metal-organic compounds
catena-Poly[[tetraaqua[trans-1,2-bis(4-pyridyl)ethene-κ2N:N′]nickel(II)] dinitrate]
aDepartment of Fine Chemistry, Seoul National University of Science and Technology, Seoul 139-743, Republic of Korea, bDepartment of Forest & Environment Resources, Kyungpook National University, Sangju 742-711, Republic of Korea, and cDepartment of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Republic of Korea
*Correspondence e-mail: chealkim@soultech.ac.kr, ymeekim@ewha.ac.kr
In the title compound, {[Ni(C12H10N2)(H2O)4](NO3)2}n, the NiII ion, lying on a crystallographic inversion center, has a distorted octahedral coordination sphere comprising four water ligands and two N-atom donors from the trans-related 1,2-bis(4-pyridyl)ethene ligands, which also have crystallographic inversion symmetry. These ligands bridge the NiII complex units, forming chains extending along the [110] and [10] directions. The nitrate counter-anions stabilize the through water–nitrate O—H⋯O hydrogen bonds.
Related literature
For interactions of metal ions with amino acids, see: Daniele et al. (2008); Parkin (2004); Tshuva & Lippard (2004). For related complexes,see: Lee et al. (2008); Yu et al. (2008); Park et al. (2008); Shin et al. (2009); Yu et al. (2009, 2010); Kim et al. (2011).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: SMART (Bruker, 1997); cell SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536811007021/zs2096sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811007021/zs2096Isup2.hkl
36.4 mg (0.125 mmol) of Ni(NO3)2.6H2O and 29.0 mg (0.25 mmol) of (CH3)3CCOOH and 29.5 mg (0. 25 mmol) of NH4OH were dissolved in 4 ml of methanol and carefully layered with 4 ml of a chloroform solution of trans-1,2-bis(4-pyridyl)ethene (47.0 mg, 0.25 mmol). Crystals of the title compound suitable for X-ray analysis were obtained within a month.
H atoms were placed in calculated positions with C—H distances of 0.93 Å (pyridyl) and included in the
with a riding-motion approximation with Uiso(H) = 1.2Ueq(C). The water H atoms were located in a difference Fourier, and refined isotropically with O—H restraints (0.93 Å).Data collection: SMART (Bruker, 1997); cell
SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Ni(C12H10N2)(H2O)4](NO3)2 | F(000) = 452 |
Mr = 436.99 | Dx = 1.577 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 1268 reflections |
a = 7.415 (3) Å | θ = 2.6–23.4° |
b = 11.426 (4) Å | µ = 1.11 mm−1 |
c = 10.950 (4) Å | T = 293 K |
β = 97.307 (7)° | Block, brown |
V = 920.1 (6) Å3 | 0.15 × 0.08 × 0.08 mm |
Z = 2 |
Bruker SMART CCD area-detector diffractometer | 1116 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.173 |
Graphite monochromator | θmax = 26.0°, θmin = 2.6° |
ϕ and ω scans | h = −8→9 |
4954 measured reflections | k = −11→14 |
1799 independent reflections | l = −11→13 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.068 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.238 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.14 | w = 1/[σ2(Fo2) + (0.1257P)2] where P = (Fo2 + 2Fc2)/3 |
1799 reflections | (Δ/σ)max < 0.001 |
136 parameters | Δρmax = 1.08 e Å−3 |
4 restraints | Δρmin = −1.86 e Å−3 |
[Ni(C12H10N2)(H2O)4](NO3)2 | V = 920.1 (6) Å3 |
Mr = 436.99 | Z = 2 |
Monoclinic, P21/n | Mo Kα radiation |
a = 7.415 (3) Å | µ = 1.11 mm−1 |
b = 11.426 (4) Å | T = 293 K |
c = 10.950 (4) Å | 0.15 × 0.08 × 0.08 mm |
β = 97.307 (7)° |
Bruker SMART CCD area-detector diffractometer | 1116 reflections with I > 2σ(I) |
4954 measured reflections | Rint = 0.173 |
1799 independent reflections |
R[F2 > 2σ(F2)] = 0.068 | 4 restraints |
wR(F2) = 0.238 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.14 | Δρmax = 1.08 e Å−3 |
1799 reflections | Δρmin = −1.86 e Å−3 |
136 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.0496 (8) | 0.7389 (5) | −0.0578 (7) | 0.0346 (15) | |
H1 | −0.0705 | 0.7450 | −0.0939 | 0.042* | |
C2 | 0.1365 (8) | 0.6328 (5) | −0.0637 (7) | 0.0414 (18) | |
H2 | 0.0758 | 0.5697 | −0.1038 | 0.050* | |
C3 | 0.3181 (8) | 0.6207 (5) | −0.0086 (7) | 0.0364 (16) | |
C4 | 0.3954 (8) | 0.7169 (5) | 0.0524 (7) | 0.0374 (16) | |
H4 | 0.5137 | 0.7129 | 0.0923 | 0.045* | |
C5 | 0.2991 (7) | 0.8183 (5) | 0.0544 (7) | 0.0350 (16) | |
H5 | 0.3542 | 0.8814 | 0.0981 | 0.042* | |
C6 | 0.4117 (9) | 0.5087 (5) | −0.0174 (8) | 0.0431 (19) | |
H6 | 0.3429 | 0.4452 | −0.0495 | 0.052* | |
N1 | 0.1284 (6) | 0.8326 (4) | −0.0032 (5) | 0.0271 (11) | |
Ni1 | 0.0000 | 1.0000 | 0.0000 | 0.0287 (4) | |
O1 | 0.0809 (9) | 1.0135 (4) | 0.1951 (7) | 0.0630 (17) | |
H1A | 0.098 (12) | 0.946 (4) | 0.242 (7) | 0.076* | |
H1B | 0.200 (4) | 1.036 (7) | 0.189 (9) | 0.076* | |
O2 | 0.2381 (6) | 1.0811 (4) | −0.0466 (7) | 0.0666 (18) | |
H2A | 0.226 (11) | 1.148 (5) | −0.095 (7) | 0.080* | |
H2B | 0.306 (10) | 1.024 (6) | −0.080 (9) | 0.080* | |
N2 | 0.4686 (7) | 0.8286 (5) | 0.7660 (6) | 0.0481 (16) | |
O3 | 0.4935 (7) | 0.9318 (4) | 0.8009 (6) | 0.0684 (17) | |
O4 | 0.5938 (8) | 0.7571 (5) | 0.7875 (7) | 0.0699 (18) | |
O5 | 0.3209 (7) | 0.7990 (5) | 0.7106 (7) | 0.083 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.031 (3) | 0.026 (3) | 0.046 (4) | 0.005 (2) | 0.000 (3) | −0.002 (3) |
C2 | 0.030 (3) | 0.023 (3) | 0.069 (5) | 0.003 (2) | −0.005 (3) | −0.010 (3) |
C3 | 0.030 (3) | 0.018 (3) | 0.060 (5) | 0.009 (2) | −0.001 (3) | 0.004 (3) |
C4 | 0.028 (3) | 0.018 (3) | 0.064 (5) | 0.004 (2) | −0.005 (3) | 0.000 (3) |
C5 | 0.024 (3) | 0.020 (3) | 0.060 (5) | 0.001 (2) | 0.001 (3) | −0.001 (3) |
C6 | 0.037 (3) | 0.014 (3) | 0.076 (6) | 0.009 (2) | 0.000 (3) | −0.003 (3) |
N1 | 0.027 (2) | 0.022 (2) | 0.033 (3) | 0.0061 (19) | 0.005 (2) | −0.001 (2) |
Ni1 | 0.0214 (6) | 0.0136 (6) | 0.0485 (8) | 0.0038 (4) | −0.0049 (5) | −0.0014 (4) |
O1 | 0.066 (4) | 0.051 (3) | 0.066 (4) | 0.000 (3) | −0.013 (3) | 0.000 (3) |
O2 | 0.044 (3) | 0.035 (3) | 0.121 (6) | 0.003 (2) | 0.010 (3) | 0.012 (3) |
N2 | 0.040 (3) | 0.036 (3) | 0.064 (5) | −0.003 (2) | −0.012 (3) | −0.010 (3) |
O3 | 0.064 (3) | 0.035 (3) | 0.098 (5) | −0.008 (2) | −0.018 (3) | −0.016 (3) |
O4 | 0.059 (3) | 0.059 (3) | 0.091 (5) | 0.017 (3) | 0.006 (3) | −0.008 (3) |
O5 | 0.055 (3) | 0.074 (4) | 0.110 (6) | −0.017 (3) | −0.030 (4) | −0.016 (4) |
C1—N1 | 1.326 (7) | N1—Ni1 | 2.138 (4) |
C1—C2 | 1.378 (8) | Ni1—O2 | 2.113 (5) |
C1—H1 | 0.9300 | Ni1—O2ii | 2.113 (5) |
C2—C3 | 1.411 (8) | Ni1—N1ii | 2.138 (4) |
C2—H2 | 0.9300 | Ni1—O1ii | 2.149 (7) |
C3—C4 | 1.373 (8) | Ni1—O1 | 2.149 (7) |
C3—C6 | 1.465 (8) | O1—H1A | 0.93 (6) |
C4—C5 | 1.362 (7) | O1—H1B | 0.93 (4) |
C4—H4 | 0.9300 | O2—H2A | 0.93 (6) |
C5—N1 | 1.350 (7) | O2—H2B | 0.93 (7) |
C5—H5 | 0.9300 | N2—O5 | 1.231 (6) |
C6—C6i | 1.331 (13) | N2—O4 | 1.236 (7) |
C6—H6 | 0.9300 | N2—O3 | 1.245 (7) |
N1—C1—C2 | 123.4 (5) | O2ii—Ni1—N1ii | 90.05 (18) |
N1—C1—H1 | 118.3 | O2—Ni1—N1 | 90.05 (18) |
C2—C1—H1 | 118.3 | O2ii—Ni1—N1 | 89.95 (18) |
C1—C2—C3 | 119.5 (5) | N1ii—Ni1—N1 | 180.0 |
C1—C2—H2 | 120.3 | O2—Ni1—O1ii | 85.9 (3) |
C3—C2—H2 | 120.3 | O2ii—Ni1—O1ii | 94.1 (3) |
C4—C3—C2 | 116.5 (5) | N1ii—Ni1—O1ii | 90.7 (2) |
C4—C3—C6 | 124.0 (5) | N1—Ni1—O1ii | 89.3 (2) |
C2—C3—C6 | 119.5 (5) | O2—Ni1—O1 | 94.1 (3) |
C5—C4—C3 | 120.1 (5) | O2ii—Ni1—O1 | 85.9 (3) |
C5—C4—H4 | 119.9 | N1ii—Ni1—O1 | 89.3 (2) |
C3—C4—H4 | 119.9 | N1—Ni1—O1 | 90.7 (2) |
N1—C5—C4 | 123.9 (6) | O1ii—Ni1—O1 | 179.999 (2) |
N1—C5—H5 | 118.1 | Ni1—O1—H1A | 119 (6) |
C4—C5—H5 | 118.1 | Ni1—O1—H1B | 96 (6) |
C6i—C6—C3 | 124.7 (7) | H1A—O1—H1B | 102 (8) |
C6i—C6—H6 | 117.7 | Ni1—O2—H2A | 118 (5) |
C3—C6—H6 | 117.7 | Ni1—O2—H2B | 108 (5) |
C1—N1—C5 | 116.5 (5) | H2A—O2—H2B | 112 (9) |
C1—N1—Ni1 | 123.9 (4) | O5—N2—O4 | 120.8 (6) |
C5—N1—Ni1 | 119.6 (4) | O5—N2—O3 | 120.0 (6) |
O2—Ni1—O2ii | 180.0 | O4—N2—O3 | 119.3 (5) |
O2—Ni1—N1ii | 89.95 (18) | ||
N1—C1—C2—C3 | 0.7 (12) | C4—C5—N1—C1 | 4.3 (10) |
C1—C2—C3—C4 | 2.2 (11) | C4—C5—N1—Ni1 | −176.6 (6) |
C1—C2—C3—C6 | −178.6 (7) | C1—N1—Ni1—O2 | −134.3 (5) |
C2—C3—C4—C5 | −1.8 (11) | C5—N1—Ni1—O2 | 46.7 (5) |
C6—C3—C4—C5 | 179.1 (7) | C1—N1—Ni1—O2ii | 45.7 (5) |
C3—C4—C5—N1 | −1.5 (11) | C5—N1—Ni1—O2ii | −133.3 (5) |
C4—C3—C6—C6i | −9.6 (17) | C1—N1—Ni1—O1ii | −48.4 (5) |
C2—C3—C6—C6i | 171.3 (11) | C5—N1—Ni1—O1ii | 132.5 (5) |
C2—C1—N1—C5 | −3.8 (10) | C1—N1—Ni1—O1 | 131.6 (5) |
C2—C1—N1—Ni1 | 177.1 (6) | C5—N1—Ni1—O1 | −47.5 (5) |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x, −y+2, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2B···O3iii | 0.93 (7) | 2.28 (8) | 3.176 (9) | 162 (8) |
O2—H2A···O5iv | 0.93 (6) | 2.14 (7) | 3.068 (8) | 176 (7) |
O1—H1B···O3v | 0.93 (4) | 2.29 (2) | 3.212 (9) | 170 (8) |
O1—H1A···O4vi | 0.93 (6) | 2.37 (3) | 3.252 (8) | 158 (7) |
Symmetry codes: (iii) x, y, z−1; (iv) −x+1/2, y+1/2, −z+1/2; (v) −x+1, −y+2, −z+1; (vi) x−1/2, −y+3/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | [Ni(C12H10N2)(H2O)4](NO3)2 |
Mr | 436.99 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 293 |
a, b, c (Å) | 7.415 (3), 11.426 (4), 10.950 (4) |
β (°) | 97.307 (7) |
V (Å3) | 920.1 (6) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.11 |
Crystal size (mm) | 0.15 × 0.08 × 0.08 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4954, 1799, 1116 |
Rint | 0.173 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.068, 0.238, 1.14 |
No. of reflections | 1799 |
No. of parameters | 136 |
No. of restraints | 4 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 1.08, −1.86 |
Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2B···O3i | 0.93 (7) | 2.28 (8) | 3.176 (9) | 162 (8) |
O2—H2A···O5ii | 0.93 (6) | 2.14 (7) | 3.068 (8) | 176 (7) |
O1—H1B···O3iii | 0.93 (4) | 2.291 (18) | 3.212 (9) | 170 (8) |
O1—H1A···O4iv | 0.93 (6) | 2.37 (3) | 3.252 (8) | 158 (7) |
Symmetry codes: (i) x, y, z−1; (ii) −x+1/2, y+1/2, −z+1/2; (iii) −x+1, −y+2, −z+1; (iv) x−1/2, −y+3/2, z−1/2. |
Acknowledgements
Financial support from the Forest Science & Technology Projects (S121010L080120) and the Cooperative Research Program for Agricultural Science & Technology Development (20070301–036-019–02) is gratefully acknowledged.
References
Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Daniele, P. G., Foti, C., Gianguzza, A., Prenesti, E. & Sammartano, S. (2008). Coord. Chem. Rev. 252, 1093–1107. Web of Science CrossRef CAS Google Scholar
Kim, J. H., Kim, C. & Kim, Y. (2011). Acta Cryst. E67, m3–m4. Web of Science CrossRef IUCr Journals Google Scholar
Lee, E. Y., Park, B. K., Kim, C., Kim, S.-J. & Kim, Y. (2008). Acta Cryst. E64, m286. Web of Science CSD CrossRef IUCr Journals Google Scholar
Park, B. K., Jang, K.-H., Kim, P.-G., Kim, C. & Kim, Y. (2008). Acta Cryst. E64, m1141. Web of Science CSD CrossRef IUCr Journals Google Scholar
Parkin, G. (2004). Chem. Rev. 104, 699–767. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shin, D. H., Han, S.-H., Kim, P.-G., Kim, C. & Kim, Y. (2009). Acta Cryst. E65, m658–m659. Web of Science CSD CrossRef IUCr Journals Google Scholar
Tshuva, E. Y. & Lippard, S. J. (2004). Chem. Rev. 104, 987–1012. Web of Science CrossRef PubMed CAS Google Scholar
Yu, S. M., Koo, K., Kim, P.-G., Kim, C. & Kim, Y. (2010). Acta Cryst. E66, m61–m62. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yu, S. M., Park, C.-H., Kim, P.-G., Kim, C. & Kim, Y. (2008). Acta Cryst. E64, m881–m882. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yu, S. M., Shin, D. H., Kim, P.-G., Kim, C. & Kim, Y. (2009). Acta Cryst. E65, m1045–m1046. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The interaction of transition metal ions with biologically active molecules such as amino acids and various acids is very important in biological systems (Daniele et al., 2008; Parkin, 2004; Tshuva & Lippard, 2004). In attempting to model the interaction, we have extensively studied the interaction of the transition metal carboxylates e.g. copper(II), cadmium(II), and zinc(II) benzoates with a variety of spacers such as quinoxaline, 6-methylquinoline, 3-methylquinoline, trans-1-(2-pyridyl)-2-(4-pyridyl)ethylene, and di-2-pyridyl ketone (Lee et al., 2008; Yu et al., 2008; Park et al., 2008; Shin et al., 2009; Yu et al., 2009; Yu et al., 2010; Kim et al., 2011). However, nickel as a metal ion source has rarely been used. In this work, we have employed nickel(II) trimethylacetate as a building block and trans-1,2-bis(4-pyridyl)ethene as a ligand. We report here on the structure of a new complex poly[tetraqua[trans-1,2-bis(4-pyridyl)ethene]nickel(II) dinitrate].
In the crystal structure of the title compound, [Ni(C12H10N2)(H2O)4] . 2(NO3)]n, the NiII ion lies on a crystallographic inversion center with the distorted octahedral coordination sphere comprising four water ligands and two N donors from the trans-related 1,2-bis(4-pyridyl)ethene ligands, which also have crystallographic inversion symmetry (Fig. 1). These ligands bridge the NiII complex units to form a one-dimensional chain structure. The nitrate counter-anions stabilize the crystal structure through water O—H···Onitrate hydrogen bonds (Table 1).