metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages m483-m484

Bis[di­cyclo­hexyl­(phenyl)­phosphane-κP]silver(I) perchlorate di­chloro­methane monosolvate

aResearch Centre for Synthesis and Catalysis, Department of Chemistry, University of Johannesburg, PO Box 524 Auckland Park, Johannesburg 2006, South Africa
*Correspondence e-mail: boowaga@uj.ac.za

(Received 14 February 2011; accepted 15 March 2011; online 26 March 2011)

In the title compound, [Ag{P(C6H11)2(C6H5)}2]ClO4·CH2Cl2, the AgI atom in the mononuclear complex cation is coordinated by two P atoms of the phosphane ligands [Ag—P = 2.3993 (4) and 2.4011 (4) Å; P—Ag—P = 177.473 (18)°] and the perchlorate anion acts as the counter-anion. There is an Ag⋯Operchlorate inter­action of 2.873 (2) Å, which contributes to the slightly non-linear bond angle about the AgI atom. Weak inter­molecular C—H⋯O hydrogen-bonding inter­actions involving phenyl, cyclo­hexyl and dichloro­methane H-atom donors and perchlorate O-atom acceptors contribute to the stabilization of the crystal structure.

Related literature

For a review of the chemistry of silver(I) complexes, see: Meijboom et al. (2009[Meijboom, R., Bowen, R. J. & Berners-Price, S. J. (2009). Coord. Chem. Rev. 253, 325-342.]). For the coordination chemistry of AgX salts (X = F, Cl, Br, I, BF4, PF6, NO3) with group 15 donor ligands, with the main focus on tertiary phosphanes and in their context as potential anti­tumor agents, see: Berners-Price et al. (1998[Berners-Price, S. J., Bowen, R. J., Harvey, P. J., Healy, P. C. & Koutsantonis, G. A. (1998). J. Chem. Soc. Dalton Trans. pp. 1743-1750.]); Liu et al. (2008[Liu, J. J., Galetis, P., Farr, A., Maharaj, L., Samarasinha, H., McGechan, A. C., Baguley, B. C., Bowen, R. J., Berners-Price, S. J. & McKeage, M. J. (2008). J. Inorg. Biochem. 102, 303-310.]). For two- and three-coordinate AgX (X = NO3) complexes/salts with bulky phosphane ligands, see: Bowmaker et al. (1996[Bowmaker, G. A., Harvey, P. J., Healy, P. C., Skelton, B. W. & White, A. H. (1996). J. Chem. Soc. Dalton Trans. pp. 2449-2465.]); Camalli & Caruso (1988[Camalli, M. & Caruso, F. (1988). Inorg. Chim. Acta, 144, 205-211.]); Fenske et al. (2007[Fenske, D., Rothenberger, A. & Wieber, S. (2007). Eur. J. Inorg. Chem. pp. 648-651.]); for X = NO2, see: Cingolani et al. (2002[Cingolani, A., Pellei, M., Pettinari, C., Santini, C., Skelton, B. W. & White, A. H. (2002). Inorg. Chem. 41, 6633-6645.]); for X = Cl, Br, I, CN, SCN and NCO, see: Bowmaker et al. (1996[Bowmaker, G. A., Harvey, P. J., Healy, P. C., Skelton, B. W. & White, A. H. (1996). J. Chem. Soc. Dalton Trans. pp. 2449-2465.]); Bayler et al. (1996[Bayler, A., Schier, A., Bowmaker, G. A. & Schmidbaur, H. (1996). J. Am. Chem. Soc. 118, 7006-7007.]); for two-coord­inate X = ClO4, see: Alyea et al. (1982[Alyea, E. C., Ferguson, G. & Somogyvari, A. (1982). Inorg. Chem. 21, 1369-1371.], 2002[Alyea, E. C., Kannan, S. & Meehan, P. R. (2002). Acta Cryst. C58, m365-m367.]); Baiada et al. (1990[Baiada, A., Jardine, F. H. & Willett, R. D. (1990). Inorg. Chem. 29, 3042-3046.]); Burgoyne et al. (2010[Burgoyne, A. R., Meijboom, R., Muller, A. & Omondi, B. (2010). Acta Cryst. E66, m503-m504.]). For the solution behavior of [LnAgX] complexes, see: Muetterties & Alegranti (1972[Muetterties, E. L. & Alegranti, C. W. (1972). J. Am. Chem. Soc. 94, 6386-6391.]). For atomic radii, see: Pauling (1960[Pauling, L. (1960). The Nature of the Chemical Bond 3rd ed., pp. 224-256. Ithaca: Cornell University Press.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag(C18H27P)2]ClO4·CH2Cl2

  • Mr = 840.98

  • Monoclinic, P n

  • a = 9.5910 (3) Å

  • b = 13.4369 (4) Å

  • c = 15.1290 (5) Å

  • β = 94.706 (1)°

  • V = 1943.15 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.84 mm−1

  • T = 100 K

  • 0.17 × 0.15 × 0.13 mm

Data collection
  • Bruker X8 APEXII 4K Kappa CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.870, Tmax = 0.898

  • 40522 measured reflections

  • 8989 independent reflections

  • 8861 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.017

  • wR(F2) = 0.045

  • S = 1.06

  • 8989 reflections

  • 424 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.28 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 4288 Friedel pairs

  • Flack parameter: 0.029 (10)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C23—H23A⋯O3i 0.99 2.48 3.394 (2) 153
C67—H67A⋯O2 0.99 2.52 3.423 (3) 152
C13—H13⋯O3ii 0.95 2.54 3.448 (2) 160
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}]; (ii) x-1, y, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). APEX2, SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker, 2007[Bruker (2007). APEX2, SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2009).]) and ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Its been shown that monomeric [AgX(PR3)2]/[Ag(PR3)2]+X- or dimeric complexes [{AgX(PR3)2}2] (Meijboom et al., 2009; Bowmaker et al., 1996 and references therein) are often the products of a reaction of silver(I) salts with monodentate tertiary phosphanes in a 1:2 stoichiometric ratio. The product is dependent on the donor properties of the phosphane ligand, the bulkiness of the ligand substituents and the donor capabilities of the anion and when when π-acid ligands are used in such reactions the complexes formed have been shown to be stable and univalent. These complexes can be two-, three- or four-coordinate depending upon the size and ligation capabilities of the ligands (Baiada et al., 1990). Generally a combination of a weak donor anion and bulky phosphane ligand often leads to the formation of two- or three-coordinate complexes.

In the title compound [Ag{PPh(C6H11)2}2]+ ClO4- . CH2Cl2 (I) determined at determined at 100 (2) K, the asymmetric unit contains one AgI complex cation, one perchlorate counter-ion and a dichloromethane molecule of solvation (Fig. 1). In the structure of (I) the cation is mononuclear with the Ag atom coordinated to two P atoms of the dicyclohexylphenylphosphane ligands [Ag—P, 2.3993 (4), 2.4011 (4) Å; P—Ag—P, 177.473 (18)°]. There is an Ag···Operchlorate interaction of 2.8728 (20) Å which contributes to the slightly non-linear bond angle about Ag. This distance indicates very weak electrostatic interaction between the Ag ion and the nitrate counterion (Ag···O distances are 2.873 Å or more). The phosphane ligands appear to also have little steric influnce in the P–Ag–P angle. The cation Ag—P bond distances are well within the Ag—P bond length range for two- or three-coordinate complexes of this type (2.352–2.521 Å). Comparatively, the distances are close to the average of 2.416 (2) Å reported for [Ag{P(C5H9)Ph2}2].ClO4 (Baiada et al., 1990). Based on the sum of covalent radii of Ag and P atoms, the Ag—P distance is calculated as 2.44 Å (Pauling, 1960).

In the crystal, the Ag complex unit interacts with the perchlorate O atoms resulting in weak intermolecular C—H···O hydrogen-bonding interactions involving phenyl, cyclohexyl and dichloromethane H donors (Table 1), contributing to the stabilization of the structure (Fig. 2).

Related literature top

For a review of the chemistry of silver(I) complexes, see: Meijboom et al. (2009). For the coordination chemistry of AgX salts (X = F-, Cl-, Br-, I-, BF4-, PF6-, NO3-) with group 15 donor ligands, with the main focus on tertiary phosphanes and in their context as potential antitumor agents, see: Berners-Price et al. (1998); Liu et al. (2008). For two- and three-coordinate AgX (X = NO3-) complexes/salts with bulky phosphane ligands, see: Bowmaker et al. (1996); Camalli & Caruso (1988); Fenske et al. (2007); for X = NO2, see: Cingolani et al. (2002); for X = Cl-, Br-, I-, CN-, SCN- and NCO-, see: Bowmaker et al. (1996); Bayler et al. (1996); for two-coordinate X = ClO4-, see: Alyea et al. (1982, 2002); Baiada et al. (1990); Burgoyne et al. (2010). For the solution behavior of [LnAgX] complexes, see: Muetterties & Alegranti (1972). For atomic radii, see: Pauling (1960).

Experimental top

AgClO4 (0.10 g, 0.50 mmol) and P{(C6H11)2Ph} (0.54 g, 1.0 mmol) were dissolved in warm ethanol to give a clear solution which on cooling and solvent evaporation deposited white solid which was then recrystallised in dichloromethane giving colourles crystals of [Ag{PPh(C6H11)2]+ClO4- in good yield.

Refinement top

All hydrogen atoms were positioned geometrically, with C–H = 0.98 Å for methine H atoms, 0.97 Å for methylene hydrogen and 0.93 Å for aromatic H atoms, and allowed to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus and XPREP (Bruker, 2007); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of (I) (50% probability displacement ellipsoids) showing atom numbering scheme. H atoms are omitted.
[Figure 2] Fig. 2. A perspective diagram of the crystal of (I) showing, C—H···O intermolecular interactions.
Bis[dicyclohexyl(phenyl)phosphane-κP]silver(I) perchlorate dichloromethane monosolvate top
Crystal data top
[Ag(C18H27P)2]ClO4·CH2Cl2F(000) = 876
Mr = 840.98Dx = 1.437 Mg m3
Monoclinic, PnMo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2yacCell parameters from 42062 reflections
a = 9.5910 (3) Åθ = 2.4–28°
b = 13.4369 (4) ŵ = 0.84 mm1
c = 15.1290 (5) ÅT = 100 K
β = 94.706 (1)°Block, colourless
V = 1943.15 (11) Å30.17 × 0.15 × 0.13 mm
Z = 2
Data collection top
Bruker X8 APEXII 4K Kappa CCD
diffractometer
8861 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ϕ and ω scansθmax = 28°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1212
Tmin = 0.870, Tmax = 0.898k = 1717
40522 measured reflectionsl = 1919
8989 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.017H-atom parameters constrained
wR(F2) = 0.045 w = 1/[σ2(Fo2) + (0.0211P)2 + 0.5077P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.004
8989 reflectionsΔρmax = 0.43 e Å3
424 parametersΔρmin = 0.28 e Å3
2 restraintsAbsolute structure: Flack (1983), 4288 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.029 (10)
Crystal data top
[Ag(C18H27P)2]ClO4·CH2Cl2V = 1943.15 (11) Å3
Mr = 840.98Z = 2
Monoclinic, PnMo Kα radiation
a = 9.5910 (3) ŵ = 0.84 mm1
b = 13.4369 (4) ÅT = 100 K
c = 15.1290 (5) Å0.17 × 0.15 × 0.13 mm
β = 94.706 (1)°
Data collection top
Bruker X8 APEXII 4K Kappa CCD
diffractometer
8989 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
8861 reflections with I > 2σ(I)
Tmin = 0.870, Tmax = 0.898Rint = 0.025
40522 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.017H-atom parameters constrained
wR(F2) = 0.045Δρmax = 0.43 e Å3
S = 1.06Δρmin = 0.28 e Å3
8989 reflectionsAbsolute structure: Flack (1983), 4288 Friedel pairs
424 parametersAbsolute structure parameter: 0.029 (10)
2 restraints
Special details top

Experimental. The intensity data were collected on a Bruker X8 Apex 4 K CCD diffractometer using an exposure time of 15 sec/per frame. A total of 2217 frames were collected with a frame width of 0.5° covering up to θ = 28.00° with 99.8% completeness accomplished.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

>>> The Following ALERTS were generated <<< Format: alert-number_ALERT_alert-type_alert-level text

111_ALERT_2_B ADDSYM Detects (Pseudo) Centre of Symmetry ···.. 91 PerFi 113_ALERT_2_C ADDSYM Suggests Possible Pseudo/New Space-group. P21/c Author Response: The ADDSYM alert is false. For Z = 2, a center of symmetry is impossible. The structure cannot be solved in P21/c. 220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ··· 2.61 Ratio 244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbours for Cl1 Probably caused by movement of carbon atom. 860_ALERT_3_G Note: Number of Least-Squares Restraints ······. 2 Author response: Two reflections omitted (0 1 1) and (0 1 -1); Affected by beam stop.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C110.02707 (17)0.53292 (12)0.29399 (11)0.0125 (3)
C120.12656 (18)0.56247 (12)0.35064 (11)0.0161 (3)
H120.10410.6130.39330.019*
C130.25890 (19)0.51870 (13)0.34549 (13)0.0204 (4)
H130.32570.53880.3850.024*
C140.29256 (18)0.44581 (13)0.28264 (13)0.0205 (4)
H140.38240.41550.27930.025*
C150.19568 (19)0.41696 (13)0.22475 (12)0.0179 (3)
H150.21990.36810.18070.021*
C160.06343 (18)0.45913 (12)0.23082 (11)0.0145 (3)
H160.00330.43780.19180.017*
C210.21578 (17)0.57881 (12)0.19859 (10)0.0119 (3)
H210.19380.51160.17280.014*
C220.14331 (18)0.65755 (12)0.13730 (11)0.0150 (3)
H22A0.04070.64820.13480.018*
H22B0.16530.72480.16120.018*
C230.19249 (19)0.64875 (13)0.04391 (11)0.0182 (3)
H23A0.16220.58380.0180.022*
H23B0.14850.70190.00590.022*
C240.3509 (2)0.65726 (14)0.04524 (11)0.0246 (4)
H24A0.37990.6440.0150.03*
H24B0.37950.7260.06170.03*
C250.4249 (2)0.58524 (17)0.11003 (12)0.0291 (4)
H25A0.52680.59820.11330.035*
H25B0.40890.51650.08810.035*
C260.37395 (19)0.59401 (14)0.20338 (12)0.0212 (4)
H26A0.42090.54330.24280.025*
H26B0.39790.66050.22830.025*
C310.24934 (17)0.49289 (12)0.37783 (10)0.0128 (3)
H310.34980.51350.38040.015*
C320.24074 (18)0.38648 (11)0.34070 (10)0.0160 (3)
H32A0.14170.36490.33430.019*
H32B0.27640.38570.28110.019*
C330.3257 (2)0.31375 (12)0.40118 (11)0.0197 (4)
H33A0.3120.24530.37780.024*
H33B0.42640.33020.40140.024*
C340.28224 (19)0.31800 (12)0.49569 (11)0.0180 (3)
H34A0.18490.29380.49660.022*
H34B0.34350.27370.5340.022*
C350.29225 (19)0.42345 (12)0.53194 (11)0.0153 (3)
H35A0.39130.4450.53670.018*
H35B0.25910.42450.59220.018*
C360.20534 (17)0.49594 (12)0.47266 (10)0.0136 (3)
H36A0.21780.56420.49660.016*
H36B0.10510.47840.47250.016*
C410.10067 (18)1.01131 (12)0.37557 (11)0.0155 (3)
C420.04090 (18)1.09320 (12)0.41545 (11)0.0180 (3)
H420.04011.09580.47820.022*
C430.0174 (2)1.17090 (13)0.36388 (12)0.0222 (4)
H430.06441.22360.3910.027*
C440.00698 (19)1.17140 (12)0.27295 (11)0.0204 (3)
H440.03931.22720.23850.024*
C450.0506 (2)1.09062 (14)0.23249 (12)0.0224 (4)
H450.0521.0890.16980.027*
C460.10678 (18)1.01141 (13)0.28362 (11)0.0165 (3)
H460.14940.95730.25570.02*
C510.09940 (17)0.90840 (12)0.54482 (10)0.0134 (3)
H510.10790.97620.57190.016*
C520.05629 (18)0.88336 (14)0.52725 (12)0.0198 (4)
H52A0.1020.93360.48670.024*
H52B0.06660.81750.49810.024*
C530.1279 (2)0.88174 (16)0.61383 (12)0.0274 (4)
H53A0.12550.94930.64010.033*
H53B0.22710.86210.60140.033*
C540.0550 (2)0.80857 (15)0.67974 (13)0.0311 (4)
H54A0.09950.81170.73640.037*
H54B0.06660.74010.65620.037*
C550.1000 (2)0.83198 (14)0.69654 (12)0.0253 (4)
H55A0.14490.78130.73690.03*
H55B0.11150.89760.7260.03*
C560.1723 (2)0.83343 (13)0.60998 (11)0.0190 (3)
H56A0.16880.76620.58310.023*
H56B0.27180.85220.62250.023*
C610.36538 (18)0.95152 (12)0.46563 (11)0.0140 (3)
H610.41180.89940.5050.017*
C620.38033 (18)1.04925 (13)0.51713 (12)0.0169 (3)
H62A0.32761.10210.48320.02*
H62B0.3391.04140.57460.02*
C630.5324 (2)1.08093 (14)0.53414 (13)0.0215 (4)
H63A0.58061.03470.57750.026*
H63B0.5361.14830.56080.026*
C640.61025 (19)1.08221 (13)0.45012 (13)0.0227 (4)
H64A0.57151.13540.410.027*
H64B0.71041.09690.46580.027*
C650.59659 (19)0.98287 (13)0.40285 (12)0.0199 (4)
H65A0.64440.9310.44060.024*
H65B0.64330.98660.3470.024*
C660.44409 (18)0.95370 (13)0.38199 (11)0.0178 (3)
H66A0.43940.88710.35380.021*
H66B0.39861.00190.33940.021*
C670.6908 (2)0.77168 (16)0.25252 (15)0.0267 (4)
H67A0.65570.76740.31220.032*
H67B0.69560.70330.22850.032*
O10.5106 (2)0.74765 (10)0.57255 (11)0.0428 (4)
O20.68626 (18)0.72677 (14)0.47496 (12)0.0383 (4)
O30.57037 (17)0.58815 (9)0.52764 (9)0.0344 (3)
O40.45640 (16)0.69645 (12)0.42368 (10)0.0393 (4)
P10.14874 (4)0.58485 (3)0.30855 (3)0.01062 (8)
P20.18357 (4)0.90993 (3)0.43989 (3)0.01080 (8)
Cl10.55468 (4)0.68973 (3)0.50066 (2)0.01629 (7)
Cl20.57383 (5)0.84360 (3)0.18233 (3)0.02784 (9)
Cl30.85874 (6)0.82457 (5)0.26125 (4)0.04347 (13)
Ag10.170525 (17)0.748243 (8)0.372437 (13)0.01296 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C110.0124 (7)0.0107 (7)0.0141 (7)0.0004 (6)0.0002 (6)0.0027 (5)
C120.0167 (8)0.0149 (7)0.0170 (8)0.0018 (6)0.0023 (6)0.0001 (6)
C130.0155 (9)0.0180 (9)0.0286 (10)0.0021 (7)0.0075 (7)0.0023 (7)
C140.0125 (8)0.0176 (8)0.0310 (9)0.0002 (6)0.0001 (7)0.0054 (7)
C150.0190 (9)0.0147 (8)0.0191 (8)0.0023 (6)0.0039 (7)0.0007 (6)
C160.0160 (8)0.0145 (7)0.0130 (7)0.0014 (6)0.0012 (6)0.0002 (6)
C210.0117 (7)0.0122 (7)0.0120 (7)0.0001 (6)0.0022 (6)0.0008 (5)
C220.0183 (8)0.0140 (7)0.0124 (7)0.0010 (6)0.0007 (6)0.0018 (6)
C230.0236 (9)0.0191 (8)0.0118 (7)0.0031 (7)0.0003 (6)0.0019 (6)
C240.0275 (10)0.0308 (10)0.0162 (8)0.0107 (8)0.0052 (7)0.0021 (7)
C250.0157 (9)0.0517 (12)0.0208 (9)0.0019 (8)0.0072 (7)0.0039 (8)
C260.0139 (8)0.0334 (10)0.0165 (8)0.0019 (7)0.0025 (6)0.0053 (7)
C310.0139 (8)0.0108 (7)0.0136 (8)0.0027 (6)0.0001 (6)0.0005 (6)
C320.0239 (9)0.0115 (7)0.0122 (7)0.0034 (6)0.0011 (6)0.0014 (5)
C330.0274 (9)0.0131 (7)0.0185 (8)0.0073 (7)0.0002 (7)0.0001 (6)
C340.0224 (8)0.0155 (7)0.0154 (7)0.0007 (6)0.0027 (6)0.0023 (6)
C350.0169 (8)0.0156 (7)0.0131 (7)0.0003 (6)0.0003 (6)0.0005 (6)
C360.0164 (8)0.0142 (7)0.0103 (7)0.0007 (6)0.0008 (6)0.0007 (5)
C410.0181 (8)0.0136 (8)0.0148 (8)0.0013 (6)0.0005 (6)0.0009 (6)
C420.0209 (9)0.0172 (8)0.0156 (8)0.0037 (6)0.0000 (6)0.0017 (6)
C430.0267 (9)0.0140 (8)0.0256 (9)0.0054 (7)0.0009 (7)0.0027 (7)
C440.0216 (9)0.0154 (7)0.0228 (9)0.0019 (6)0.0067 (7)0.0024 (6)
C450.0267 (10)0.0242 (9)0.0164 (8)0.0034 (7)0.0016 (7)0.0049 (7)
C460.0165 (8)0.0161 (7)0.0167 (8)0.0026 (6)0.0005 (6)0.0006 (6)
C510.0157 (8)0.0129 (7)0.0119 (7)0.0014 (6)0.0024 (6)0.0011 (5)
C520.0127 (8)0.0264 (9)0.0207 (8)0.0041 (7)0.0033 (6)0.0024 (7)
C530.0203 (9)0.0368 (11)0.0264 (10)0.0034 (8)0.0098 (8)0.0038 (8)
C540.0395 (12)0.0307 (10)0.0255 (9)0.0087 (9)0.0185 (9)0.0006 (8)
C550.0365 (11)0.0260 (9)0.0142 (8)0.0033 (8)0.0065 (7)0.0048 (7)
C560.0209 (9)0.0206 (8)0.0160 (8)0.0044 (7)0.0041 (6)0.0027 (6)
C610.0144 (8)0.0141 (7)0.0135 (7)0.0027 (6)0.0010 (6)0.0003 (6)
C620.0150 (8)0.0161 (8)0.0196 (8)0.0012 (6)0.0016 (6)0.0032 (6)
C630.0229 (9)0.0198 (9)0.0214 (8)0.0056 (7)0.0004 (7)0.0011 (7)
C640.0167 (8)0.0206 (9)0.0308 (10)0.0038 (7)0.0016 (7)0.0006 (7)
C650.0164 (8)0.0200 (9)0.0235 (9)0.0011 (7)0.0026 (7)0.0024 (7)
C660.0146 (8)0.0172 (8)0.0218 (9)0.0003 (6)0.0037 (6)0.0029 (6)
C670.0241 (11)0.0246 (8)0.0309 (10)0.0043 (8)0.0012 (8)0.0113 (8)
O10.0686 (13)0.0316 (8)0.0303 (8)0.0155 (7)0.0172 (8)0.0063 (6)
O20.0294 (9)0.0453 (8)0.0407 (9)0.0203 (8)0.0064 (7)0.0006 (7)
O30.0566 (10)0.0163 (6)0.0332 (7)0.0095 (6)0.0208 (7)0.0080 (5)
O40.0315 (8)0.0464 (9)0.0372 (8)0.0029 (7)0.0137 (6)0.0016 (7)
P10.01159 (19)0.00939 (17)0.01101 (18)0.00009 (14)0.00178 (14)0.00049 (14)
P20.01190 (19)0.00915 (18)0.01123 (18)0.00047 (15)0.00028 (15)0.00057 (14)
Cl10.01967 (19)0.01178 (15)0.01761 (17)0.00017 (14)0.00265 (14)0.00074 (13)
Cl20.0276 (2)0.0304 (2)0.0245 (2)0.00379 (18)0.00447 (17)0.00539 (17)
Cl30.0210 (2)0.0579 (3)0.0507 (3)0.0038 (2)0.0021 (2)0.0135 (3)
Ag10.01589 (5)0.00932 (4)0.01378 (5)0.00066 (4)0.00196 (3)0.00173 (3)
Geometric parameters (Å, º) top
C11—C121.392 (2)C43—H430.95
C11—C161.401 (2)C44—C451.383 (3)
C11—P11.8215 (17)C44—H440.95
C12—C131.395 (3)C45—C461.398 (2)
C12—H120.95C45—H450.95
C13—C141.385 (3)C46—H460.95
C13—H130.95C51—C521.532 (2)
C14—C151.384 (3)C51—C561.537 (2)
C14—H140.95C51—P21.8391 (16)
C15—C161.385 (2)C51—H511
C15—H150.95C52—C531.528 (2)
C16—H160.95C52—H52A0.99
C21—C261.526 (2)C52—H52B0.99
C21—C221.535 (2)C53—C541.528 (3)
C21—P11.8338 (16)C53—H53A0.99
C21—H211C53—H53B0.99
C22—C231.530 (2)C54—C551.520 (3)
C22—H22A0.99C54—H54A0.99
C22—H22B0.99C54—H54B0.99
C23—C241.523 (3)C55—C561.532 (2)
C23—H23A0.99C55—H55A0.99
C23—H23B0.99C55—H55B0.99
C24—C251.512 (3)C56—H56A0.99
C24—H24A0.99C56—H56B0.99
C24—H24B0.99C61—C661.526 (2)
C25—C261.536 (2)C61—C621.528 (2)
C25—H25A0.99C61—P21.8420 (17)
C25—H25B0.99C61—H611
C26—H26A0.99C62—C631.521 (3)
C26—H26B0.99C62—H62A0.99
C31—C361.529 (2)C62—H62B0.99
C31—C321.536 (2)C63—C641.526 (3)
C31—P11.8412 (16)C63—H63A0.99
C31—H311C63—H63B0.99
C32—C331.528 (2)C64—C651.515 (3)
C32—H32A0.99C64—H64A0.99
C32—H32B0.99C64—H64B0.99
C33—C341.523 (2)C65—C661.522 (2)
C33—H33A0.99C65—H65A0.99
C33—H33B0.99C65—H65B0.99
C34—C351.519 (2)C66—H66A0.99
C34—H34A0.99C66—H66B0.99
C34—H34B0.99C67—Cl31.756 (2)
C35—C361.525 (2)C67—Cl21.768 (2)
C35—H35A0.99C67—H67A0.99
C35—H35B0.99C67—H67B0.99
C36—H36A0.99O1—Cl11.4291 (15)
C36—H36B0.99O2—Cl11.4394 (16)
C41—C461.397 (2)O3—Cl11.4290 (12)
C41—C421.400 (2)O4—Cl11.4397 (15)
C41—P21.8187 (17)P1—Ag12.4011 (4)
C42—C431.393 (2)P2—Ag12.3993 (4)
C42—H420.95Cl1—O21.4394 (16)
C43—C441.388 (3)
C12—C11—C16118.49 (15)C46—C45—H45119.9
C12—C11—P1119.40 (13)C41—C46—C45120.41 (16)
C16—C11—P1121.98 (13)C41—C46—H46119.8
C11—C12—C13120.79 (16)C45—C46—H46119.8
C11—C12—H12119.6C52—C51—C56110.67 (14)
C13—C12—H12119.6C52—C51—P2110.07 (11)
C14—C13—C12119.75 (16)C56—C51—P2110.61 (11)
C14—C13—H13120.1C52—C51—H51108.5
C12—C13—H13120.1C56—C51—H51108.5
C15—C14—C13120.13 (16)P2—C51—H51108.5
C15—C14—H14119.9C53—C52—C51110.76 (15)
C13—C14—H14119.9C53—C52—H52A109.5
C14—C15—C16120.15 (16)C51—C52—H52A109.5
C14—C15—H15119.9C53—C52—H52B109.5
C16—C15—H15119.9C51—C52—H52B109.5
C15—C16—C11120.65 (15)H52A—C52—H52B108.1
C15—C16—H16119.7C54—C53—C52110.79 (16)
C11—C16—H16119.7C54—C53—H53A109.5
C26—C21—C22109.59 (13)C52—C53—H53A109.5
C26—C21—P1111.85 (11)C54—C53—H53B109.5
C22—C21—P1110.02 (11)C52—C53—H53B109.5
C26—C21—H21108.4H53A—C53—H53B108.1
C22—C21—H21108.4C55—C54—C53111.37 (15)
P1—C21—H21108.4C55—C54—H54A109.4
C23—C22—C21110.23 (14)C53—C54—H54A109.4
C23—C22—H22A109.6C55—C54—H54B109.4
C21—C22—H22A109.6C53—C54—H54B109.4
C23—C22—H22B109.6H54A—C54—H54B108
C21—C22—H22B109.6C54—C55—C56111.42 (15)
H22A—C22—H22B108.1C54—C55—H55A109.3
C24—C23—C22111.40 (14)C56—C55—H55A109.3
C24—C23—H23A109.3C54—C55—H55B109.3
C22—C23—H23A109.3C56—C55—H55B109.3
C24—C23—H23B109.3H55A—C55—H55B108
C22—C23—H23B109.3C55—C56—C51110.01 (14)
H23A—C23—H23B108C55—C56—H56A109.7
C25—C24—C23112.04 (14)C51—C56—H56A109.7
C25—C24—H24A109.2C55—C56—H56B109.7
C23—C24—H24A109.2C51—C56—H56B109.7
C25—C24—H24B109.2H56A—C56—H56B108.2
C23—C24—H24B109.2C66—C61—C62111.98 (14)
H24A—C24—H24B107.9C66—C61—P2110.77 (11)
C24—C25—C26112.27 (16)C62—C61—P2114.60 (12)
C24—C25—H25A109.2C66—C61—H61106.3
C26—C25—H25A109.2C62—C61—H61106.3
C24—C25—H25B109.2P2—C61—H61106.3
C26—C25—H25B109.2C63—C62—C61112.06 (14)
H25A—C25—H25B107.9C63—C62—H62A109.2
C21—C26—C25109.64 (14)C61—C62—H62A109.2
C21—C26—H26A109.7C63—C62—H62B109.2
C25—C26—H26A109.7C61—C62—H62B109.2
C21—C26—H26B109.7H62A—C62—H62B107.9
C25—C26—H26B109.7C62—C63—C64112.95 (15)
H26A—C26—H26B108.2C62—C63—H63A109
C36—C31—C32110.94 (13)C64—C63—H63A109
C36—C31—P1110.12 (11)C62—C63—H63B109
C32—C31—P1113.99 (11)C64—C63—H63B109
C36—C31—H31107.1H63A—C63—H63B107.8
C32—C31—H31107.1C65—C64—C63110.73 (15)
P1—C31—H31107.1C65—C64—H64A109.5
C33—C32—C31111.49 (13)C63—C64—H64A109.5
C33—C32—H32A109.3C65—C64—H64B109.5
C31—C32—H32A109.3C63—C64—H64B109.5
C33—C32—H32B109.3H64A—C64—H64B108.1
C31—C32—H32B109.3C64—C65—C66111.66 (15)
H32A—C32—H32B108C64—C65—H65A109.3
C34—C33—C32111.37 (14)C66—C65—H65A109.3
C34—C33—H33A109.4C64—C65—H65B109.3
C32—C33—H33A109.4C66—C65—H65B109.3
C34—C33—H33B109.4H65A—C65—H65B107.9
C32—C33—H33B109.4C65—C66—C61111.43 (14)
H33A—C33—H33B108C65—C66—H66A109.3
C35—C34—C33111.08 (14)C61—C66—H66A109.3
C35—C34—H34A109.4C65—C66—H66B109.3
C33—C34—H34A109.4C61—C66—H66B109.3
C35—C34—H34B109.4H66A—C66—H66B108
C33—C34—H34B109.4Cl3—C67—Cl2110.91 (11)
H34A—C34—H34B108Cl3—C67—H67A109.5
C34—C35—C36111.60 (13)Cl2—C67—H67A109.5
C34—C35—H35A109.3Cl3—C67—H67B109.5
C36—C35—H35A109.3Cl2—C67—H67B109.5
C34—C35—H35B109.3H67A—C67—H67B108
C36—C35—H35B109.3C11—P1—C21105.27 (7)
H35A—C35—H35B108C11—P1—C31104.38 (7)
C35—C36—C31110.80 (13)C21—P1—C31106.28 (7)
C35—C36—H36A109.5C11—P1—Ag1116.62 (5)
C31—C36—H36A109.5C21—P1—Ag1112.35 (5)
C35—C36—H36B109.5C31—P1—Ag1111.12 (5)
C31—C36—H36B109.5C41—P2—C51105.46 (8)
H36A—C36—H36B108.1C41—P2—C61104.51 (8)
C46—C41—C42118.71 (15)C51—P2—C61107.21 (8)
C46—C41—P2118.77 (13)C41—P2—Ag1116.45 (6)
C42—C41—P2122.31 (13)C51—P2—Ag1110.23 (5)
C43—C42—C41120.50 (16)C61—P2—Ag1112.34 (5)
C43—C42—H42119.7O3—Cl1—O1109.49 (9)
C41—C42—H42119.7O3—Cl1—O2109.47 (10)
C44—C43—C42120.04 (16)O1—Cl1—O2109.74 (11)
C44—C43—H43120O3—Cl1—O2109.47 (10)
C42—C43—H43120O1—Cl1—O2109.74 (11)
C45—C44—C43119.93 (16)O3—Cl1—O4109.73 (10)
C45—C44—H44120O1—Cl1—O4111.51 (11)
C43—C44—H44120O2—Cl1—O4106.87 (10)
C44—C45—C46120.16 (16)O2—Cl1—O4106.87 (10)
C44—C45—H45119.9P2—Ag1—P1177.473 (18)
C16—C11—C12—C130.9 (2)C63—C64—C65—C6655.8 (2)
P1—C11—C12—C13175.22 (13)C64—C65—C66—C6156.3 (2)
C11—C12—C13—C140.8 (3)C62—C61—C66—C6553.60 (19)
C12—C13—C14—C150.5 (3)P2—C61—C66—C65177.12 (12)
C13—C14—C15—C161.6 (3)C12—C11—P1—C21153.34 (13)
C14—C15—C16—C111.5 (3)C16—C11—P1—C2130.73 (15)
C12—C11—C16—C150.3 (2)C12—C11—P1—C3194.94 (14)
P1—C11—C16—C15176.25 (13)C16—C11—P1—C3180.99 (14)
C26—C21—C22—C2359.98 (17)C12—C11—P1—Ag128.05 (15)
P1—C21—C22—C23176.65 (11)C16—C11—P1—Ag1156.02 (11)
C21—C22—C23—C2456.32 (18)C26—C21—P1—C11165.15 (12)
C22—C23—C24—C2552.8 (2)C22—C21—P1—C1172.80 (12)
C23—C24—C25—C2652.9 (2)C26—C21—P1—C3154.78 (13)
C22—C21—C26—C2559.33 (19)C22—C21—P1—C31176.83 (11)
P1—C21—C26—C25178.38 (13)C26—C21—P1—Ag166.94 (12)
C24—C25—C26—C2156.3 (2)C22—C21—P1—Ag155.11 (12)
C36—C31—C32—C3354.80 (19)C36—C31—P1—C1171.68 (12)
P1—C31—C32—C33179.80 (12)C32—C31—P1—C1153.75 (13)
C31—C32—C33—C3454.67 (19)C36—C31—P1—C21177.33 (11)
C32—C33—C34—C3555.15 (19)C32—C31—P1—C2157.24 (13)
C33—C34—C35—C3656.25 (19)C36—C31—P1—Ag154.82 (12)
C34—C35—C36—C3156.46 (18)C32—C31—P1—Ag1179.74 (10)
C32—C31—C36—C3555.37 (18)C46—C41—P2—C51158.93 (14)
P1—C31—C36—C35177.48 (11)C42—C41—P2—C5126.34 (17)
C46—C41—C42—C433.1 (3)C46—C41—P2—C6188.20 (15)
P2—C41—C42—C43177.85 (14)C42—C41—P2—C6186.53 (16)
C41—C42—C43—C445.1 (3)C46—C41—P2—Ag136.36 (16)
C42—C43—C44—C455.6 (3)C42—C41—P2—Ag1148.91 (13)
C43—C44—C45—C464.3 (3)C52—C51—P2—C4164.00 (13)
C42—C41—C46—C451.8 (3)C56—C51—P2—C41173.39 (12)
P2—C41—C46—C45176.69 (14)C52—C51—P2—C61174.97 (11)
C44—C45—C46—C412.4 (3)C56—C51—P2—C6162.42 (13)
C56—C51—C52—C5357.40 (19)C52—C51—P2—Ag162.47 (12)
P2—C51—C52—C53179.98 (13)C56—C51—P2—Ag160.14 (12)
C51—C52—C53—C5456.3 (2)C66—C61—P2—C4169.12 (13)
C52—C53—C54—C5555.7 (2)C62—C61—P2—C4158.75 (14)
C53—C54—C55—C5656.1 (2)C66—C61—P2—C51179.26 (11)
C54—C55—C56—C5156.4 (2)C62—C61—P2—C5152.87 (14)
C52—C51—C56—C5557.00 (19)C66—C61—P2—Ag158.02 (12)
P2—C51—C56—C55179.26 (13)C62—C61—P2—Ag1174.11 (10)
C66—C61—C62—C6351.22 (19)O2—O2—Cl1—O30.0 (2)
P2—C61—C62—C63178.47 (12)O2—O2—Cl1—O10.0 (2)
C61—C62—C63—C6451.6 (2)O2—O2—Cl1—O40.00 (19)
C62—C63—C64—C6553.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C23—H23A···O3i0.992.483.394 (2)153
C67—H67A···O20.992.523.423 (3)152
C13—H13···O3ii0.952.543.448 (2)160
Symmetry codes: (i) x1/2, y+1, z1/2; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formula[Ag(C18H27P)2]ClO4·CH2Cl2
Mr840.98
Crystal system, space groupMonoclinic, Pn
Temperature (K)100
a, b, c (Å)9.5910 (3), 13.4369 (4), 15.1290 (5)
β (°) 94.706 (1)
V3)1943.15 (11)
Z2
Radiation typeMo Kα
µ (mm1)0.84
Crystal size (mm)0.17 × 0.15 × 0.13
Data collection
DiffractometerBruker X8 APEXII 4K Kappa CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.870, 0.898
No. of measured, independent and
observed [I > 2σ(I)] reflections
40522, 8989, 8861
Rint0.025
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.017, 0.045, 1.06
No. of reflections8989
No. of parameters424
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.28
Absolute structureFlack (1983), 4288 Friedel pairs
Absolute structure parameter0.029 (10)

Computer programs: APEX2 (Bruker, 2007), SAINT-Plus (Bruker, 2007), SAINT-Plus and XPREP (Bruker, 2007), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005) and ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C23—H23A···O3i0.992.483.394 (2)153
C67—H67A···O20.992.523.423 (3)152
C13—H13···O3ii0.952.543.448 (2)160
Symmetry codes: (i) x1/2, y+1, z1/2; (ii) x1, y, z.
 

Acknowledgements

Financial assistance from the South African National Research Foundation and the University of Johannesburg is gratefully acknowledged.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAlyea, E. C., Ferguson, G. & Somogyvari, A. (1982). Inorg. Chem. 21, 1369–1371.  CSD CrossRef CAS Web of Science Google Scholar
First citationAlyea, E. C., Kannan, S. & Meehan, P. R. (2002). Acta Cryst. C58, m365–m367.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBaiada, A., Jardine, F. H. & Willett, R. D. (1990). Inorg. Chem. 29, 3042–3046.  CSD CrossRef CAS Web of Science Google Scholar
First citationBayler, A., Schier, A., Bowmaker, G. A. & Schmidbaur, H. (1996). J. Am. Chem. Soc. 118, 7006–7007.  CSD CrossRef CAS Web of Science Google Scholar
First citationBerners-Price, S. J., Bowen, R. J., Harvey, P. J., Healy, P. C. & Koutsantonis, G. A. (1998). J. Chem. Soc. Dalton Trans. pp. 1743–1750.  CSD CrossRef Google Scholar
First citationBowmaker, G. A., Harvey, P. J., Healy, P. C., Skelton, B. W. & White, A. H. (1996). J. Chem. Soc. Dalton Trans. pp. 2449–2465.  CSD CrossRef Web of Science Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2009).  Google Scholar
First citationBruker (2007). APEX2, SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurgoyne, A. R., Meijboom, R., Muller, A. & Omondi, B. (2010). Acta Cryst. E66, m503–m504.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCamalli, M. & Caruso, F. (1988). Inorg. Chim. Acta, 144, 205–211.  CSD CrossRef CAS Web of Science Google Scholar
First citationCingolani, A., Pellei, M., Pettinari, C., Santini, C., Skelton, B. W. & White, A. H. (2002). Inorg. Chem. 41, 6633–6645.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFenske, D., Rothenberger, A. & Wieber, S. (2007). Eur. J. Inorg. Chem. pp. 648–651.  Web of Science CSD CrossRef Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLiu, J. J., Galetis, P., Farr, A., Maharaj, L., Samarasinha, H., McGechan, A. C., Baguley, B. C., Bowen, R. J., Berners-Price, S. J. & McKeage, M. J. (2008). J. Inorg. Biochem. 102, 303–310.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMeijboom, R., Bowen, R. J. & Berners-Price, S. J. (2009). Coord. Chem. Rev. 253, 325–342.  Web of Science CrossRef CAS Google Scholar
First citationMuetterties, E. L. & Alegranti, C. W. (1972). J. Am. Chem. Soc. 94, 6386–6391.  CrossRef CAS Web of Science Google Scholar
First citationPauling, L. (1960). The Nature of the Chemical Bond 3rd ed., pp. 224–256. Ithaca: Cornell University Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages m483-m484
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds