metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[di­aqua­bis­­(formato-κO)nickel(II)]-μ-2,4,6-tris­­(4-pyrid­yl)-1,3,5-triazine-κ2N2:N4]

aBiochemical Section of Key Laboratory of Functional Polymer Materials, The Ministry of Education of China, Chemical School of Nankai University, 300071 Tianjin, People's Republic of China, and bDepartment of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
*Correspondence e-mail: hfmi@nankai.edu.cn

(Received 19 March 2011; accepted 2 April 2011; online 13 April 2011)

In the title compound, [Ni(CHO2)2(C18H12N6)(H2O)2]n, the NiII ion, lying on a crystallographic inversion center, has a distorted octa­hedral coordination comprising two water ligands, two O-atom donors from formate ligands and two N-atom donors from the 2,4,6-tris­(4-pyrid­yl)-1,3,5-triazine ligands. These ligands bridge the NiII complex units, forming zigzag chains along the c axis. Adjacent chains are linked by O—H⋯O hydrogen bonds, forming a three-dimensional supra­molecular network.

Related literature

For the structures and properties of coordination compounds with 2,4,6-tris­(4-pyrid­yl)-1,3,5-triazine as a ligand, see: Abrahams et al. (1999[Abrahams, B. F., Batten, S. R., Grannas, M. J., Hamit, H., Hoskins, B. F. & Robson, R. (1999). Angew. Chem. Int. Ed. 38, 1475-1477.]); Barrios et al. (2007[Barrios, L. A., Ribas, J. & Aromi, G. (2007). Inorg. Chem. 46, 7154-7162.]); Batten et al. (1995[Batten, S. R., Hoskins, B. F. & Robson, R. (1995). Angew. Chem. Int. Ed. 34, 820-822.]); Dybtsev et al. (2004[Dybtsev, D. N., Chun, H. & Kim, K. (2004). Chem. Commun. pp. 1594-1595.]). 2~2~O ligand should bind through the O atom

[Scheme 1]

Experimental

Crystal data
  • [Ni(CHO2)2(C18H12N6)(H2O)2]

  • Mr = 497.11

  • Monoclinic, C 2/c

  • a = 24.725 (5) Å

  • b = 10.969 (2) Å

  • c = 7.4196 (15) Å

  • β = 90.23 (3)°

  • V = 2012.2 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.02 mm−1

  • T = 293 K

  • 0.15 × 0.10 × 0.10 mm

Data collection
  • Rigaku SCX-mini diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.836, Tmax = 1.000

  • 10365 measured reflections

  • 2302 independent reflections

  • 1937 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.078

  • S = 1.05

  • 2302 reflections

  • 153 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H6⋯O2i 0.86 1.96 2.818 (2) 177
O3—H7⋯O2ii 0.83 1.95 2.777 (2) 174
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

As an interesting polydentate nitrogen donor ligand, 2,4,6-tris(4-pyridyl)-1,3,5-triazine has attracted increasing attention in the synthesis of novel transition metal complexes with novel topology and properties (Abrahams et al., 1999; Dybtsev et al., 2004; Barrios et al., 2007; Batten et al., 1995). Our interest in 2,4,6-tris(4-pyridyl)-1,3,5-triazine transition metal complexes prompts us to report the title compound (I).

As shown in Fig. 1, in the title compound, [Ni(C18H12N6)(H2O)2(HCOO)2]n, the NiII ion, lying on a crystallographic inversion center, has a distorted octahedral coordination sphere comprising two water ligands, two O-atom donors from formate ligands and two N-atom donors from the 2,4,6-tris(4-pyridyl)-1,3,5-triazine ligands. These ligands bridge the NiII complex units to form zigzag chains along c axis (Fig. 2). Adjacent chains are linked by O—H···O hydrogen bonds (Table 1), forming a three-dimensional supramolecular network (Fig. 3).

Related literature top

For the structures and properties of coordination compounds with 2,4,6-tris(4-pyridyl)-1,3,5-triazine as a ligand, see: Abrahams et al. (1999); Barrios et al. (2007); Batten et al. (1995); Dybtsev et al. (2004).

Experimental top

A mixture of Ni(HCOO)2.2H2O (0.15 mmol), 2,4,6-tris(4-pyridyl)-1,3,5-triazine (0.05 mmol), and 10 ml H2O were put in a 23-ml Teflon liner reactor and heated at 413 K in oven for 72 h. The resulting solution was slowly cooled to room temperature to yield single crystals of the title compound.

Refinement top

All H atoms were positioned geometrically (C—H = 0.93 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(parent atom). The H atoms of the water molecules were located in Fourier difference maps and refined isotropically.

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A fragment of the title compound showing the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Symmetry codes: (i) (-x, -y, -z + 1.5); (ii) (-x + 1/2, -y + 1.5, -z + 2).
[Figure 2] Fig. 2. A view of the title structure along the c axis, showing the zigzag chain.
[Figure 3] Fig. 3. The crystal packing of the title compound. O—H···O hydrogen bonds are shown as dashed lines.
catena-Poly[[diaquabis(formato-κO)nickel(II)]-µ- 2,4,6-tris(4-pyridyl)-1,3,5-triazine-κ2N2:N4] top
Crystal data top
[Ni(CHO2)2(C18H12N6)(H2O)2]F(000) = 1024
Mr = 497.11Dx = 1.641 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 9569 reflections
a = 24.725 (5) Åθ = 3.1–27.5°
b = 10.969 (2) ŵ = 1.02 mm1
c = 7.4196 (15) ÅT = 293 K
β = 90.23 (3)°Block, green
V = 2012.2 (7) Å30.15 × 0.10 × 0.10 mm
Z = 4
Data collection top
Rigaku SCX-mini
diffractometer
2302 independent reflections
Radiation source: fine-focus sealed tube1937 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 3132
Tmin = 0.836, Tmax = 1.000k = 1414
10365 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0334P)2 + 2.3183P]
where P = (Fo2 + 2Fc2)/3
2302 reflections(Δ/σ)max = 0.001
153 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
[Ni(CHO2)2(C18H12N6)(H2O)2]V = 2012.2 (7) Å3
Mr = 497.11Z = 4
Monoclinic, C2/cMo Kα radiation
a = 24.725 (5) ŵ = 1.02 mm1
b = 10.969 (2) ÅT = 293 K
c = 7.4196 (15) Å0.15 × 0.10 × 0.10 mm
β = 90.23 (3)°
Data collection top
Rigaku SCX-mini
diffractometer
2302 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1937 reflections with I > 2σ(I)
Tmin = 0.836, Tmax = 1.000Rint = 0.040
10365 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.078H-atom parameters constrained
S = 1.05Δρmax = 0.33 e Å3
2302 reflectionsΔρmin = 0.28 e Å3
153 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.25000.75001.00000.01798 (11)
O10.22888 (6)0.64439 (12)0.78618 (18)0.0263 (3)
O20.19168 (7)0.61015 (14)0.5190 (2)0.0337 (4)
O30.29896 (6)0.86926 (12)0.85264 (19)0.0263 (3)
H60.30270.94300.88840.039*
H70.30010.87110.74030.039*
N10.18044 (6)0.86186 (14)0.9633 (2)0.0204 (4)
N20.04510 (7)1.19452 (15)0.8071 (2)0.0251 (4)
N30.00001.0076 (2)0.75000.0245 (5)
N40.00001.6408 (2)0.75000.0428 (7)
C10.13264 (8)0.81007 (18)0.9265 (3)0.0241 (4)
H10.12990.72570.93550.029*
C20.08733 (8)0.87491 (18)0.8760 (3)0.0248 (4)
H20.05510.83490.84950.030*
C30.09060 (8)1.00126 (18)0.8654 (3)0.0210 (4)
C40.13930 (8)1.05662 (18)0.9086 (3)0.0239 (4)
H40.14271.14100.90530.029*
C50.18282 (8)0.98373 (18)0.9569 (3)0.0240 (4)
H50.21541.02150.98640.029*
C60.04255 (8)1.07256 (18)0.8045 (3)0.0208 (4)
C70.00001.2503 (3)0.75000.0229 (6)
C80.00001.3860 (3)0.75000.0252 (6)
C90.04675 (9)1.4505 (2)0.7877 (3)0.0327 (5)
H90.07911.41010.80970.039*
C100.04418 (10)1.5768 (2)0.7918 (4)0.0400 (6)
H100.07501.61940.82570.048*
C110.20837 (8)0.67816 (19)0.6412 (3)0.0246 (4)
H110.20520.76170.62260.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01931 (18)0.01621 (18)0.01840 (18)0.00276 (15)0.00433 (12)0.00092 (15)
O10.0344 (8)0.0217 (7)0.0227 (7)0.0047 (6)0.0086 (6)0.0032 (6)
O20.0428 (9)0.0349 (9)0.0233 (8)0.0010 (7)0.0093 (7)0.0037 (7)
O30.0350 (8)0.0216 (7)0.0224 (7)0.0013 (6)0.0005 (6)0.0019 (6)
N10.0188 (8)0.0193 (8)0.0231 (8)0.0024 (7)0.0044 (6)0.0001 (7)
N20.0212 (9)0.0180 (8)0.0362 (10)0.0011 (7)0.0062 (7)0.0005 (7)
N30.0193 (12)0.0187 (12)0.0353 (14)0.0000.0059 (10)0.000
N40.0506 (19)0.0189 (14)0.059 (2)0.0000.0079 (15)0.000
C10.0238 (10)0.0154 (10)0.0332 (11)0.0003 (8)0.0034 (8)0.0014 (8)
C20.0191 (10)0.0196 (10)0.0357 (12)0.0029 (8)0.0057 (8)0.0002 (9)
C30.0192 (9)0.0210 (10)0.0226 (10)0.0023 (8)0.0023 (8)0.0013 (8)
C40.0228 (10)0.0159 (9)0.0330 (11)0.0000 (8)0.0052 (8)0.0007 (8)
C50.0181 (10)0.0222 (10)0.0316 (11)0.0020 (8)0.0050 (8)0.0036 (9)
C60.0178 (9)0.0196 (10)0.0249 (10)0.0007 (8)0.0012 (8)0.0009 (8)
C70.0224 (13)0.0167 (13)0.0297 (14)0.0000.0021 (11)0.000
C80.0285 (15)0.0185 (14)0.0284 (15)0.0000.0066 (12)0.000
C90.0278 (11)0.0236 (11)0.0466 (14)0.0024 (9)0.0025 (10)0.0023 (10)
C100.0407 (14)0.0256 (12)0.0536 (16)0.0108 (11)0.0052 (12)0.0010 (11)
C110.0275 (11)0.0234 (10)0.0228 (10)0.0023 (8)0.0015 (8)0.0002 (8)
Geometric parameters (Å, º) top
Ni1—O1i2.0309 (14)C1—C21.378 (3)
Ni1—O12.0309 (14)C1—H10.9300
Ni1—O3i2.0934 (14)C2—C31.391 (3)
Ni1—O32.0935 (14)C2—H20.9300
Ni1—N12.1293 (16)C3—C41.385 (3)
Ni1—N1i2.1294 (16)C3—C61.491 (3)
O1—C111.244 (2)C4—C51.387 (3)
O2—C111.244 (2)C4—H40.9300
O3—H60.8557C5—H50.9300
O3—H70.8343C7—N2ii1.339 (2)
N1—C11.338 (3)C7—C81.489 (4)
N1—C51.339 (3)C8—C9ii1.385 (3)
N2—C71.339 (2)C8—C91.385 (3)
N2—C61.339 (3)C9—C101.387 (3)
N3—C6ii1.332 (2)C9—H90.9300
N3—C61.332 (2)C10—H100.9300
N4—C101.336 (3)C11—H110.9300
N4—C10ii1.336 (3)
O1i—Ni1—O1180.0C1—C2—H2120.6
O1i—Ni1—O3i95.50 (6)C3—C2—H2120.6
O1—Ni1—O3i84.50 (6)C4—C3—C2118.34 (18)
O1i—Ni1—O384.50 (6)C4—C3—C6122.08 (18)
O1—Ni1—O395.50 (6)C2—C3—C6119.57 (18)
O3i—Ni1—O3180.0C3—C4—C5118.69 (18)
O1i—Ni1—N188.64 (6)C3—C4—H4120.7
O1—Ni1—N191.36 (6)C5—C4—H4120.7
O3i—Ni1—N187.62 (6)N1—C5—C4123.41 (18)
O3—Ni1—N192.38 (6)N1—C5—H5118.3
O1i—Ni1—N1i91.36 (6)C4—C5—H5118.3
O1—Ni1—N1i88.64 (6)N3—C6—N2125.14 (19)
O3i—Ni1—N1i92.39 (6)N3—C6—C3116.04 (18)
O3—Ni1—N1i87.61 (6)N2—C6—C3118.82 (17)
N1—Ni1—N1i180.0N2ii—C7—N2125.7 (3)
C11—O1—Ni1127.47 (13)N2ii—C7—C8117.17 (13)
Ni1—O3—H6119.3N2—C7—C8117.17 (13)
Ni1—O3—H7124.0C9ii—C8—C9118.5 (3)
H6—O3—H7106.4C9ii—C8—C7120.74 (14)
C1—N1—C5117.10 (16)C9—C8—C7120.74 (14)
C1—N1—Ni1119.57 (13)C8—C9—C10118.5 (2)
C5—N1—Ni1122.98 (13)C8—C9—H9120.8
C7—N2—C6114.35 (18)C10—C9—H9120.8
