organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Picric acid–2,4,6-tri­chloro­aniline (1/1)

aDepartment of Chemistry and Biology, Xiangfan University, Xiangfan 441053, People's Republic of China
*Correspondence e-mail: wqwang2008@163.com

(Received 11 February 2011; accepted 16 February 2011; online 12 March 2011)

In the title adduct, C6H4Cl3N·C6H3N3O7, the two benzene rings are almost coplanar, with a dihedral angle of 1.19 (1)° and an inter-ring centroid–centroid separation of 4.816 (2) Å. The crystal structure is stabilized by inter­molecular N—H⋯Onitro hydrogen bonds, giving a chain structure. In addition, there are phenol–nitro O—H⋯O inter­actions.

Related literature

The crystal structures of picrate salts and picric acid complexes have been studied to investigate charge-transfer processes, see: Nagata et al. (1995[Nagata, H., In, Y., Doi, M., Ishida, T. & Wakahara, A. (1995). Acta Cryst. B51, 1051-1058.]); Smith et al. (2004[Smith, G., Wermuth, U. D. & Healy, P. C. (2004). Acta Cryst. E60, o1800-o1803.]). For the crystal structures of picric acid complexes, see: Li (2009[Li, Y. (2009). Acta Cryst. E65, o2566.]); Sivaramkumar et al. (2010[Sivaramkumar, M. S., Velmurugan, R., Sekar, M., Ramesh, P. & Ponnuswamy, M. N. (2010). Acta Cryst. E66, o1820.]).

[Scheme 1]

Experimental

Crystal data
  • C6H4Cl3N·C6H3N3O7

  • Mr = 425.57

  • Orthorhombic, P b c a

  • a = 9.2162 (14) Å

  • b = 10.0174 (14) Å

  • c = 35.051 (5) Å

  • V = 3236.0 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.61 mm−1

  • T = 298 K

  • 0.16 × 0.12 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997[Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.]) Tmin = 0.908, Tmax = 0.941

  • 19589 measured reflections

  • 3186 independent reflections

  • 2287 reflections with I > 2σ(I)

  • Rint = 0.076

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.120

  • S = 1.10

  • 3186 reflections

  • 244 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O7 0.89 (4) 1.76 (4) 2.546 (4) 145 (4)
N4—H4A⋯O5i 0.85 (2) 2.39 (2) 3.159 (4) 150 (3)
N4—H4B⋯O6ii 0.84 (2) 2.40 (2) 3.194 (4) 156 (4)
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

2,4,6-Trinitrophenol (picric acid), was primarily used to manufacture explosives and is also used as an intermediate in dye manufacturing. The crystal structures of a large number of picrate salts and picric acid complexes have been studied to determine the conformational features and to understand charge transfer processes (Li et al., 2009; Nagata et al., 1995; Sivaramkumar et al., 2010, Smith et al., 2004). We herein report the 1:1 cocrystal structure of 2,4,6-trichloroaniline and picric acid C6H4Cl3N . C6H3N3O7 (I) (Fig. 1). In the title adduct, the two phenyl rings are almost coplanar with a dihedral angle of 1.19 (1)° and an inter-ring centroid separation of 4.816 (2) Å. The crystal structure is stabilized by intermolecular N—H···Onitro hydrogen bonds giving a one-dimensional chain structure and in addition, intramolecular N—H···Cl and phenol O—H···O(nitro) interactions are observed (Table 1).

Related literature top

The crystal structures of picrate salts and picric acid complexes have been studied to investigate charge-transfer processes, see: Nagata et al. (1995); Smith et al. (2004). For the crystal structures of picric acid complexes, see: Li et al. (2009); Sivaramkumar et al. (2010).

Experimental top

2,4,6-Trichloroaniline (0.19 g, 1.0 mmol) and picric acid (0.23 g, 1.0 mmol) were dissolved in MeOH-CH2Cl2 (3:1) and the mixture was kept at room temperature for one week. Red crystals suitable for single-crystal X-ray diffraction were obtained.

Refinement top

The O– and N-bound H atoms were located in a difference map and refined isotropically. The remaining H atoms were positioned geometrically (C—H = 0.93 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title compound with the atom-numbering scheme, with displacement ellipsoids drawn at the 30% probability level.
Picric acid–2,4,6-trichloroaniline (1/1) top
Crystal data top
C6H4Cl3N·C6H3N3O7F(000) = 1712
Mr = 425.57Dx = 1.747 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 1781 reflections
a = 9.2162 (14) Åθ = 2.5–19.2°
b = 10.0174 (14) ŵ = 0.61 mm1
c = 35.051 (5) ÅT = 298 K
V = 3236.0 (8) Å3Block, red
Z = 80.16 × 0.12 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3186 independent reflections
Radiation source: fine-focus sealed tube2287 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.076
ϕ and ω scansθmax = 26.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 1111
Tmin = 0.908, Tmax = 0.941k = 1210
19589 measured reflectionsl = 4143
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0381P)2 + 1.3007P]
where P = (Fo2 + 2Fc2)/3
3186 reflections(Δ/σ)max = 0.001
244 parametersΔρmax = 0.21 e Å3
2 restraintsΔρmin = 0.27 e Å3
Crystal data top
C6H4Cl3N·C6H3N3O7V = 3236.0 (8) Å3
Mr = 425.57Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 9.2162 (14) ŵ = 0.61 mm1
b = 10.0174 (14) ÅT = 298 K
c = 35.051 (5) Å0.16 × 0.12 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3186 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
2287 reflections with I > 2σ(I)
Tmin = 0.908, Tmax = 0.941Rint = 0.076
19589 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0582 restraints
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.21 e Å3
3186 reflectionsΔρmin = 0.27 e Å3
244 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4507 (4)0.4557 (3)0.57639 (9)0.0373 (8)
C20.5792 (3)0.4955 (3)0.55888 (10)0.0396 (8)
C30.5881 (4)0.6056 (4)0.53560 (10)0.0422 (9)
H30.67600.62950.52450.051*
C40.4651 (4)0.6801 (3)0.52893 (9)0.0390 (8)
C50.3352 (4)0.6456 (3)0.54541 (10)0.0415 (9)
H50.25230.69600.54080.050*
C60.3293 (3)0.5361 (3)0.56874 (9)0.0375 (8)
C70.4085 (3)0.4501 (3)0.70238 (9)0.0325 (7)
C80.5325 (3)0.3724 (3)0.70914 (9)0.0343 (8)
C90.6640 (3)0.3992 (3)0.69253 (9)0.0360 (8)
H90.74370.34470.69720.043*
C100.6760 (4)0.5082 (3)0.66889 (9)0.0379 (8)
C110.5597 (4)0.5899 (3)0.66136 (9)0.0379 (8)
H110.56940.66420.64560.046*
C120.4278 (3)0.5584 (3)0.67784 (9)0.0324 (8)
Cl10.73498 (10)0.40282 (11)0.56753 (3)0.0607 (3)
Cl20.47396 (11)0.81912 (11)0.49911 (3)0.0592 (3)
Cl30.16542 (10)0.49502 (10)0.59030 (3)0.0560 (3)
N10.5268 (3)0.2597 (3)0.73550 (9)0.0478 (8)
N20.8171 (3)0.5390 (4)0.65186 (9)0.0507 (8)
N30.3064 (3)0.6474 (3)0.66942 (9)0.0452 (8)
N40.4439 (4)0.3486 (3)0.60078 (10)0.0520 (8)
H4A0.512 (3)0.290 (3)0.6009 (11)0.062*
H4B0.359 (2)0.332 (4)0.6079 (11)0.062*
O10.2826 (3)0.4170 (2)0.71812 (7)0.0494 (7)
H1A0.218 (5)0.479 (4)0.7114 (11)0.074*
O20.4487 (4)0.2669 (3)0.76291 (9)0.0979 (13)
O30.6055 (3)0.1642 (3)0.72928 (8)0.0643 (8)
O40.9144 (3)0.4573 (3)0.65587 (9)0.0711 (9)
O50.8294 (3)0.6445 (3)0.63491 (9)0.0726 (9)
O60.3275 (3)0.7422 (3)0.64860 (8)0.0672 (8)
O70.1878 (3)0.6247 (3)0.68450 (8)0.0602 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.041 (2)0.035 (2)0.0352 (19)0.0034 (16)0.0003 (15)0.0064 (15)
C20.0318 (19)0.042 (2)0.045 (2)0.0053 (16)0.0046 (15)0.0061 (17)
C30.0369 (19)0.045 (2)0.045 (2)0.0084 (17)0.0048 (16)0.0036 (17)
C40.0398 (19)0.037 (2)0.040 (2)0.0048 (17)0.0010 (15)0.0042 (16)
C50.0319 (18)0.045 (2)0.047 (2)0.0040 (16)0.0042 (16)0.0025 (17)
C60.0333 (18)0.040 (2)0.0395 (19)0.0019 (16)0.0051 (15)0.0023 (16)
C70.0329 (18)0.0345 (19)0.0299 (17)0.0024 (15)0.0016 (14)0.0052 (14)
C80.0383 (18)0.0281 (19)0.0365 (18)0.0010 (15)0.0009 (15)0.0055 (14)
C90.0330 (17)0.037 (2)0.0377 (18)0.0034 (15)0.0012 (15)0.0017 (15)
C100.0355 (19)0.039 (2)0.0392 (19)0.0075 (16)0.0032 (15)0.0038 (16)
C110.044 (2)0.032 (2)0.0385 (19)0.0068 (16)0.0021 (15)0.0007 (15)
C120.0355 (18)0.0322 (19)0.0296 (17)0.0002 (15)0.0040 (14)0.0033 (14)
Cl10.0420 (5)0.0648 (7)0.0754 (7)0.0154 (5)0.0015 (5)0.0019 (5)
Cl20.0527 (6)0.0609 (7)0.0641 (6)0.0095 (5)0.0010 (5)0.0236 (5)
Cl30.0402 (5)0.0565 (6)0.0712 (7)0.0038 (5)0.0176 (5)0.0094 (5)
N10.0449 (18)0.050 (2)0.0481 (19)0.0053 (16)0.0021 (15)0.0120 (15)
N20.0446 (19)0.052 (2)0.056 (2)0.0106 (17)0.0097 (16)0.0038 (17)
N30.0457 (19)0.041 (2)0.0492 (19)0.0058 (15)0.0081 (15)0.0014 (15)
N40.049 (2)0.045 (2)0.062 (2)0.0031 (16)0.0048 (18)0.0101 (17)
O10.0370 (14)0.0485 (17)0.0626 (17)0.0027 (12)0.0115 (12)0.0103 (13)
O20.105 (3)0.114 (3)0.075 (2)0.052 (2)0.051 (2)0.0556 (19)
O30.0714 (19)0.0479 (18)0.073 (2)0.0191 (15)0.0092 (15)0.0161 (14)
O40.0390 (16)0.079 (2)0.095 (2)0.0047 (16)0.0162 (15)0.0066 (18)
O50.070 (2)0.0587 (19)0.089 (2)0.0161 (16)0.0300 (16)0.0133 (17)
O60.0654 (19)0.0548 (18)0.081 (2)0.0084 (15)0.0129 (15)0.0285 (16)
O70.0393 (15)0.0554 (18)0.086 (2)0.0101 (13)0.0032 (14)0.0066 (15)
Geometric parameters (Å, º) top
C1—N41.373 (4)C9—C101.374 (4)
C1—C21.392 (5)C9—H90.9300
C1—C61.404 (5)C10—C111.375 (5)
C2—C31.374 (5)C10—N21.464 (4)
C2—Cl11.736 (3)C11—C121.382 (4)
C3—C41.377 (5)C11—H110.9300
C3—H30.9300C12—N31.461 (4)
C4—C51.373 (4)N1—O21.202 (4)
C4—Cl21.743 (3)N1—O31.221 (4)
C5—C61.370 (4)N2—O51.218 (4)
C5—H50.9300N2—O41.222 (4)
C6—Cl31.739 (3)N3—O61.213 (4)
C7—O11.327 (4)N3—O71.235 (4)
C7—C121.396 (4)N4—H4A0.854 (18)
C7—C81.404 (4)N4—H4B0.842 (18)
C8—C91.371 (4)O1—H1A0.89 (4)
C8—N11.460 (4)
N4—C1—C2122.5 (3)C8—C9—H9120.6
N4—C1—C6122.0 (3)C10—C9—H9120.6
C2—C1—C6115.4 (3)C9—C10—C11121.7 (3)
C3—C2—C1122.8 (3)C9—C10—N2119.0 (3)
C3—C2—Cl1118.9 (3)C11—C10—N2119.3 (3)
C1—C2—Cl1118.3 (3)C10—C11—C12118.0 (3)
C2—C3—C4119.1 (3)C10—C11—H11121.0
C2—C3—H3120.4C12—C11—H11121.0
C4—C3—H3120.4C11—C12—C7123.2 (3)
C5—C4—C3120.7 (3)C11—C12—N3116.7 (3)
C5—C4—Cl2119.6 (3)C7—C12—N3120.0 (3)
C3—C4—Cl2119.8 (3)O2—N1—O3123.0 (3)
C6—C5—C4119.1 (3)O2—N1—C8118.8 (3)
C6—C5—H5120.4O3—N1—C8118.1 (3)
C4—C5—H5120.4O5—N2—O4124.7 (3)
C5—C6—C1122.8 (3)O5—N2—C10117.7 (3)
C5—C6—Cl3118.9 (3)O4—N2—C10117.6 (3)
C1—C6—Cl3118.3 (3)O6—N3—O7122.9 (3)
O1—C7—C12124.2 (3)O6—N3—C12118.4 (3)
O1—C7—C8120.2 (3)O7—N3—C12118.6 (3)
C12—C7—C8115.5 (3)C1—N4—H4A120 (3)
C9—C8—C7122.6 (3)C1—N4—H4B112 (3)
C9—C8—N1116.9 (3)H4A—N4—H4B123 (4)
C7—C8—N1120.4 (3)C7—O1—H1A108 (3)
C8—C9—C10118.9 (3)
N4—C1—C2—C3177.4 (3)C8—C9—C10—C110.4 (5)
C6—C1—C2—C30.1 (5)C8—C9—C10—N2178.5 (3)
N4—C1—C2—Cl11.6 (5)C9—C10—C11—C121.0 (5)
C6—C1—C2—Cl1179.0 (2)N2—C10—C11—C12180.0 (3)
C1—C2—C3—C40.4 (5)C10—C11—C12—C71.7 (5)
Cl1—C2—C3—C4179.4 (3)C10—C11—C12—N3179.8 (3)
C2—C3—C4—C50.4 (5)O1—C7—C12—C11179.0 (3)
C2—C3—C4—Cl2179.4 (3)C8—C7—C12—C110.8 (5)
C3—C4—C5—C60.2 (5)O1—C7—C12—N32.9 (5)
Cl2—C4—C5—C6179.9 (3)C8—C7—C12—N3178.8 (3)
C4—C5—C6—C10.7 (5)C9—C8—N1—O2144.8 (4)
C4—C5—C6—Cl3178.7 (3)C7—C8—N1—O233.6 (5)
N4—C1—C6—C5178.0 (3)C9—C8—N1—O332.8 (5)
C2—C1—C6—C50.6 (5)C7—C8—N1—O3148.8 (3)
N4—C1—C6—Cl31.4 (5)C9—C10—N2—O5171.2 (3)
C2—C1—C6—Cl3178.8 (2)C11—C10—N2—O57.8 (5)
O1—C7—C8—C9177.6 (3)C9—C10—N2—O48.4 (5)
C12—C7—C8—C90.7 (5)C11—C10—N2—O4172.6 (3)
O1—C7—C8—N14.1 (5)C11—C12—N3—O60.4 (4)
C12—C7—C8—N1177.6 (3)C7—C12—N3—O6178.5 (3)
C7—C8—C9—C101.4 (5)C11—C12—N3—O7178.0 (3)
N1—C8—C9—C10177.0 (3)C7—C12—N3—O70.2 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O70.89 (4)1.76 (4)2.546 (4)145 (4)
N4—H4A···Cl10.85 (2)2.62 (4)2.975 (3)106 (3)
N4—H4A···O5i0.85 (2)2.39 (2)3.159 (4)150 (3)
N4—H4B···Cl30.84 (2)2.49 (3)2.979 (3)118 (3)
N4—H4B···O6ii0.84 (2)2.40 (2)3.194 (4)156 (4)
Symmetry codes: (i) x+3/2, y1/2, z; (ii) x+1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC6H4Cl3N·C6H3N3O7
Mr425.57
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)298
a, b, c (Å)9.2162 (14), 10.0174 (14), 35.051 (5)
V3)3236.0 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.61
Crystal size (mm)0.16 × 0.12 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.908, 0.941
No. of measured, independent and
observed [I > 2σ(I)] reflections
19589, 3186, 2287
Rint0.076
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.120, 1.10
No. of reflections3186
No. of parameters244
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.27

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O70.89 (4)1.76 (4)2.546 (4)145 (4)
N4—H4A···Cl10.854 (18)2.62 (4)2.975 (3)106 (3)
N4—H4A···O5i0.854 (18)2.39 (2)3.159 (4)150 (3)
N4—H4B···Cl30.842 (18)2.49 (3)2.979 (3)118 (3)
N4—H4B···O6ii0.842 (18)2.40 (2)3.194 (4)156 (4)
Symmetry codes: (i) x+3/2, y1/2, z; (ii) x+1/2, y1/2, z.
 

Acknowledgements

The author is grateful to Xiangfan University for financial support.

References

First citationBruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, Y. (2009). Acta Cryst. E65, o2566.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNagata, H., In, Y., Doi, M., Ishida, T. & Wakahara, A. (1995). Acta Cryst. B51, 1051–1058.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSivaramkumar, M. S., Velmurugan, R., Sekar, M., Ramesh, P. & Ponnuswamy, M. N. (2010). Acta Cryst. E66, o1820.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D. & Healy, P. C. (2004). Acta Cryst. E60, o1800–o1803.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds