organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1096

2-[(1,3-Benzo­thia­zol-2-yl)imino­meth­yl]-4-bromo­phenol

aDepartment of Chemistry, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China
*Correspondence e-mail: liuwen0616@163.com

(Received 5 March 2011; accepted 6 April 2011; online 13 April 2011)

In the title compound, C14H9BrN2OS, the dihedral angle between the benzene rings is 3.1 (3)°. An intra­molecular O—H⋯N(imine) hydrogen bond occurs. The crystal structure is stabilized by weak inter­molecular C—H⋯O inter­actions.

Related literature

For the uses of Schiff bases, see: Da Silva et al. (2011[Da Silva, C. M., Da Silva, D. L., Modolo, L. V., Alves, R. B., De Resende, M. A., Martins, C. V. B. & De Fátima, Â. (2011). J. Adv. Res. 2, 1-8.]); Dhar & Taploo (1982[Dhar, D. N. & Taploo, C. L. (1982). J. Sci. Ind. Res. 41, 501-506.]); Przybylski et al. (2009[Przybylski, P., Huczynski, A., Pyta, K., Brzezinski, B. & Bartl, F. (2009). Curr. Org. Chem. 13, 124-148.]); Guo et al. (2007[Guo, Z., Xing, R., Liu, S., Zhong, Z., Ji, X., Wang, L. & Li, P. (2007). Carbohydr. Res. 342, 1329-1332.]); Bringmann et al. (2004[Bringmann, G., Dreyer, M., Faber, J. H., Dalsgaard, P. W., Staerk, D., Jaroszewski, J. W., Ndangalasi, H., Mbago, F., Brun, R. & Søren Brøgger, C. (2004). J. Nat. Prod. 67, 743-748.]). For the structures of closely related imines, see: Liu et al. (2009[Liu, S.-Q., Bi, C.-F., Chen, L.-Y. & Fan, Y.-H. (2009). Acta Cryst. E65, o738.]); Asiri et al. (2010[Asiri, A. M., Khan, S. A., Tan, K. W. & Ng, S. W. (2010). Acta Cryst. E66, o1826.]).

[Scheme 1]

Experimental

Crystal data
  • C14H9BrN2OS

  • Mr = 333.20

  • Monoclinic, P 21 /c

  • a = 26.1607 (2) Å

  • b = 4.0565 (2) Å

  • c = 12.1435 (3) Å

  • β = 91.5720 (1)°

  • V = 1288.19 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.34 mm−1

  • T = 296 K

  • 0.45 × 0.40 × 0.38 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.242, Tmax = 0.281

  • 11848 measured reflections

  • 2232 independent reflections

  • 1466 reflections with I > 2σ(I)

  • Rint = 0.138

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.118

  • S = 0.93

  • 2232 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.87 2.600 (6) 148
C7—H7⋯O1i 0.93 2.47 3.345 (6) 157
Symmetry code: (i) [x, -y+{\script{5\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases are some of the most widely used organic compounds. They are used as pigments and dyes, catalysts, intermediates in organic synthesis, and as polymer stabilisers (Da Silva et al., 2011). They have also been shown to exhibit a broad range of biological activities, including antifungal, antibacterial, antimalarial, antiproliferative, anti-inflammatory, antiviral, and antipyretic properties (Dhar & Taploo, 1982; Przybylski et al., 2009). The imine group present in such compounds has been shown to be critical to their biological activities (Guo et al., 2007; Bringmann et al., 2004). It was thus of interest to synthesize the title compound.

The X-ray structural analysis confirmed the assignment of the structure of the title compound (Fig. 1). The bond length of C8—N1 is 1.396 (6) Å, which is shorter than normal C—N [1.47 Å]. The dihedral angle between the two benzene rings (C1···C6 and C9···C14) is 3.1 (3)°, it is a little larger than 2.81 (9)° or 2.6 (1)° found in a related structure (Liu et al., 2009; Asiri et al., 2010). In the crystal structure (Fig. 2), the compound is further stabilized by intramolecular O—H···N and weak intermolecular C—H···O hydrogen-bond interactions.

Related literature top

For the uses of Schiff bases, see: Da Silva et al. (2011); Dhar & Taploo (1982); Przybylski et al. (2009); Guo et al. (2007); Bringmann et al. (2004). For the structures of closely related imines, see: Liu et al. (2009); Asiri et al. (2010).

Experimental top

10 mL of 5 mmol 5-bromo-2-hydroxybenzaldehyde ethanol solution was added to 10 mL of the 5 mmol (0.7515 g) of 2-aminobenzothiazole ethanol solution. The resulting solution was refluxed for about 3 h, and then cooled to room temperature. Yellow crystals of title compound were obtained after 2 weeks of slow evaporation of the filtrate at room temperature.

Refinement top

H atoms attached to C and O atoms were placed in geometrically idealized positions with Csp2—H = 0.93 Å and O—H = 0.82 Å. The isotropic displacement parameters for H atoms were fixed as Uiso(H) = 1.2Ueq(carrier C atom) and Uiso(H1) = 1.5Ueq(O1).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the structure of the title compound with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Crystal packing of the title compound. Hydrogen bonds are shown as dashed lines.
2-[(1,3-Benzothiazol-2-yl)iminomethyl]-4-bromophenol top
Crystal data top
C14H9BrN2OSZ = 4
Mr = 333.20F(000) = 664
Monoclinic, P21/cDx = 1.718 Mg m3
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 26.1607 (2) Åθ = 3.4–21.4°
b = 4.0565 (2) ŵ = 3.34 mm1
c = 12.1435 (3) ÅT = 296 K
β = 91.5720 (1)°Block, yellow
V = 1288.19 (7) Å30.45 × 0.40 × 0.38 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2232 independent reflections
Radiation source: fine-focus sealed tube1466 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.138
ϕ and ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 3030
Tmin = 0.242, Tmax = 0.281k = 44
11848 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H-atom parameters constrained
S = 0.93 w = 1/[σ2(Fo2)]
where P = (Fo2 + 2Fc2)/3
2232 reflections(Δ/σ)max < 0.001
173 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.54 e Å3
0 constraints
Crystal data top
C14H9BrN2OSV = 1288.19 (7) Å3
Mr = 333.20Z = 4
Monoclinic, P21/cMo Kα radiation
a = 26.1607 (2) ŵ = 3.34 mm1
b = 4.0565 (2) ÅT = 296 K
c = 12.1435 (3) Å0.45 × 0.40 × 0.38 mm
β = 91.5720 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2232 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1466 reflections with I > 2σ(I)
Tmin = 0.242, Tmax = 0.281Rint = 0.138
11848 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 0.93Δρmax = 0.36 e Å3
2232 reflectionsΔρmin = 0.54 e Å3
173 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.03658 (2)1.69312 (15)0.65038 (5)0.0536 (2)
S20.29866 (5)0.7609 (3)0.70906 (12)0.0488 (4)
C10.17288 (19)1.3148 (12)0.5361 (4)0.0370 (11)
O10.20795 (15)1.3280 (10)0.3543 (3)0.0582 (10)
H10.23001.22080.38770.087*
C120.4377 (2)0.3239 (15)0.7216 (6)0.0633 (17)
H120.46060.21930.77000.076*
C40.0898 (2)1.6691 (13)0.4506 (4)0.0458 (13)
H40.06201.78880.42250.055*
C60.13249 (18)1.4049 (11)0.6017 (4)0.0372 (12)
H60.13351.34730.67580.045*
N20.33356 (16)0.7896 (11)0.5088 (4)0.0471 (11)
N10.25338 (15)1.0410 (11)0.5215 (3)0.0432 (10)
C20.17096 (19)1.4091 (12)0.4229 (4)0.0399 (12)
C80.29517 (19)0.8711 (13)0.5676 (4)0.0437 (13)
C50.09127 (19)1.5761 (12)0.5601 (4)0.0381 (12)
C70.21554 (18)1.1329 (12)0.5801 (4)0.0386 (12)
H70.21601.07820.65450.046*
C90.3704 (2)0.6300 (13)0.5745 (5)0.0469 (14)
C30.1294 (2)1.5847 (13)0.3824 (4)0.0501 (14)
H30.12791.64720.30870.060*
C110.3918 (2)0.4411 (14)0.7602 (5)0.0596 (16)
H110.38370.42060.83400.071*
C100.35821 (19)0.5906 (12)0.6847 (4)0.0432 (13)
C130.4499 (2)0.3597 (14)0.6131 (6)0.0653 (18)
H130.48120.28160.58970.078*
C140.4168 (2)0.5088 (15)0.5376 (5)0.0581 (16)
H140.42530.52790.46400.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0431 (3)0.0658 (4)0.0521 (4)0.0039 (3)0.0053 (2)0.0054 (3)
S20.0435 (8)0.0614 (9)0.0415 (8)0.0046 (6)0.0040 (6)0.0028 (7)
C10.046 (3)0.041 (3)0.023 (3)0.001 (2)0.005 (2)0.003 (2)
O10.058 (2)0.089 (3)0.0284 (19)0.013 (2)0.0052 (18)0.008 (2)
C120.046 (4)0.064 (4)0.080 (5)0.001 (3)0.003 (3)0.010 (4)
C40.043 (3)0.050 (3)0.044 (3)0.001 (3)0.010 (3)0.001 (3)
C60.042 (3)0.045 (3)0.025 (3)0.006 (2)0.001 (2)0.004 (2)
N20.043 (3)0.060 (3)0.039 (3)0.004 (2)0.002 (2)0.005 (2)
N10.040 (2)0.054 (3)0.036 (2)0.006 (2)0.001 (2)0.004 (2)
C20.043 (3)0.050 (3)0.027 (3)0.007 (2)0.001 (2)0.003 (2)
C80.039 (3)0.054 (3)0.038 (3)0.005 (3)0.005 (2)0.004 (3)
C50.042 (3)0.038 (3)0.034 (3)0.003 (2)0.003 (2)0.002 (2)
C70.044 (3)0.050 (3)0.021 (3)0.008 (2)0.003 (2)0.002 (2)
C90.039 (3)0.050 (3)0.052 (3)0.008 (3)0.003 (3)0.004 (3)
C30.056 (4)0.067 (4)0.027 (3)0.003 (3)0.007 (3)0.005 (3)
C110.054 (4)0.065 (4)0.060 (4)0.001 (3)0.003 (3)0.004 (3)
C100.036 (3)0.043 (3)0.051 (3)0.006 (2)0.002 (3)0.002 (3)
C130.042 (3)0.060 (4)0.094 (5)0.002 (3)0.006 (4)0.012 (4)
C140.051 (4)0.065 (4)0.059 (4)0.008 (3)0.012 (3)0.011 (3)
Geometric parameters (Å, º) top
Br1—C51.887 (5)C6—H60.9300
S2—C101.737 (5)N2—C81.291 (6)
S2—C81.775 (5)N2—C91.393 (7)
C1—C61.390 (6)N1—C71.290 (6)
C1—C21.426 (6)N1—C81.396 (6)
C1—C71.430 (7)C2—C31.380 (7)
O1—C21.335 (5)C7—H70.9300
O1—H10.8200C9—C101.393 (7)
C12—C131.372 (9)C9—C141.395 (7)
C12—C111.384 (8)C3—H30.9300
C12—H120.9300C11—C101.392 (7)
C4—C51.382 (7)C11—H110.9300
C4—C31.387 (7)C13—C141.382 (8)
C4—H40.9300C13—H130.9300
C6—C51.367 (6)C14—H140.9300
C10—S2—C887.6 (2)C6—C5—Br1121.1 (4)
C6—C1—C2118.3 (5)C4—C5—Br1119.2 (4)
C6—C1—C7121.3 (4)N1—C7—C1123.1 (4)
C2—C1—C7120.4 (4)N1—C7—H7118.5
C2—O1—H1109.5C1—C7—H7118.5
C13—C12—C11121.0 (6)C10—C9—N2115.5 (5)
C13—C12—H12119.5C10—C9—C14119.5 (6)
C11—C12—H12119.5N2—C9—C14125.0 (5)
C5—C4—C3120.3 (5)C2—C3—C4120.6 (5)
C5—C4—H4119.8C2—C3—H3119.7
C3—C4—H4119.8C4—C3—H3119.7
C5—C6—C1121.8 (5)C12—C11—C10117.7 (6)
C5—C6—H6119.1C12—C11—H11121.2
C1—C6—H6119.1C10—C11—H11121.2
C8—N2—C9109.8 (4)C11—C10—C9121.7 (5)
C7—N1—C8121.7 (4)C11—C10—S2127.9 (4)
O1—C2—C3118.9 (4)C9—C10—S2110.4 (4)
O1—C2—C1121.9 (5)C12—C13—C14121.7 (6)
C3—C2—C1119.2 (5)C12—C13—H13119.1
N2—C8—N1121.2 (5)C14—C13—H13119.1
N2—C8—S2116.7 (4)C13—C14—C9118.4 (6)
N1—C8—S2122.1 (4)C13—C14—H14120.8
C6—C5—C4119.7 (5)C9—C14—H14120.8
C2—C1—C6—C50.8 (7)C8—N2—C9—C100.7 (6)
C7—C1—C6—C5179.3 (4)C8—N2—C9—C14180.0 (5)
C6—C1—C2—O1179.1 (5)O1—C2—C3—C4178.9 (5)
C7—C1—C2—O11.1 (7)C1—C2—C3—C40.0 (7)
C6—C1—C2—C30.1 (7)C5—C4—C3—C20.4 (8)
C7—C1—C2—C3180.0 (5)C13—C12—C11—C101.2 (9)
C9—N2—C8—N1178.7 (4)C12—C11—C10—C91.6 (8)
C9—N2—C8—S20.6 (6)C12—C11—C10—S2179.6 (4)
C7—N1—C8—N2177.8 (5)N2—C9—C10—C11178.8 (5)
C7—N1—C8—S21.5 (7)C14—C9—C10—C111.8 (8)
C10—S2—C8—N20.3 (4)N2—C9—C10—S20.4 (6)
C10—S2—C8—N1179.0 (4)C14—C9—C10—S2179.8 (4)
C1—C6—C5—C41.3 (7)C8—S2—C10—C11178.3 (5)
C1—C6—C5—Br1179.5 (4)C8—S2—C10—C90.1 (4)
C3—C4—C5—C61.1 (7)C11—C12—C13—C141.0 (9)
C3—C4—C5—Br1179.7 (4)C12—C13—C14—C91.2 (9)
C8—N1—C7—C1178.3 (4)C10—C9—C14—C131.5 (8)
C6—C1—C7—N1179.0 (4)N2—C9—C14—C13179.1 (5)
C2—C1—C7—N11.1 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.872.600 (6)148
C7—H7···O1i0.932.473.345 (6)157
Symmetry code: (i) x, y+5/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H9BrN2OS
Mr333.20
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)26.1607 (2), 4.0565 (2), 12.1435 (3)
β (°) 91.5720 (1)
V3)1288.19 (7)
Z4
Radiation typeMo Kα
µ (mm1)3.34
Crystal size (mm)0.45 × 0.40 × 0.38
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.242, 0.281
No. of measured, independent and
observed [I > 2σ(I)] reflections
11848, 2232, 1466
Rint0.138
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.118, 0.93
No. of reflections2232
No. of parameters173
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.54

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.872.600 (6)148
C7—H7···O1i0.932.473.345 (6)157
Symmetry code: (i) x, y+5/2, z+1/2.
 

Acknowledgements

We acknowledge financial support from the Youth Foundation of Shanxi Medical University in China (grant No. 02200922).

References

First citationAsiri, A. M., Khan, S. A., Tan, K. W. & Ng, S. W. (2010). Acta Cryst. E66, o1826.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBringmann, G., Dreyer, M., Faber, J. H., Dalsgaard, P. W., Staerk, D., Jaroszewski, J. W., Ndangalasi, H., Mbago, F., Brun, R. & Søren Brøgger, C. (2004). J. Nat. Prod. 67, 743–748.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDa Silva, C. M., Da Silva, D. L., Modolo, L. V., Alves, R. B., De Resende, M. A., Martins, C. V. B. & De Fátima, Â. (2011). J. Adv. Res. 2, 1–8.  CrossRef Google Scholar
First citationDhar, D. N. & Taploo, C. L. (1982). J. Sci. Ind. Res. 41, 501–506.  CAS Google Scholar
First citationGuo, Z., Xing, R., Liu, S., Zhong, Z., Ji, X., Wang, L. & Li, P. (2007). Carbohydr. Res. 342, 1329–1332.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLiu, S.-Q., Bi, C.-F., Chen, L.-Y. & Fan, Y.-H. (2009). Acta Cryst. E65, o738.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPrzybylski, P., Huczynski, A., Pyta, K., Brzezinski, B. & Bartl, F. (2009). Curr. Org. Chem. 13, 124–148.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1096
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds