metal-organic compounds
catena-Poly[[diaquabis(formato-κO)nickel(II)]-μ-2,4,6-tris(4-pyridyl)-1,3,5-triazine-κ2N2:N4]
aBiochemical Section of Key Laboratory of Functional Polymer Materials, The Ministry of Education of China, Chemical School of Nankai University, 300071 Tianjin, People's Republic of China, and bDepartment of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
*Correspondence e-mail: hfmi@nankai.edu.cn
In the title compound, [Ni(CHO2)2(C18H12N6)(H2O)2]n, the NiII ion, lying on a crystallographic inversion center, has a distorted octahedral coordination comprising two water ligands, two O-atom donors from formate ligands and two N-atom donors from the 2,4,6-tris(4-pyridyl)-1,3,5-triazine ligands. These ligands bridge the NiII complex units, forming zigzag chains along the c axis. Adjacent chains are linked by O—H⋯O hydrogen bonds, forming a three-dimensional supramolecular network.
Related literature
For the structures and properties of coordination compounds with 2,4,6-tris(4-pyridyl)-1,3,5-triazine as a ligand, see: Abrahams et al. (1999); Barrios et al. (2007); Batten et al. (1995); Dybtsev et al. (2004). 2~2~O ligand should bind through the O atom
Experimental
Crystal data
|
Refinement
|
Data collection: PROCESS-AUTO (Rigaku, 1998); cell PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536811012281/bq2289sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811012281/bq2289Isup2.hkl
A mixture of Ni(HCOO)2.2H2O (0.15 mmol), 2,4,6-tris(4-pyridyl)-1,3,5-triazine (0.05 mmol), and 10 ml H2O were put in a 23-ml Teflon liner reactor and heated at 413 K in oven for 72 h. The resulting solution was slowly cooled to room temperature to yield single crystals of the title compound.
All H atoms were positioned geometrically (C—H = 0.93 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(parent atom). The H atoms of the water molecules were located in Fourier difference maps and refined isotropically.
Data collection: PROCESS-AUTO (Rigaku, 1998); cell
PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).[Ni(CHO2)2(C18H12N6)(H2O)2] | F(000) = 1024 |
Mr = 497.11 | Dx = 1.641 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 9569 reflections |
a = 24.725 (5) Å | θ = 3.1–27.5° |
b = 10.969 (2) Å | µ = 1.02 mm−1 |
c = 7.4196 (15) Å | T = 293 K |
β = 90.23 (3)° | Block, green |
V = 2012.2 (7) Å3 | 0.15 × 0.10 × 0.10 mm |
Z = 4 |
Rigaku SCX-mini diffractometer | 2302 independent reflections |
Radiation source: fine-focus sealed tube | 1937 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.040 |
ω scans | θmax = 27.5°, θmin = 3.1° |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | h = −31→32 |
Tmin = 0.836, Tmax = 1.000 | k = −14→14 |
10365 measured reflections | l = −9→9 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.034 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.078 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0334P)2 + 2.3183P] where P = (Fo2 + 2Fc2)/3 |
2302 reflections | (Δ/σ)max = 0.001 |
153 parameters | Δρmax = 0.33 e Å−3 |
0 restraints | Δρmin = −0.28 e Å−3 |
[Ni(CHO2)2(C18H12N6)(H2O)2] | V = 2012.2 (7) Å3 |
Mr = 497.11 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 24.725 (5) Å | µ = 1.02 mm−1 |
b = 10.969 (2) Å | T = 293 K |
c = 7.4196 (15) Å | 0.15 × 0.10 × 0.10 mm |
β = 90.23 (3)° |
Rigaku SCX-mini diffractometer | 2302 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 1937 reflections with I > 2σ(I) |
Tmin = 0.836, Tmax = 1.000 | Rint = 0.040 |
10365 measured reflections |
R[F2 > 2σ(F2)] = 0.034 | 0 restraints |
wR(F2) = 0.078 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.33 e Å−3 |
2302 reflections | Δρmin = −0.28 e Å−3 |
153 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.2500 | 0.7500 | 1.0000 | 0.01798 (11) | |
O1 | 0.22888 (6) | 0.64439 (12) | 0.78618 (18) | 0.0263 (3) | |
O2 | 0.19168 (7) | 0.61015 (14) | 0.5190 (2) | 0.0337 (4) | |
O3 | 0.29896 (6) | 0.86926 (12) | 0.85264 (19) | 0.0263 (3) | |
H6 | 0.3027 | 0.9430 | 0.8884 | 0.039* | |
H7 | 0.3001 | 0.8711 | 0.7403 | 0.039* | |
N1 | 0.18044 (6) | 0.86186 (14) | 0.9633 (2) | 0.0204 (4) | |
N2 | 0.04510 (7) | 1.19452 (15) | 0.8071 (2) | 0.0251 (4) | |
N3 | 0.0000 | 1.0076 (2) | 0.7500 | 0.0245 (5) | |
N4 | 0.0000 | 1.6408 (2) | 0.7500 | 0.0428 (7) | |
C1 | 0.13264 (8) | 0.81007 (18) | 0.9265 (3) | 0.0241 (4) | |
H1 | 0.1299 | 0.7257 | 0.9355 | 0.029* | |
C2 | 0.08733 (8) | 0.87491 (18) | 0.8760 (3) | 0.0248 (4) | |
H2 | 0.0551 | 0.8349 | 0.8495 | 0.030* | |
C3 | 0.09060 (8) | 1.00126 (18) | 0.8654 (3) | 0.0210 (4) | |
C4 | 0.13930 (8) | 1.05662 (18) | 0.9086 (3) | 0.0239 (4) | |
H4 | 0.1427 | 1.1410 | 0.9053 | 0.029* | |
C5 | 0.18282 (8) | 0.98373 (18) | 0.9569 (3) | 0.0240 (4) | |
H5 | 0.2154 | 1.0215 | 0.9864 | 0.029* | |
C6 | 0.04255 (8) | 1.07256 (18) | 0.8045 (3) | 0.0208 (4) | |
C7 | 0.0000 | 1.2503 (3) | 0.7500 | 0.0229 (6) | |
C8 | 0.0000 | 1.3860 (3) | 0.7500 | 0.0252 (6) | |
C9 | −0.04675 (9) | 1.4505 (2) | 0.7877 (3) | 0.0327 (5) | |
H9 | −0.0791 | 1.4101 | 0.8097 | 0.039* | |
C10 | −0.04418 (10) | 1.5768 (2) | 0.7918 (4) | 0.0400 (6) | |
H10 | −0.0750 | 1.6194 | 0.8257 | 0.048* | |
C11 | 0.20837 (8) | 0.67816 (19) | 0.6412 (3) | 0.0246 (4) | |
H11 | 0.2052 | 0.7617 | 0.6226 | 0.029* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.01931 (18) | 0.01621 (18) | 0.01840 (18) | 0.00276 (15) | −0.00433 (12) | −0.00092 (15) |
O1 | 0.0344 (8) | 0.0217 (7) | 0.0227 (7) | 0.0047 (6) | −0.0086 (6) | −0.0032 (6) |
O2 | 0.0428 (9) | 0.0349 (9) | 0.0233 (8) | 0.0010 (7) | −0.0093 (7) | −0.0037 (7) |
O3 | 0.0350 (8) | 0.0216 (7) | 0.0224 (7) | −0.0013 (6) | 0.0005 (6) | 0.0019 (6) |
N1 | 0.0188 (8) | 0.0193 (8) | 0.0231 (8) | 0.0024 (7) | −0.0044 (6) | 0.0001 (7) |
N2 | 0.0212 (9) | 0.0180 (8) | 0.0362 (10) | 0.0011 (7) | −0.0062 (7) | −0.0005 (7) |
N3 | 0.0193 (12) | 0.0187 (12) | 0.0353 (14) | 0.000 | −0.0059 (10) | 0.000 |
N4 | 0.0506 (19) | 0.0189 (14) | 0.059 (2) | 0.000 | −0.0079 (15) | 0.000 |
C1 | 0.0238 (10) | 0.0154 (10) | 0.0332 (11) | −0.0003 (8) | −0.0034 (8) | 0.0014 (8) |
C2 | 0.0191 (10) | 0.0196 (10) | 0.0357 (12) | −0.0029 (8) | −0.0057 (8) | 0.0002 (9) |
C3 | 0.0192 (9) | 0.0210 (10) | 0.0226 (10) | 0.0023 (8) | −0.0023 (8) | −0.0013 (8) |
C4 | 0.0228 (10) | 0.0159 (9) | 0.0330 (11) | 0.0000 (8) | −0.0052 (8) | −0.0007 (8) |
C5 | 0.0181 (10) | 0.0222 (10) | 0.0316 (11) | −0.0020 (8) | −0.0050 (8) | −0.0036 (9) |
C6 | 0.0178 (9) | 0.0196 (10) | 0.0249 (10) | 0.0007 (8) | −0.0012 (8) | −0.0009 (8) |
C7 | 0.0224 (13) | 0.0167 (13) | 0.0297 (14) | 0.000 | −0.0021 (11) | 0.000 |
C8 | 0.0285 (15) | 0.0185 (14) | 0.0284 (15) | 0.000 | −0.0066 (12) | 0.000 |
C9 | 0.0278 (11) | 0.0236 (11) | 0.0466 (14) | 0.0024 (9) | −0.0025 (10) | 0.0023 (10) |
C10 | 0.0407 (14) | 0.0256 (12) | 0.0536 (16) | 0.0108 (11) | −0.0052 (12) | −0.0010 (11) |
C11 | 0.0275 (11) | 0.0234 (10) | 0.0228 (10) | 0.0023 (8) | −0.0015 (8) | 0.0002 (8) |
Ni1—O1i | 2.0309 (14) | C1—C2 | 1.378 (3) |
Ni1—O1 | 2.0309 (14) | C1—H1 | 0.9300 |
Ni1—O3i | 2.0934 (14) | C2—C3 | 1.391 (3) |
Ni1—O3 | 2.0935 (14) | C2—H2 | 0.9300 |
Ni1—N1 | 2.1293 (16) | C3—C4 | 1.385 (3) |
Ni1—N1i | 2.1294 (16) | C3—C6 | 1.491 (3) |
O1—C11 | 1.244 (2) | C4—C5 | 1.387 (3) |
O2—C11 | 1.244 (2) | C4—H4 | 0.9300 |
O3—H6 | 0.8557 | C5—H5 | 0.9300 |
O3—H7 | 0.8343 | C7—N2ii | 1.339 (2) |
N1—C1 | 1.338 (3) | C7—C8 | 1.489 (4) |
N1—C5 | 1.339 (3) | C8—C9ii | 1.385 (3) |
N2—C7 | 1.339 (2) | C8—C9 | 1.385 (3) |
N2—C6 | 1.339 (3) | C9—C10 | 1.387 (3) |
N3—C6ii | 1.332 (2) | C9—H9 | 0.9300 |
N3—C6 | 1.332 (2) | C10—H10 | 0.9300 |
N4—C10 | 1.336 (3) | C11—H11 | 0.9300 |
N4—C10ii | 1.336 (3) | ||
O1i—Ni1—O1 | 180.0 | C1—C2—H2 | 120.6 |
O1i—Ni1—O3i | 95.50 (6) | C3—C2—H2 | 120.6 |
O1—Ni1—O3i | 84.50 (6) | C4—C3—C2 | 118.34 (18) |
O1i—Ni1—O3 | 84.50 (6) | C4—C3—C6 | 122.08 (18) |
O1—Ni1—O3 | 95.50 (6) | C2—C3—C6 | 119.57 (18) |
O3i—Ni1—O3 | 180.0 | C3—C4—C5 | 118.69 (18) |
O1i—Ni1—N1 | 88.64 (6) | C3—C4—H4 | 120.7 |
O1—Ni1—N1 | 91.36 (6) | C5—C4—H4 | 120.7 |
O3i—Ni1—N1 | 87.62 (6) | N1—C5—C4 | 123.41 (18) |
O3—Ni1—N1 | 92.38 (6) | N1—C5—H5 | 118.3 |
O1i—Ni1—N1i | 91.36 (6) | C4—C5—H5 | 118.3 |
O1—Ni1—N1i | 88.64 (6) | N3—C6—N2 | 125.14 (19) |
O3i—Ni1—N1i | 92.39 (6) | N3—C6—C3 | 116.04 (18) |
O3—Ni1—N1i | 87.61 (6) | N2—C6—C3 | 118.82 (17) |
N1—Ni1—N1i | 180.0 | N2ii—C7—N2 | 125.7 (3) |
C11—O1—Ni1 | 127.47 (13) | N2ii—C7—C8 | 117.17 (13) |
Ni1—O3—H6 | 119.3 | N2—C7—C8 | 117.17 (13) |
Ni1—O3—H7 | 124.0 | C9ii—C8—C9 | 118.5 (3) |
H6—O3—H7 | 106.4 | C9ii—C8—C7 | 120.74 (14) |
C1—N1—C5 | 117.10 (16) | C9—C8—C7 | 120.74 (14) |
C1—N1—Ni1 | 119.57 (13) | C8—C9—C10 | 118.5 (2) |
C5—N1—Ni1 | 122.98 (13) | C8—C9—H9 | 120.8 |
C7—N2—C6 | 114.35 (18) | C10—C9—H9 | 120.8 |
C6ii—N3—C6 | 115.4 (2) | N4—C10—C9 | 123.8 (2) |
C10—N4—C10ii | 116.6 (3) | N4—C10—H10 | 118.1 |
N1—C1—C2 | 123.56 (18) | C9—C10—H10 | 118.1 |
N1—C1—H1 | 118.2 | O2—C11—O1 | 125.8 (2) |
C2—C1—H1 | 118.2 | O2—C11—H11 | 117.1 |
C1—C2—C3 | 118.84 (18) | O1—C11—H11 | 117.1 |
O3i—Ni1—O1—C11 | 125.73 (18) | C3—C4—C5—N1 | 0.3 (3) |
O3—Ni1—O1—C11 | −54.27 (18) | C6ii—N3—C6—N2 | −0.22 (15) |
N1—Ni1—O1—C11 | 38.26 (18) | C6ii—N3—C6—C3 | −179.8 (2) |
N1i—Ni1—O1—C11 | −141.74 (18) | C7—N2—C6—N3 | 0.4 (3) |
O1i—Ni1—N1—C1 | −137.13 (16) | C7—N2—C6—C3 | 180.00 (15) |
O1—Ni1—N1—C1 | 42.87 (16) | C4—C3—C6—N3 | 173.55 (17) |
O3i—Ni1—N1—C1 | −41.57 (15) | C2—C3—C6—N3 | −5.0 (3) |
O3—Ni1—N1—C1 | 138.43 (15) | C4—C3—C6—N2 | −6.1 (3) |
O1i—Ni1—N1—C5 | 49.91 (16) | C2—C3—C6—N2 | 175.33 (19) |
O1—Ni1—N1—C5 | −130.09 (16) | C6—N2—C7—N2ii | −0.19 (13) |
O3i—Ni1—N1—C5 | 145.47 (16) | C6—N2—C7—C8 | 179.82 (13) |
O3—Ni1—N1—C5 | −34.53 (16) | N2ii—C7—C8—C9ii | −145.57 (15) |
C5—N1—C1—C2 | 2.8 (3) | N2—C7—C8—C9ii | 34.43 (15) |
Ni1—N1—C1—C2 | −170.57 (17) | N2ii—C7—C8—C9 | 34.43 (15) |
N1—C1—C2—C3 | −1.2 (3) | N2—C7—C8—C9 | −145.57 (15) |
C1—C2—C3—C4 | −0.9 (3) | C9ii—C8—C9—C10 | −2.10 (17) |
C1—C2—C3—C6 | 177.77 (19) | C7—C8—C9—C10 | 177.90 (17) |
C2—C3—C4—C5 | 1.3 (3) | C10ii—N4—C10—C9 | −2.33 (18) |
C6—C3—C4—C5 | −177.31 (19) | C8—C9—C10—N4 | 4.5 (4) |
C1—N1—C5—C4 | −2.3 (3) | Ni1—O1—C11—O2 | −173.47 (16) |
Ni1—N1—C5—C4 | 170.79 (16) |
Symmetry codes: (i) −x+1/2, −y+3/2, −z+2; (ii) −x, y, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H6···O2iii | 0.86 | 1.96 | 2.818 (2) | 177 |
O3—H7···O2iv | 0.83 | 1.95 | 2.777 (2) | 174 |
Symmetry codes: (iii) −x+1/2, y+1/2, −z+3/2; (iv) −x+1/2, −y+3/2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Ni(CHO2)2(C18H12N6)(H2O)2] |
Mr | 497.11 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 293 |
a, b, c (Å) | 24.725 (5), 10.969 (2), 7.4196 (15) |
β (°) | 90.23 (3) |
V (Å3) | 2012.2 (7) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.02 |
Crystal size (mm) | 0.15 × 0.10 × 0.10 |
Data collection | |
Diffractometer | Rigaku SCX-mini diffractometer |
Absorption correction | Multi-scan (ABSCOR; Higashi, 1995) |
Tmin, Tmax | 0.836, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10365, 2302, 1937 |
Rint | 0.040 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.034, 0.078, 1.05 |
No. of reflections | 2302 |
No. of parameters | 153 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.33, −0.28 |
Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010).
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H6···O2i | 0.86 | 1.96 | 2.818 (2) | 177 |
O3—H7···O2ii | 0.83 | 1.95 | 2.777 (2) | 174 |
Symmetry codes: (i) −x+1/2, y+1/2, −z+3/2; (ii) −x+1/2, −y+3/2, −z+1. |
Acknowledgements
This work was supported by the National Natural Science Foundation of China [project approval No. 20974053].
References
Abrahams, B. F., Batten, S. R., Grannas, M. J., Hamit, H., Hoskins, B. F. & Robson, R. (1999). Angew. Chem. Int. Ed. 38, 1475–1477. Web of Science CrossRef CAS Google Scholar
Barrios, L. A., Ribas, J. & Aromi, G. (2007). Inorg. Chem. 46, 7154–7162. Web of Science CSD CrossRef PubMed CAS Google Scholar
Batten, S. R., Hoskins, B. F. & Robson, R. (1995). Angew. Chem. Int. Ed. 34, 820–822. CrossRef Google Scholar
Dybtsev, D. N., Chun, H. & Kim, K. (2004). Chem. Commun. pp. 1594–1595. Web of Science CSD CrossRef Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
As an interesting polydentate nitrogen donor ligand, 2,4,6-tris(4-pyridyl)-1,3,5-triazine has attracted increasing attention in the synthesis of novel transition metal complexes with novel topology and properties (Abrahams et al., 1999; Dybtsev et al., 2004; Barrios et al., 2007; Batten et al., 1995). Our interest in 2,4,6-tris(4-pyridyl)-1,3,5-triazine transition metal complexes prompts us to report the title compound (I).
As shown in Fig. 1, in the title compound, [Ni(C18H12N6)(H2O)2(HCOO)2]n, the NiII ion, lying on a crystallographic inversion center, has a distorted octahedral coordination sphere comprising two water ligands, two O-atom donors from formate ligands and two N-atom donors from the 2,4,6-tris(4-pyridyl)-1,3,5-triazine ligands. These ligands bridge the NiII complex units to form zigzag chains along c axis (Fig. 2). Adjacent chains are linked by O—H···O hydrogen bonds (Table 1), forming a three-dimensional supramolecular network (Fig. 3).