C6ii—N3—C6115.4 (2)N4—C10—C9123.8 (2)
C10—N4—C10ii116.6 (3)N4—C10—H10118.1
N1—C1—C2123.56 (18)C9—C10—H10118.1
N1—C1—H1118.2O2—C11—O1125.8 (2)
C2—C1—H1118.2O2—C11—H11117.1
C1—C2—C3118.84 (18)O1—C11—H11117.1
O3i—Ni1—O1—C11125.73 (18)C3—C4—C5—N10.3 (3)
O3—Ni1—O1—C1154.27 (18)C6ii—N3—C6—N20.22 (15)
N1—Ni1—O1—C1138.26 (18)C6ii—N3—C6—C3179.8 (2)
N1i—Ni1—O1—C11141.74 (18)C7—N2—C6—N30.4 (3)
O1i—Ni1—N1—C1137.13 (16)C7—N2—C6—C3180.00 (15)
O1—Ni1—N1—C142.87 (16)C4—C3—C6—N3173.55 (17)
O3i—Ni1—N1—C141.57 (15)C2—C3—C6—N35.0 (3)
O3—Ni1—N1—C1138.43 (15)C4—C3—C6—N26.1 (3)
O1i—Ni1—N1—C549.91 (16)C2—C3—C6—N2175.33 (19)
O1—Ni1—N1—C5130.09 (16)C6—N2—C7—N2ii0.19 (13)
O3i—Ni1—N1—C5145.47 (16)C6—N2—C7—C8179.82 (13)
O3—Ni1—N1—C534.53 (16)N2ii—C7—C8—C9ii145.57 (15)
C5—N1—C1—C22.8 (3)N2—C7—C8—C9ii34.43 (15)
Ni1—N1—C1—C2170.57 (17)N2ii—C7—C8—C934.43 (15)
N1—C1—C2—C31.2 (3)N2—C7—C8—C9145.57 (15)
C1—C2—C3—C40.9 (3)C9ii—C8—C9—C102.10 (17)
C1—C2—C3—C6177.77 (19)C7—C8—C9—C10177.90 (17)
C2—C3—C4—C51.3 (3)C10ii—N4—C10—C92.33 (18)
C6—C3—C4—C5177.31 (19)C8—C9—C10—N44.5 (4)
C1—N1—C5—C42.3 (3)Ni1—O1—C11—O2173.47 (16)
Ni1—N1—C5—C4170.79 (16)
Symmetry codes: (i) x+1/2, y+3/2, z+2; (ii) x, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H6···O2iii0.861.962.818 (2)177
O3—H7···O2iv0.831.952.777 (2)174
Symmetry codes: (iii) x+1/2, y+1/2, z+3/2; (iv) x+1/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formula[Ni(CHO2)2(C18H12N6)(H2O)2]
Mr497.11
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)24.725 (5), 10.969 (2), 7.4196 (15)
β (°) 90.23 (3)
V3)2012.2 (7)
Z4
Radiation typeMo Kα
µ (mm1)1.02
Crystal size (mm)0.15 × 0.10 × 0.10
Data collection
DiffractometerRigaku SCX-mini
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.836, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
10365, 2302, 1937
Rint0.040
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.078, 1.05
No. of reflections2302
No. of parameters153
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.28

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H6···O2i0.861.962.818 (2)177
O3—H7···O2ii0.831.952.777 (2)174
Symmetry codes: (i) x+1/2, y+1/2, z+3/2; (ii) x+1/2, y+3/2, z+1.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China [project approval No. 20974053].

References

First citationAbrahams, B. F., Batten, S. R., Grannas, M. J., Hamit, H., Hoskins, B. F. & Robson, R. (1999). Angew. Chem. Int. Ed. 38, 1475–1477.  Web of Science CrossRef CAS Google Scholar
First citationBarrios, L. A., Ribas, J. & Aromi, G. (2007). Inorg. Chem. 46, 7154–7162.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBatten, S. R., Hoskins, B. F. & Robson, R. (1995). Angew. Chem. Int. Ed. 34, 820–822.  CrossRef Google Scholar
First citationDybtsev, D. N., Chun, H. & Kim, K. (2004). Chem. Commun. pp. 1594–1595.  Web of Science CSD CrossRef Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds