organic compounds
5-(2-Methoxyphenyl)-1,3,4-thiadiazol-2-yl 2-methoxybenzoate hemihydrate
aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, No.5 Xinmofan Road, Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: guanjn@sina.com
In the title compound, C17H14N2O4S·0.5H2O, the molecule, with the exception of the two methoxyphenyl groups, is nearly planar with an r.m.s. deviation of 0.0305 Å. The two 2-methoxyphenyl rings make dihedral angles of 4.1 (3) and 2.3 (3)° with the thiadiazole ring. In the crystal, intermolecular C—H⋯O and O—H⋯N hydrogen bonds link the molecules.
Related literature
For general background to 1,3,4-thiadiazole derivatives, see: Matysiak & Opolski (2006). Alireza et al. (2005). Wang et al. (1999). For bond-length data, see: Allen et al. (1987). For the synthesis, see: Kurzer (1971).
Experimental
Crystal data
|
Refinement
|
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536811010373/bq2283sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811010373/bq2283Isup2.hkl
3-Methoxy-phthalic anhydride(8 mmol) and 2-(2-methoxyphenyl)-5-hydroxy-1,3,4-thiadiazol(8 mmol) were added in ethanol(50 ml) (Kurzer, 1971). The mixture was refluxed for 5 h. Reactions were monitored by
(TLC) with visualization by ultraviolet light and then the solvent was totally evaporated. Then the white power was obtained. The solid was recrystallized from tetrahydrofuran to give the compound (I) (m.p. 520 K). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of a mixed solution of chloroform and tetrahydrofuran.All H atoms were positioned geometrically, with C—H = 0.96 and 0.93 Å for methyl and aromatic H atoms, respectively and constrained to ride on their parent atoms with Uiso(H) = xUeq(C), where x = 1.5 for methyl H atoms and x =1. 2 for all other H atoms.
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell
CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXS97 (Sheldrick, 2008).C17H14N2O4S·0.5H2O | F(000) = 1464 |
Mr = 356.37 | Dx = 1.407 Mg m−3 |
Monoclinic, C2/c | Melting point: 520 K |
Hall symbol: -C 2yc | Mo Kα radiation, λ = 0.71073 Å |
a = 29.858 (6) Å | Cell parameters from 25 reflections |
b = 14.542 (3) Å | θ = 9–13° |
c = 7.6710 (15) Å | µ = 0.22 mm−1 |
β = 95.19 (3)° | T = 293 K |
V = 3317.1 (12) Å3 | Block, colorless |
Z = 8 | 0.30 × 0.20 × 0.10 mm |
Enraf–Nonius CAD-4 diffractometer | 1881 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.025 |
Graphite monochromator | θmax = 25.4°, θmin = 1.4° |
ω/2θ scans | h = 0→35 |
Absorption correction: ψ scan (North et al., 1968) | k = 0→17 |
Tmin = 0.936, Tmax = 0.978 | l = −9→9 |
3108 measured reflections | 3 standard reflections every 200 reflections |
3050 independent reflections | intensity decay: 1% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.063 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.176 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.00 | w = 1/[σ2(Fo2) + (0.098P)2] where P = (Fo2 + 2Fc2)/3 |
3050 reflections | (Δ/σ)max = 0.001 |
228 parameters | Δρmax = 0.41 e Å−3 |
0 restraints | Δρmin = −0.28 e Å−3 |
C17H14N2O4S·0.5H2O | V = 3317.1 (12) Å3 |
Mr = 356.37 | Z = 8 |
Monoclinic, C2/c | Mo Kα radiation |
a = 29.858 (6) Å | µ = 0.22 mm−1 |
b = 14.542 (3) Å | T = 293 K |
c = 7.6710 (15) Å | 0.30 × 0.20 × 0.10 mm |
β = 95.19 (3)° |
Enraf–Nonius CAD-4 diffractometer | 1881 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.025 |
Tmin = 0.936, Tmax = 0.978 | 3 standard reflections every 200 reflections |
3108 measured reflections | intensity decay: 1% |
3050 independent reflections |
R[F2 > 2σ(F2)] = 0.063 | 0 restraints |
wR(F2) = 0.176 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.00 | Δρmax = 0.41 e Å−3 |
3050 reflections | Δρmin = −0.28 e Å−3 |
228 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.05152 (13) | 0.3419 (3) | 0.6081 (4) | 0.0711 (11) | |
H1 | 0.0270 | 0.3110 | 0.6471 | 0.085* | |
C2 | 0.04737 (17) | 0.3882 (4) | 0.4474 (5) | 0.0932 (16) | |
H2 | 0.0195 | 0.3907 | 0.3827 | 0.112* | |
C3 | 0.08311 (19) | 0.4293 (3) | 0.3852 (5) | 0.0898 (14) | |
H3 | 0.0800 | 0.4570 | 0.2755 | 0.108* | |
C4 | 0.12303 (15) | 0.4305 (3) | 0.4795 (4) | 0.0698 (11) | |
H4 | 0.1472 | 0.4607 | 0.4363 | 0.084* | |
C5 | 0.12879 (12) | 0.3875 (2) | 0.6401 (4) | 0.0525 (9) | |
C6 | 0.09271 (11) | 0.3426 (2) | 0.7089 (4) | 0.0490 (8) | |
C7 | 0.09536 (10) | 0.2968 (2) | 0.8806 (4) | 0.0441 (7) | |
C8 | 0.10712 (11) | 0.2309 (3) | 1.1613 (5) | 0.0540 (9) | |
C9 | 0.16054 (10) | 0.2020 (2) | 1.4126 (4) | 0.0438 (7) | |
C10 | 0.16644 (9) | 0.1570 (2) | 1.5889 (3) | 0.0385 (7) | |
C11 | 0.20815 (11) | 0.1655 (2) | 1.6793 (4) | 0.0527 (8) | |
H11 | 0.2302 | 0.1989 | 1.6288 | 0.063* | |
C12 | 0.21841 (13) | 0.1272 (3) | 1.8389 (5) | 0.0630 (10) | |
H12 | 0.2469 | 0.1350 | 1.8966 | 0.076* | |
C13 | 0.18718 (14) | 0.0778 (3) | 1.9137 (5) | 0.0707 (11) | |
H13 | 0.1945 | 0.0503 | 2.0220 | 0.085* | |
C14 | 0.14490 (13) | 0.0674 (2) | 1.8324 (4) | 0.0597 (10) | |
H14 | 0.1235 | 0.0336 | 1.8861 | 0.072* | |
C15 | 0.13365 (10) | 0.1075 (2) | 1.6690 (4) | 0.0419 (7) | |
C16 | 0.20649 (14) | 0.4248 (3) | 0.6754 (6) | 0.1006 (16) | |
H16A | 0.2114 | 0.3935 | 0.5687 | 0.151* | |
H16B | 0.2323 | 0.4173 | 0.7582 | 0.151* | |
H16C | 0.2017 | 0.4891 | 0.6517 | 0.151* | |
C17 | 0.05776 (12) | 0.0530 (3) | 1.6602 (5) | 0.0806 (13) | |
H17A | 0.0673 | −0.0086 | 1.6895 | 0.121* | |
H17B | 0.0310 | 0.0510 | 1.5811 | 0.121* | |
H17C | 0.0517 | 0.0851 | 1.7649 | 0.121* | |
N1 | 0.06100 (9) | 0.2548 (2) | 0.9303 (3) | 0.0558 (8) | |
N2 | 0.06703 (10) | 0.2169 (2) | 1.0882 (4) | 0.0720 (9) | |
O1 | 0.16829 (8) | 0.38751 (17) | 0.7453 (3) | 0.0615 (7) | |
O2 | 0.11766 (6) | 0.19761 (15) | 1.3039 (3) | 0.0518 (6) | |
O3 | 0.19112 (7) | 0.24147 (19) | 1.3498 (3) | 0.0691 (8) | |
O4 | 0.09264 (7) | 0.10003 (17) | 1.5783 (3) | 0.0561 (6) | |
S | 0.14064 (3) | 0.29401 (7) | 1.03358 (11) | 0.0554 (3) | |
O1W | 0.0000 | 0.1206 (3) | 0.2500 | 0.1159 (19) | |
H1W | 0.019 (3) | 0.159 (6) | 0.167 (12) | 0.40 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.073 (3) | 0.091 (3) | 0.048 (2) | 0.003 (2) | 0.0013 (19) | 0.009 (2) |
C2 | 0.102 (4) | 0.126 (4) | 0.048 (2) | 0.029 (3) | −0.017 (2) | 0.006 (3) |
C3 | 0.134 (4) | 0.093 (4) | 0.043 (2) | 0.019 (3) | 0.009 (3) | 0.021 (2) |
C4 | 0.120 (3) | 0.055 (2) | 0.0386 (19) | −0.004 (2) | 0.028 (2) | 0.0050 (17) |
C5 | 0.077 (2) | 0.045 (2) | 0.0388 (17) | −0.0061 (17) | 0.0212 (17) | 0.0022 (15) |
C6 | 0.058 (2) | 0.058 (2) | 0.0316 (15) | −0.0035 (16) | 0.0110 (14) | 0.0026 (15) |
C7 | 0.0462 (17) | 0.0501 (19) | 0.0380 (16) | −0.0056 (15) | 0.0142 (13) | 0.0003 (14) |
C8 | 0.0469 (19) | 0.061 (2) | 0.056 (2) | −0.0099 (17) | 0.0134 (16) | −0.0026 (18) |
C9 | 0.0421 (16) | 0.0516 (19) | 0.0399 (16) | −0.0055 (15) | 0.0158 (13) | 0.0057 (15) |
C10 | 0.0419 (16) | 0.0449 (18) | 0.0302 (14) | −0.0043 (14) | 0.0117 (12) | 0.0022 (13) |
C11 | 0.0518 (19) | 0.063 (2) | 0.0444 (18) | 0.0056 (17) | 0.0107 (15) | 0.0064 (16) |
C12 | 0.060 (2) | 0.075 (3) | 0.053 (2) | 0.014 (2) | −0.0012 (18) | 0.0072 (19) |
C13 | 0.094 (3) | 0.069 (3) | 0.048 (2) | 0.013 (2) | −0.001 (2) | 0.0129 (19) |
C14 | 0.087 (3) | 0.052 (2) | 0.0433 (18) | −0.007 (2) | 0.0264 (19) | 0.0063 (16) |
C15 | 0.0541 (17) | 0.0398 (17) | 0.0337 (15) | 0.0006 (15) | 0.0149 (14) | −0.0012 (13) |
C16 | 0.099 (3) | 0.110 (4) | 0.100 (3) | −0.052 (3) | 0.049 (3) | −0.003 (3) |
C17 | 0.071 (2) | 0.099 (3) | 0.077 (3) | −0.038 (2) | 0.031 (2) | −0.006 (2) |
N1 | 0.0557 (17) | 0.074 (2) | 0.0391 (15) | −0.0111 (15) | 0.0085 (13) | 0.0099 (14) |
N2 | 0.068 (2) | 0.090 (3) | 0.0583 (19) | −0.0133 (19) | 0.0061 (16) | 0.0060 (18) |
O1 | 0.0687 (16) | 0.0657 (17) | 0.0538 (14) | −0.0200 (13) | 0.0250 (13) | 0.0021 (12) |
O2 | 0.0355 (11) | 0.0463 (13) | 0.0756 (16) | −0.0102 (10) | 0.0167 (11) | −0.0032 (12) |
O3 | 0.0611 (15) | 0.100 (2) | 0.0479 (14) | −0.0212 (14) | 0.0167 (11) | 0.0271 (13) |
O4 | 0.0523 (13) | 0.0682 (16) | 0.0502 (13) | −0.0190 (12) | 0.0183 (11) | 0.0020 (11) |
S | 0.0537 (5) | 0.0621 (6) | 0.0523 (5) | −0.0108 (4) | 0.0158 (4) | 0.0026 (4) |
O1W | 0.083 (3) | 0.086 (3) | 0.187 (6) | 0.000 | 0.060 (3) | 0.000 |
C1—C6 | 1.392 (5) | C10—C15 | 1.401 (4) |
C1—C2 | 1.401 (5) | C11—C12 | 1.355 (4) |
C1—H1 | 0.9300 | C11—H11 | 0.9300 |
C2—C3 | 1.347 (6) | C12—C13 | 1.346 (5) |
C2—H2 | 0.9300 | C12—H12 | 0.9300 |
C3—C4 | 1.338 (5) | C13—C14 | 1.365 (5) |
C3—H3 | 0.9300 | C13—H13 | 0.9300 |
C4—C5 | 1.378 (5) | C14—C15 | 1.396 (4) |
C4—H4 | 0.9300 | C14—H14 | 0.9300 |
C5—O1 | 1.367 (4) | C15—O4 | 1.357 (4) |
C5—C6 | 1.403 (4) | C16—O1 | 1.412 (4) |
C6—C7 | 1.472 (4) | C16—H16A | 0.9600 |
C7—N1 | 1.282 (4) | C16—H16B | 0.9600 |
C7—S | 1.709 (3) | C16—H16C | 0.9600 |
C8—O2 | 1.212 (4) | C17—O4 | 1.437 (4) |
C8—N2 | 1.291 (4) | C17—H17A | 0.9600 |
C8—S | 1.726 (4) | C17—H17B | 0.9600 |
C9—O3 | 1.214 (3) | C17—H17C | 0.9600 |
C9—O2 | 1.465 (4) | N1—N2 | 1.328 (4) |
C9—C10 | 1.499 (4) | O1W—H1W | 1.05 (8) |
C10—C11 | 1.375 (4) | ||
C6—C1—C2 | 119.2 (4) | C10—C11—H11 | 118.7 |
C6—C1—H1 | 120.4 | C13—C12—C11 | 119.7 (4) |
C2—C1—H1 | 120.4 | C13—C12—H12 | 120.1 |
C3—C2—C1 | 121.0 (4) | C11—C12—H12 | 120.1 |
C3—C2—H2 | 119.5 | C12—C13—C14 | 120.8 (3) |
C1—C2—H2 | 119.5 | C12—C13—H13 | 119.6 |
C4—C3—C2 | 120.7 (4) | C14—C13—H13 | 119.6 |
C4—C3—H3 | 119.7 | C13—C14—C15 | 120.1 (3) |
C2—C3—H3 | 119.7 | C13—C14—H14 | 119.9 |
C3—C4—C5 | 120.7 (4) | C15—C14—H14 | 119.9 |
C3—C4—H4 | 119.6 | O4—C15—C14 | 124.1 (3) |
C5—C4—H4 | 119.6 | O4—C15—C10 | 116.8 (3) |
O1—C5—C4 | 124.0 (3) | C14—C15—C10 | 119.2 (3) |
O1—C5—C6 | 115.4 (3) | O1—C16—H16A | 109.5 |
C4—C5—C6 | 120.6 (4) | O1—C16—H16B | 109.5 |
C1—C6—C5 | 117.7 (3) | H16A—C16—H16B | 109.5 |
C1—C6—C7 | 117.8 (3) | O1—C16—H16C | 109.5 |
C5—C6—C7 | 124.5 (3) | H16A—C16—H16C | 109.5 |
N1—C7—C6 | 120.2 (3) | H16B—C16—H16C | 109.5 |
N1—C7—S | 112.9 (2) | O4—C17—H17A | 109.5 |
C6—C7—S | 126.9 (2) | O4—C17—H17B | 109.5 |
O2—C8—N2 | 118.9 (3) | H17A—C17—H17B | 109.5 |
O2—C8—S | 127.5 (3) | O4—C17—H17C | 109.5 |
N2—C8—S | 113.6 (3) | H17A—C17—H17C | 109.5 |
O3—C9—O2 | 116.4 (3) | H17B—C17—H17C | 109.5 |
O3—C9—C10 | 122.2 (3) | C7—N1—N2 | 115.0 (3) |
O2—C9—C10 | 121.3 (2) | C8—N2—N1 | 112.0 (3) |
C11—C10—C15 | 117.5 (3) | C5—O1—C16 | 117.3 (3) |
C11—C10—C9 | 116.3 (3) | C8—O2—C9 | 129.7 (3) |
C15—C10—C9 | 126.2 (3) | C15—O4—C17 | 118.0 (3) |
C12—C11—C10 | 122.6 (3) | C7—S—C8 | 86.50 (16) |
C12—C11—H11 | 118.7 | ||
C6—C1—C2—C3 | 3.4 (7) | C13—C14—C15—O4 | 179.4 (3) |
C1—C2—C3—C4 | −3.2 (8) | C13—C14—C15—C10 | 0.9 (5) |
C2—C3—C4—C5 | 1.9 (7) | C11—C10—C15—O4 | 179.8 (3) |
C3—C4—C5—O1 | −178.6 (4) | C9—C10—C15—O4 | −0.4 (4) |
C3—C4—C5—C6 | −0.8 (6) | C11—C10—C15—C14 | −1.6 (4) |
C2—C1—C6—C5 | −2.3 (5) | C9—C10—C15—C14 | 178.2 (3) |
C2—C1—C6—C7 | 177.3 (3) | C6—C7—N1—N2 | −179.3 (3) |
O1—C5—C6—C1 | 179.0 (3) | S—C7—N1—N2 | −0.5 (4) |
C4—C5—C6—C1 | 1.0 (5) | O2—C8—N2—N1 | −177.8 (3) |
O1—C5—C6—C7 | −0.5 (5) | S—C8—N2—N1 | −0.1 (4) |
C4—C5—C6—C7 | −178.4 (3) | C7—N1—N2—C8 | 0.4 (5) |
C1—C6—C7—N1 | 2.8 (5) | C4—C5—O1—C16 | −7.5 (5) |
C5—C6—C7—N1 | −177.7 (3) | C6—C5—O1—C16 | 174.6 (3) |
C1—C6—C7—S | −175.8 (3) | N2—C8—O2—C9 | 179.1 (3) |
C5—C6—C7—S | 3.7 (5) | S—C8—O2—C9 | 1.8 (5) |
O3—C9—C10—C11 | 2.2 (5) | O3—C9—O2—C8 | −3.4 (5) |
O2—C9—C10—C11 | 179.9 (3) | C10—C9—O2—C8 | 178.8 (3) |
O3—C9—C10—C15 | −177.7 (3) | C14—C15—O4—C17 | 4.1 (5) |
O2—C9—C10—C15 | 0.1 (5) | C10—C15—O4—C17 | −177.4 (3) |
C15—C10—C11—C12 | 0.9 (5) | N1—C7—S—C8 | 0.4 (3) |
C9—C10—C11—C12 | −179.0 (3) | C6—C7—S—C8 | 179.1 (3) |
C10—C11—C12—C13 | 0.7 (6) | O2—C8—S—C7 | 177.3 (4) |
C11—C12—C13—C14 | −1.4 (6) | N2—C8—S—C7 | −0.2 (3) |
C12—C13—C14—C15 | 0.7 (6) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1W···N2i | 1.05 (9) | 1.81 (9) | 2.821 (4) | 159 (7) |
C11—H11···O3ii | 0.93 | 2.50 | 3.324 (4) | 148 |
Symmetry codes: (i) x, y, z−1; (ii) −x+1/2, −y+1/2, −z+3. |
Experimental details
Crystal data | |
Chemical formula | C17H14N2O4S·0.5H2O |
Mr | 356.37 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 293 |
a, b, c (Å) | 29.858 (6), 14.542 (3), 7.6710 (15) |
β (°) | 95.19 (3) |
V (Å3) | 3317.1 (12) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.22 |
Crystal size (mm) | 0.30 × 0.20 × 0.10 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.936, 0.978 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3108, 3050, 1881 |
Rint | 0.025 |
(sin θ/λ)max (Å−1) | 0.603 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.063, 0.176, 1.00 |
No. of reflections | 3050 |
No. of parameters | 228 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.41, −0.28 |
Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1W···N2i | 1.05 (9) | 1.81 (9) | 2.821 (4) | 159 (7) |
C11—H11···O3ii | 0.93 | 2.50 | 3.324 (4) | 148 |
Symmetry codes: (i) x, y, z−1; (ii) −x+1/2, −y+1/2, −z+3. |
Acknowledgements
The authors would like to thank Professor Hua-qin Wang of Nanjing University, for carrying out the X-ray crystallographic analysis.
References
Alireza, F., Saeed, E., Abdolreza, H., Majid, R., Kazem, S., Mohammad, H. M. & Abbas, S. (2005). Bioorg. Med. Chem. Lett. 15, S4488–S4492. Google Scholar
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Enraf–Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft. The Netherlands. Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
Kurzer, F. (1971). J. Chem. Soc. C, 17, 2927–2931. CrossRef Google Scholar
Matysiak, J. & Opolski, A. (2006). Bioorg. Med. Chem. 14, 4483–4489. Web of Science CrossRef PubMed CAS Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, Y. G., Cao, L., Yan, J., Ye, W. F., Zhou, Q. C. & Lu, B. X. (1999). Chem. J. Chin. Univ. 20, S1903–S1905. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
1,3,4-Thiadiazole derivatives are of great interest because of their chemical and pharmaceutical properties. Some derivatives play a key role in preparing intermediate for anticarcinogen. Recently new derivatives with 1,3,4-thiadiazole nucleus have been synthesized and evaluated for their antiproliferative effect in vitro against the cells of various human tumor cell lines (Matysiak & Opolski, 2006). Some derivatives have effective antibacterial activity. They are of great potential value for killing bacteria (Alireza et al. 2005). In addition, this kind of compounds are known to exhibit diverse biological effects, such as insecticidal activity (Wang et al. 1999).
Herein we report on the crystal structure of the titled compound, (I). The molecular structure of (I) is shown in Fig. 1. The bond lengths (Allen et al. 1987) and angles are within normal ranges. In this structure, there are three rings, ring A (C1/C2/C3/C4/C5/C6), ring B (N1/C7/S/C8/N2) and ring C (C10/C11/C12/C13/C14/C15), all of which are almost planar. Ring B(N1/C7/S/C8/N2) is a planar five-membered ring and the mean deviation from plane is 0.0020 Å. The dihedral angle between ring A and ring B is 4.1 (3)°, ring B and ring C is 2.3 (3)°. In the crystal structure, intermolecular C11—H11···O3 and O1W—H1W···N2 hydrogen bonds (Table 1.) link the molecules to form network structure (Fig. 2), in which they may be effective for the stabilization of the structure.