (3)
C20.030 (3)0.023 (3)0.069 (5)0.003 (2)0.005 (3)0.010 (3)
C30.030 (3)0.018 (3)0.060 (5)0.009 (2)0.001 (3)0.004 (3)
C40.028 (3)0.018 (3)0.064 (5)0.004 (2)0.005 (3)0.000 (3)
C50.024 (3)0.020 (3)0.060 (5)0.001 (2)0.001 (3)0.001 (3)
C60.037 (3)0.014 (3)0.076 (6)0.009 (2)0.000 (3)0.003 (3)
N10.027 (2)0.022 (2)0.033 (3)0.0061 (19)0.005 (2)0.001 (2)
Ni10.0214 (6)0.0136 (6)0.0485 (8)0.0038 (4)0.0049 (5)0.0014 (4)
O10.066 (4)0.051 (3)0.066 (4)0.000 (3)0.013 (3)0.000 (3)
O20.044 (3)0.035 (3)0.121 (6)0.003 (2)0.010 (3)0.012 (3)
N20.040 (3)0.036 (3)0.064 (5)0.003 (2)0.012 (3)0.010 (3)
O30.064 (3)0.035 (3)0.098 (5)0.008 (2)0.018 (3)0.016 (3)
O40.059 (3)0.059 (3)0.091 (5)0.017 (3)0.006 (3)0.008 (3)
O50.055 (3)0.074 (4)0.110 (6)0.017 (3)0.030 (4)0.016 (4)
Geometric parameters (Å, º) top
C1—N11.326 (7)N1—Ni12.138 (4)
C1—C21.378 (8)Ni1—O22.113 (5)
C1—H10.9300Ni1—O2ii2.113 (5)
C2—C31.411 (8)Ni1—N1ii2.138 (4)
C2—H20.9300Ni1—O1ii2.149 (7)
C3—C41.373 (8)Ni1—O12.149 (7)
C3—C61.465 (8)O1—H1A0.93 (6)
C4—C51.362 (7)O1—H1B0.93 (4)
C4—H40.9300O2—H2A0.93 (6)
C5—N11.350 (7)O2—H2B0.93 (7)
C5—H50.9300N2—O51.231 (6)
C6—C6i1.331 (13)N2—O41.236 (7)
C6—H60.9300N2—O31.245 (7)
N1—C1—C2123.4 (5)O2ii—Ni1—N1ii90.05 (18)
N1—C1—H1118.3O2—Ni1—N190.05 (18)
C2—C1—H1118.3O2ii—Ni1—N189.95 (18)
C1—C2—C3119.5 (5)N1ii—Ni1—N1180.0
C1—C2—H2120.3O2—Ni1—O1ii85.9 (3)
C3—C2—H2120.3O2ii—Ni1—O1ii94.1 (3)
C4—C3—C2116.5 (5)N1ii—Ni1—O1ii90.7 (2)
C4—C3—C6124.0 (5)N1—Ni1—O1ii89.3 (2)
C2—C3—C6119.5 (5)O2—Ni1—O194.1 (3)
C5—C4—C3120.1 (5)O2ii—Ni1—O185.9 (3)
C5—C4—H4119.9N1ii—Ni1—O189.3 (2)
C3—C4—H4119.9N1—Ni1—O190.7 (2)
N1—C5—C4123.9 (6)O1ii—Ni1—O1179.999 (2)
N1—C5—H5118.1Ni1—O1—H1A119 (6)
C4—C5—H5118.1Ni1—O1—H1B96 (6)
C6i—C6—C3124.7 (7)H1A—O1—H1B102 (8)
C6i—C6—H6117.7Ni1—O2—H2A118 (5)
C3—C6—H6117.7Ni1—O2—H2B108 (5)
C1—N1—C5116.5 (5)H2A—O2—H2B112 (9)
C1—N1—Ni1123.9 (4)O5—N2—O4120.8 (6)
C5—N1—Ni1119.6 (4)O5—N2—O3120.0 (6)
O2—Ni1—O2ii180.0O4—N2—O3119.3 (5)
O2—Ni1—N1ii89.95 (18)
N1—C1—C2—C30.7 (12)C4—C5—N1—C14.3 (10)
C1—C2—C3—C42.2 (11)C4—C5—N1—Ni1176.6 (6)
C1—C2—C3—C6178.6 (7)C1—N1—Ni1—O2134.3 (5)
C2—C3—C4—C51.8 (11)C5—N1—Ni1—O246.7 (5)
C6—C3—C4—C5179.1 (7)C1—N1—Ni1—O2ii45.7 (5)
C3—C4—C5—N11.5 (11)C5—N1—Ni1—O2ii133.3 (5)
C4—C3—C6—C6i9.6 (17)C1—N1—Ni1—O1ii48.4 (5)
C2—C3—C6—C6i171.3 (11)C5—N1—Ni1—O1ii132.5 (5)
C2—C1—N1—C53.8 (10)C1—N1—Ni1—O1131.6 (5)
C2—C1—N1—Ni1177.1 (6)C5—N1—Ni1—O147.5 (5)
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2B···O3iii0.93 (7)2.28 (8)3.176 (9)162 (8)
O2—H2A···O5iv0.93 (6)2.14 (7)3.068 (8)176 (7)
O1—H1B···O3v0.93 (4)2.29 (2)3.212 (9)170 (8)
O1—H1A···O4vi0.93 (6)2.37 (3)3.252 (8)158 (7)
Symmetry codes: (iii) x, y, z1; (iv) x+1/2, y+1/2, z+1/2; (v) x+1, y+2, z+1; (vi) x1/2, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formula[Ni(C12H10N2)(H2O)4](NO3)2
Mr436.99
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)7.415 (3), 11.426 (4), 10.950 (4)
β (°) 97.307 (7)
V3)920.1 (6)
Z2
Radiation typeMo Kα
µ (mm1)1.11
Crystal size (mm)0.15 × 0.08 × 0.08
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4954, 1799, 1116
Rint0.173
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.238, 1.14
No. of reflections1799
No. of parameters136
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.08, 1.86

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2B···O3i0.93 (7)2.28 (8)3.176 (9)162 (8)
O2—H2A···O5ii0.93 (6)2.14 (7)3.068 (8)176 (7)
O1—H1B···O3iii0.93 (4)2.291 (18)3.212 (9)170 (8)
O1—H1A···O4iv0.93 (6)2.37 (3)3.252 (8)158 (7)
Symmetry codes: (i) x, y, z1; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1, y+2, z+1; (iv) x1/2, y+3/2, z1/2.
 

Acknowledgements

Financial support from the Forest Science & Technology Projects (S121010L080120) and the Cooperative Research Program for Agricultural Science & Technology Development (20070301–036-019–02) is gratefully acknowledged.

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDaniele, P. G., Foti, C., Gianguzza, A., Prenesti, E. & Sammartano, S. (2008). Coord. Chem. Rev. 252, 1093–1107.  Web of Science CrossRef CAS Google Scholar
First citationKim, J. H., Kim, C. & Kim, Y. (2011). Acta Cryst. E67, m3–m4.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLee, E. Y., Park, B. K., Kim, C., Kim, S.-J. & Kim, Y. (2008). Acta Cryst. E64, m286.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPark, B. K., Jang, K.-H., Kim, P.-G., Kim, C. & Kim, Y. (2008). Acta Cryst. E64, m1141.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationParkin, G. (2004). Chem. Rev. 104, 699–767.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShin, D. H., Han, S.-H., Kim, P.-G., Kim, C. & Kim, Y. (2009). Acta Cryst. E65, m658–m659.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTshuva, E. Y. & Lippard, S. J. (2004). Chem. Rev. 104, 987–1012.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYu, S. M., Koo, K., Kim, P.-G., Kim, C. & Kim, Y. (2010). Acta Cryst. E66, m61–m62.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYu, S. M., Park, C.-H., Kim, P.-G., Kim, C. & Kim, Y. (2008). Acta Cryst. E64, m881–m882.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYu, S. M., Shin, D. H., Kim, P.-G., Kim, C. & Kim, Y. (2009). Acta Cryst. E65, m1045–m1046.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds