organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1063

2-Hy­dr­oxy-6-iso­propyl-3-methyl­benzoic acid

aNelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth, 6031, South Africa
*Correspondence e-mail: richard.betz@webmail.co.za

(Received 17 March 2011; accepted 31 March 2011; online 7 April 2011)

The title compound, C11H14O3, is a multiple-substituted derivative of benzoic acid. Intra­cyclic C—C—C angles span a range of 117.16 (19)–122.32 (19)°. Apart from intra­molecular hydrogen bonds between hydroxyl and carboxyl groups, inter­molecular hydrogen bonds are present in the crystal structure, the latter ones giving rise to centrosymmetric carb­oxy­lic acid dimers.

Related literature

For the X-ray crystal structure of benzoic acid, see: Bruno & Randaccio (1980[Bruno, G. & Randaccio, L. (1980). Acta Cryst. B36, 1711-1712.]). For the crystal structure of benzoic acid applying neutron radiation, see: Wilson et al. (1996[Wilson, C. C., Shankland, N. & Florence, A. J. (1996). J. Chem. Soc. Faraday Trans. pp. 5051-5057.]). For the crystal structure of meta-methyl­benzoic acid (without three-dimensional coordinates), see: Ellas & García-Blanco (1963[Ellas, J. L. & García-Blanco, S. (1963). Acta Cryst. 16, 434.]). For a recent crystal structure analysis of salicylic acid, see: Munshi & Guru Row (2006[Munshi, P. & Guru Row, T. N. (2006). Acta Cryst. B62, 612-626.]). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C11H14O3

  • Mr = 194.22

  • Orthorhombic, P b c a

  • a = 16.8864 (17) Å

  • b = 6.6653 (7) Å

  • c = 18.238 (2) Å

  • V = 2052.7 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 200 K

  • 0.51 × 0.16 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 10325 measured reflections

  • 2546 independent reflections

  • 1365 reflections with I > 2σ(I)

  • Rint = 0.073

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.154

  • S = 0.99

  • 2546 reflections

  • 132 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O2 0.84 1.77 2.5171 (19) 146
O1—H1⋯O2i 0.84 1.81 2.6475 (19) 174
Symmetry code: (i) -x, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT Bruker AXS Inc., Madison, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT Bruker AXS Inc., Madison, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Benzoic acid has found widespread use as a ligand in coordination chemistry for a variety of transition metals and elements from the s- and p-block of the periodic system of the elements. It can act as a neutral or – upon deprotonation – an anionic ligand and serve as mono- or bidentate ligand. By varying the substituents on the phenyl moiety, the acidity of the carboxylic acid group can be fine-tuned. Particular interest rests in benzoic acid derivatives showing an asymmetric pattern of substituents on the aromatic moiety due to different possible orientations of the ligand in coordination compounds and the possible formation of stereoisomeric products. At the beginning of a comprehensive study aimed at rationalizing the coordination behaviour of various benzoic acid derivatives towards a number of transition metals in dependence of the pH value of the reaction batches it seemed interesting to determine the crystal structure of the title compound to enable comparative studies. The crystal structure of unsubstituted benzoic acid (Bruno & Randaccio, 1980; Wilson et al., 1996) as well as the crystal structures of meta-methylbenzoic acid (Ellas & García-Blanco, 1963; three-dimensional coordinates not deposited) and salicylic acid (Munshi & Guru Row, 2006) are apparent in the literature.

C—C—C angles within the carbocyclic ring span a range of 117–122°. The two smallest angles are found on the C atoms bearing the alkyl substituents while the two biggest angles are found on the C atom bearing the hydroxyl group and the C atom in para-position to the one bonded to the alcoholic hydroxyl group.

While the isopropyl group is tilted significantly in relation to the benzene moiety, the carboxylic acid group is nearly in plane with the carbocycle. The least-squares planes defined by the C atoms of the isopropyl group as well as the C atoms of the benzene group, respectively, enclose an angle of 74.17 (9)°, while the least-squares planes defined by the atoms of the carboxylic acid group on the one hand and the carbon atoms of the aromatic moiety on the other hand intersect at an angle of only 7.07 (28)° (Fig. 1).

In the crystal structure, intra- as well as intermolecular hydrogen bonds can be observed. The intramolecular hydrogen bonds are formed by the H atom of the alcoholic hydroxyl group as the donor and the carbonylic O atom of the carboxylic acid group as the acceptor. The intermolecular hydrogen bonds are apparent between carboxylic acid groups connecting two neighbouring molecules to centrosymmetric dimers. In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the descriptor for the intramolecular motif is S11(6) on the unitary level while the intermolecular hydrogen bonds necessitate a R22(8) descriptor on the same level (Fig. 2). The shortest Cg···Cg distance for benzene rings in the crystal was measured at 4.9918 (13) Å.

The packing of the title compound is shown in Figure 3.

Related literature top

For the X-ray crystal structure of benzoic acid, see: Bruno & Randaccio (1980). For the crystal structure of benzoic acid applying neutron radiation, see: Wilson et al. (1996). For the crystal structure of meta-methylbenzoic acid (without three-dimensional coordinates), see: Ellas & García-Blanco (1963). For a recent crystal structure analysis of salicylic acid, see: Munshi & Guru Row (2006). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995).

Experimental top

The compound was obtained commercially (Aldrich). Crystals suitable for the X-ray diffraction study were taken directly from the provided product.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 Å for aromatic C atoms, C—H 1.00 Å for the methine group and C—H 0.98 Å for methyl groups) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2Ueq(C) or 1.5Ueq(C). Oxygen-bound H-atoms were placed in calculated positions with O—H = 0.84 Å and Uiso(H) = 1.5Ueq(O). The methyl groups were allowed to rotate with a fixed angle around the C—C bonds to best fit the experimental electron density [AFIX 137 in the SHELX program suite (Sheldrick, 2008)]. The H atom of the carboxylic acid group as well as the hydroxyl group were allowed to rotate with a fixed angle around the C—O bonds to best fit the experimental electron density [AFIX 147 in the SHELX program suite (Sheldrick, 2008)].

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with anisotropic displacement ellipsoids drawn at 50% probability level.
[Figure 2] Fig. 2. Intramolecular (blue dashed lines) and intermolecular (green dashed lines) contacts, viewed along [-1 0 0]. Symmetry operator: i -x, -y+2, -z+1.
[Figure 3] Fig. 3. Molecular packing of the title compound, viewed along [0 1 0] (anisotropic displacement ellipsoids drawn at 50% probability level).
2-Hydroxy-6-isopropyl-3-methylbenzoic acid top
Crystal data top
C11H14O3F(000) = 832
Mr = 194.22Dx = 1.257 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 1806 reflections
a = 16.8864 (17) Åθ = 3.3–26.5°
b = 6.6653 (7) ŵ = 0.09 mm1
c = 18.238 (2) ÅT = 200 K
V = 2052.7 (4) Å3Rod, colourless
Z = 80.51 × 0.16 × 0.08 mm
Data collection top
Bruker APEXII CCD
diffractometer
1365 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.073
Graphite monochromatorθmax = 28.3°, θmin = 3.3°
ϕ and ω scansh = 1822
10325 measured reflectionsk = 88
2546 independent reflectionsl = 1624
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.076P)2]
where P = (Fo2 + 2Fc2)/3
2546 reflections(Δ/σ)max < 0.001
132 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.24 e Å3
0 constraints
Crystal data top
C11H14O3V = 2052.7 (4) Å3
Mr = 194.22Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 16.8864 (17) ŵ = 0.09 mm1
b = 6.6653 (7) ÅT = 200 K
c = 18.238 (2) Å0.51 × 0.16 × 0.08 mm
Data collection top
Bruker APEXII CCD
diffractometer
1365 reflections with I > 2σ(I)
10325 measured reflectionsRint = 0.073
2546 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.154H-atom parameters constrained
S = 0.99Δρmax = 0.30 e Å3
2546 reflectionsΔρmin = 0.24 e Å3
132 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.04216 (9)0.85849 (19)0.42308 (8)0.0409 (4)
H10.01890.96430.43580.061*
O20.03999 (9)0.8162 (2)0.54297 (8)0.0357 (4)
O30.10701 (9)0.5223 (2)0.60346 (7)0.0386 (4)
H30.08300.63240.60100.058*
C10.09835 (11)0.5574 (3)0.47072 (11)0.0262 (4)
C20.12250 (11)0.4550 (3)0.53481 (11)0.0297 (5)
C30.16463 (12)0.2740 (3)0.53193 (11)0.0325 (5)
C40.18243 (12)0.1994 (3)0.46369 (12)0.0369 (5)
H40.21280.07990.46010.044*
C50.15747 (12)0.2931 (3)0.40016 (12)0.0364 (5)
H50.17030.23410.35430.044*
C60.11437 (11)0.4699 (3)0.40105 (11)0.0286 (5)
C70.18707 (14)0.1685 (3)0.60150 (13)0.0463 (6)
H710.21900.04990.58980.069*
H720.13900.12690.62750.069*
H730.21780.25950.63260.069*
C80.08638 (12)0.5538 (3)0.32753 (12)0.0345 (5)
H80.03990.64290.33730.041*
C90.05933 (15)0.3885 (4)0.27477 (14)0.0525 (7)
H910.10530.30940.25920.079*
H920.03420.44940.23180.079*
H930.02120.30090.29960.079*
C100.15119 (15)0.6819 (4)0.29282 (14)0.0563 (7)
H1010.16690.78800.32710.084*
H1020.13120.74260.24750.084*
H1030.19710.59750.28160.084*
C110.05805 (11)0.7512 (3)0.48107 (11)0.0282 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0625 (11)0.0252 (7)0.0349 (9)0.0137 (7)0.0030 (8)0.0027 (7)
O20.0455 (9)0.0275 (7)0.0342 (8)0.0079 (6)0.0033 (7)0.0065 (6)
O30.0473 (9)0.0373 (8)0.0313 (9)0.0094 (7)0.0050 (7)0.0009 (7)
C10.0232 (9)0.0204 (8)0.0350 (12)0.0017 (7)0.0039 (8)0.0037 (8)
C20.0287 (10)0.0272 (10)0.0332 (12)0.0025 (8)0.0050 (9)0.0038 (9)
C30.0281 (10)0.0278 (10)0.0416 (13)0.0012 (8)0.0038 (9)0.0031 (9)
C40.0332 (11)0.0247 (10)0.0530 (15)0.0069 (8)0.0056 (10)0.0016 (10)
C50.0380 (12)0.0321 (10)0.0392 (13)0.0042 (9)0.0056 (10)0.0078 (10)
C60.0279 (10)0.0244 (9)0.0334 (12)0.0016 (8)0.0032 (9)0.0043 (9)
C70.0473 (13)0.0382 (11)0.0534 (16)0.0075 (10)0.0047 (12)0.0107 (11)
C80.0371 (11)0.0332 (10)0.0330 (12)0.0053 (9)0.0002 (9)0.0070 (9)
C90.0639 (16)0.0539 (15)0.0399 (15)0.0033 (12)0.0049 (12)0.0178 (12)
C100.0536 (15)0.0668 (16)0.0485 (16)0.0077 (13)0.0021 (12)0.0183 (13)
C110.0290 (10)0.0202 (9)0.0355 (12)0.0020 (8)0.0003 (9)0.0048 (8)
Geometric parameters (Å, º) top
O1—C111.305 (2)C5—H50.9500
O1—H10.8400C6—C81.528 (3)
O2—C111.247 (2)C7—H710.9800
O3—C21.355 (2)C7—H720.9800
O3—H30.8400C7—H730.9800
C1—C21.414 (3)C8—C101.526 (3)
C1—C61.424 (3)C8—C91.533 (3)
C1—C111.472 (3)C8—H81.0000
C2—C31.402 (3)C9—H910.9800
C3—C41.373 (3)C9—H920.9800
C3—C71.499 (3)C9—H930.9800
C4—C51.382 (3)C10—H1010.9800
C4—H40.9500C10—H1020.9800
C5—C61.385 (3)C10—H1030.9800
C11—O1—H1109.5H71—C7—H73109.5
C2—O3—H3109.5H72—C7—H73109.5
C2—C1—C6119.03 (17)C10—C8—C6110.31 (18)
C2—C1—C11116.80 (17)C10—C8—C9110.84 (19)
C6—C1—C11124.16 (18)C6—C8—C9112.35 (18)
O3—C2—C3114.68 (18)C10—C8—H8107.7
O3—C2—C1123.25 (17)C6—C8—H8107.7
C3—C2—C1122.07 (18)C9—C8—H8107.7
C4—C3—C2117.16 (19)C8—C9—H91109.5
C4—C3—C7122.81 (19)C8—C9—H92109.5
C2—C3—C7120.02 (19)H91—C9—H92109.5
C3—C4—C5121.99 (19)C8—C9—H93109.5
C3—C4—H4119.0H91—C9—H93109.5
C5—C4—H4119.0H92—C9—H93109.5
C4—C5—C6122.32 (19)C8—C10—H101109.5
C4—C5—H5118.8C8—C10—H102109.5
C6—C5—H5118.8H101—C10—H102109.5
C5—C6—C1117.30 (18)C8—C10—H103109.5
C5—C6—C8117.62 (17)H101—C10—H103109.5
C1—C6—C8125.07 (17)H102—C10—H103109.5
C3—C7—H71109.5O2—C11—O1119.55 (17)
C3—C7—H72109.5O2—C11—C1122.27 (18)
H71—C7—H72109.5O1—C11—C1118.17 (17)
C3—C7—H73109.5
C6—C1—C2—O3177.21 (18)C2—C1—C6—C53.8 (3)
C11—C1—C2—O33.1 (3)C11—C1—C6—C5175.81 (17)
C6—C1—C2—C32.7 (3)C2—C1—C6—C8174.92 (18)
C11—C1—C2—C3176.96 (17)C11—C1—C6—C85.4 (3)
O3—C2—C3—C4179.57 (18)C5—C6—C8—C1085.4 (2)
C1—C2—C3—C40.5 (3)C1—C6—C8—C1095.8 (2)
O3—C2—C3—C71.5 (3)C5—C6—C8—C938.8 (3)
C1—C2—C3—C7178.43 (18)C1—C6—C8—C9140.0 (2)
C2—C3—C4—C52.6 (3)C2—C1—C11—O25.6 (3)
C7—C3—C4—C5176.35 (19)C6—C1—C11—O2174.72 (18)
C3—C4—C5—C61.3 (3)C2—C1—C11—O1173.29 (17)
C4—C5—C6—C11.9 (3)C6—C1—C11—O16.4 (3)
C4—C5—C6—C8176.91 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O20.841.772.5171 (19)146
O1—H1···O2i0.841.812.6475 (19)174
Symmetry code: (i) x, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC11H14O3
Mr194.22
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)200
a, b, c (Å)16.8864 (17), 6.6653 (7), 18.238 (2)
V3)2052.7 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.51 × 0.16 × 0.08
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10325, 2546, 1365
Rint0.073
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.154, 0.99
No. of reflections2546
No. of parameters132
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.24

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), ORTEPIII (Farrugia, 1997) and Mercury (Macrae et al., 2006), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O20.841.772.5171 (19)146
O1—H1···O2i0.841.812.6475 (19)174
Symmetry code: (i) x, y+2, z+1.
 

Acknowledgements

The authors thank Mrs Hazel Kendrick for helpful discussions.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2010). APEX2 and SAINT Bruker AXS Inc., Madison, USA.  Google Scholar
First citationBruno, G. & Randaccio, L. (1980). Acta Cryst. B36, 1711–1712.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationEllas, J. L. & García-Blanco, S. (1963). Acta Cryst. 16, 434.  CSD CrossRef IUCr Journals Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMunshi, P. & Guru Row, T. N. (2006). Acta Cryst. B62, 612–626.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWilson, C. C., Shankland, N. & Florence, A. J. (1996). J. Chem. Soc. Faraday Trans. pp. 5051–5057.  CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1063
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds