organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages o1123-o1124

Zwitterionic (E)-1-[(4-nitro­phen­yl)iminio­meth­yl]naphthalen-2-olate

aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Mentouri-Constantine, 25000 Algeria, bDépartement Sciences de la Matière, Faculté des Sciences Exactes et Sciences de la Nature et de la Vie, Université Larbi Ben M'hidi, Oum El Bouaghi 04000, Algeria, and cLaboratoire de Chimie de Coordination, UPR CNRS 8241, 205 route de Narbonne, 31077 Toulouse Cedex, France
*Correspondence e-mail: bouacida_sofiane@yahoo.fr

(Received 24 March 2011; accepted 2 April 2011; online 13 April 2011)

The title compound, C17H12N2O3, was synthesized by the reaction of 2-hy­droxy-1-naphthaldehyde with 4-nitro­benzenamine. These condense to form the Schiff base, which crystallizes in the zwitterionic form. In the structure, the keto–amino tautomer has a fairly short intra­molecular N—H⋯O hydrogen bond between the 2-naphthalenone and amino groups, with electron delocalization. The mol­ecule is essentially planar, with a dihedral angle of 1.96 (3)° between the ring systems. In the crystal, the mol­ecules are linked via inter­molecular C—H⋯O hydrogen bonds, forming a layer parallel to (101).

Related literature

For background to Schiff base compounds, see: Fan et al. (2007[Fan, Y. H., He, X. T., Bi, C. F., Guo, F., Bao, Y. & Chen, R. (2007). Russ. J. Coord. Chem. 33, 535-538.]); Kim et al. (2005[Kim, H.-J., Kim, W., Lough, A. J., Kim, B. M. & Chin, J. (2005). J. Am. Chem. Soc. 127, 16776-16777.]); Nimitsiriwat et al. (2004[Nimitsiriwat, N., Marshall, E. L., Gibson, V. C., Elsegood, M. R. J. & Dale, S. H. (2004). J. Am. Chem. Soc. 126, 13598-13599.]). For the pharmaceutical and medicinal activity of Schiff bases, see: Chen et al. (1997[Chen, H. Q., Hall, S., Zheng, B. & Rhodes, J. (1997). Biodrugs, 7, 217-231.]); Dao et al. (2000[Dao, V.-T., Gaspard, C., Mayer, M., Werner, G. H., Nguyen, S. N. & Michelot, R. J. (2000). Eur. J. Med. Chem. 35, 805-813.]); Ren et al. (2002[Ren, S., Wang, R., Komatsu, K., Bonaz-Krause, P., Zyrianov, Y., McKenna, C. E., Csipke, C., Tokes, Z. A. & Lien, E. J. (2002). J. Med. Chem. 45, 410-419.]); Sriram et al. (2006[Sriram, D., Yogeeswari, P., Myneedu, N. S. & Saraswat, V. (2006). Bioorg. Med. Chem. Lett. 16, 2127-2129.]); Karthikeyan et al. (2006[Karthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482-7489.]). For Schiff bases in coordination chemistry, see: Ali et al. (2008[Ali, H. M., Mohamed Mustafa, M. I., Rizal, M. R. & Ng, S. W. (2008). Acta Cryst. E64, m718-m719.]); Kargar et al. (2009[Kargar, H., Jamshidvand, A., Fun, H.-K. & Kia, R. (2009). Acta Cryst. E65, m403-m404.]); Yeap et al. (2009[Yeap, C. S., Kia, R., Kargar, H. & Fun, H.-K. (2009). Acta Cryst. E65, m570-m571.]). For related structures, see: Fun et al. (2009[Fun, H.-K., Kia, R., Vijesh, A. M. & Isloor, A. M. (2009). Acta Cryst. E65, o349-o350.]); Nadeem et al. (2009[Nadeem, S., Shah, M. R. & VanDerveer, D. (2009). Acta Cryst. E65, o897.]); Eltayeb et al. (2008[Eltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Adnan, R. (2008). Acta Cryst. E64, o576-o577.]). For standard bond lengths see: Allen, (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C17H12N2O3

  • Mr = 292.29

  • Monoclinic, P 21 /c

  • a = 8.0503 (6) Å

  • b = 12.8174 (9) Å

  • c = 13.1833 (10) Å

  • β = 97.271 (5)°

  • V = 1349.37 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.15 × 0.06 × 0.04 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • 44074 measured reflections

  • 7946 independent reflections

  • 3658 reflections with I > 2σ(I)

  • Rint = 0.074

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.190

  • S = 0.96

  • 7946 reflections

  • 207 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯O3 1.09 (2) 1.57 (2) 2.5287 (15) 143 (2)
C5—H5⋯O2i 0.93 2.59 3.5136 (16) 173
C16—H16⋯O2i 0.93 2.53 3.4455 (17) 169
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg & Berndt, 2001[Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Schiff base compounds have been widely investigated over a century (Fan et al., 2007; Kim et al., 2005; Nimitsiriwat et al., 2004). Some of the compounds have been found to have pharmaceutical and medicinal fields (Chen et al., 1997; Ren et al., 2002; Dao et al., 2000; Sriram et al., 2006; Karthikeyan et al., 2006). They are also used as versatile ligands in coordination chemistry (Ali et al., 2008; Kargar et al., 2009; Yeap et al., 2009).

As part of our ongoing studies of Schiff base complexes and derivatives we report here synthesis and the crystal structure of the title compound, obtained by the reaction of 2-hydroxy-1-naphthaldehyde with 4-nitroaniline, which crystallized in a zwitterionic form with cationic iminium and anionic naphtholate group.

The molecular structure of (I), and the atomic numbering used, is illustrated in Fig. 1. All bond distances and angles are within the ranges of accepted values (CSD, Allen, 2002) and in literature (Fun et al., 2009; Nadeem et al., 2009; Eltayeb et al., 2008).

The main molecule is essentially planar with an rms deviation of 0.0350 Å, and the crystal structure exhibit alternating layers parallel to (101) plane (Fig. 2). In the crystal, molecules are linked via intermolecular C—H···O hydrogen bonds to form a two-dimensional layers parallel to (101) (Table 1, Fig. 3) and additional stabilization within these layers is provided by N—O···π and π···π stacking interactions. These interaction bonds link the molecules within the layers and also link the layers together and reinforcing the cohesion of the structure. An intramolecular N—H···O hydrogen bond occurs.

Related literature top

For background to Schiff base compounds, see: Fan et al. (2007); Kim et al. (2005); Nimitsiriwat et al. (2004). For the pharmaceutical and medicinal activity of Schiff bases, see: Chen et al. (1997); Dao et al. (2000); Ren et al. (2002); Sriram et al. (2006); Karthikeyan et al. (2006). For Schiff bases in coordination chemistry, see: Ali et al. (2008); Kargar et al. (2009); Yeap et al. (2009). For related structures, see: Fun et al. (2009); Nadeem et al. (2009); Eltayeb et al. (2008). For standard bond lengths see: Allen, (2002)

Experimental top

The title compound, (I), was prepared by refluxing a mixture of a solution containing (0.1 mmol) of 2-hydroxy-1-naphthaldehyde and (0.1 mmol) of 4-nitrobenzenamine in 20 ml methanol. The reaction mixture was stirred for 1 h under reflux. Microcrystals of (I) were obtained by allowing the clear solution to stand overnight. The powder product was dissolved and recrystallized from DMSO solution. Some red crystals were carefully isolated under polarizing microscope for analysis by x-ray diffraction.

Refinement top

H7 and H2N were located in difference Fourier maps and refined isotropically. The remaining H atoms were localized on Fourier maps but introduced in calculated positions and treated as riding on their parent atoms (Caryl) with Caryl—Haryl=0.95Å and Uiso(Haryl)=1.2Ueq(Caryl).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. (Farrugia, 1997) The asymmetric unit of the title compound with the atomic labeling scheme. Displacement are drawn at the 50% probability level. Hydrogen bond shown as dashed line.
[Figure 2] Fig. 2. (Brandenburg, 2001) A diagram of the layered crystal packing in (I), viewed down the b axis, showing layers parallel to (101).
[Figure 3] Fig. 3. (Brandenburg, 2001) A part of crystal packing of (I) showing hydrogen bond connections in the same layer as dashed line.
(E)-1-[(4-nitrophenyl)iminiomethyl]naphthalen-2-olate top
Crystal data top
C17H12N2O3F(000) = 608
Mr = 292.29Dx = 1.439 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5160 reflections
a = 8.0503 (6) Åθ = 3.0–30.1°
b = 12.8174 (9) ŵ = 0.10 mm1
c = 13.1833 (10) ÅT = 296 K
β = 97.271 (5)°Needle, red
V = 1349.37 (17) Å30.15 × 0.06 × 0.04 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3658 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.074
Graphite monochromatorθmax = 39.3°, θmin = 3.0°
ϕ and ω scansh = 1412
44074 measured reflectionsk = 2022
7946 independent reflectionsl = 2023
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.190H atoms treated by a mixture of independent and constrained refinement
S = 0.96 w = 1/[σ2(Fo2) + (0.0963P)2]
where P = (Fo2 + 2Fc2)/3
7946 reflections(Δ/σ)max = 0.001
207 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C17H12N2O3V = 1349.37 (17) Å3
Mr = 292.29Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.0503 (6) ŵ = 0.10 mm1
b = 12.8174 (9) ÅT = 296 K
c = 13.1833 (10) Å0.15 × 0.06 × 0.04 mm
β = 97.271 (5)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3658 reflections with I > 2σ(I)
44074 measured reflectionsRint = 0.074
7946 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.190H atoms treated by a mixture of independent and constrained refinement
S = 0.96Δρmax = 0.53 e Å3
7946 reflectionsΔρmin = 0.26 e Å3
207 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.88419 (14)0.08384 (7)0.31991 (8)0.0392 (3)
O20.44266 (15)0.40551 (8)0.79254 (8)0.0426 (3)
O10.49601 (17)0.51766 (7)0.67875 (9)0.0500 (3)
N20.74356 (13)0.11314 (7)0.47852 (8)0.0264 (2)
N10.49499 (15)0.42784 (8)0.71179 (9)0.0320 (2)
C170.82974 (14)0.16828 (9)0.44636 (9)0.0234 (2)
C80.82177 (14)0.05641 (9)0.42782 (9)0.0234 (2)
C60.55083 (16)0.24287 (9)0.68580 (10)0.0274 (2)
H60.50570.22750.74560.033*
C10.55862 (16)0.34487 (9)0.65258 (10)0.0259 (2)
C70.75161 (14)0.01080 (9)0.49403 (10)0.0245 (2)
C20.62367 (17)0.37057 (9)0.56335 (10)0.0300 (3)
H20.62670.43960.54210.036*
C120.90181 (15)0.23306 (9)0.37664 (10)0.0273 (2)
C160.76748 (16)0.21715 (9)0.52907 (10)0.0293 (3)
H160.7210.17660.57680.035*
C30.68369 (16)0.29201 (9)0.50680 (10)0.0290 (3)
H30.72780.30790.44680.035*
C50.61127 (16)0.16388 (9)0.62877 (10)0.0265 (2)
H50.60690.09490.65010.032*
C130.90891 (17)0.34145 (10)0.39091 (12)0.0355 (3)
H130.95690.3830.34460.043*
C100.96505 (18)0.08390 (11)0.27475 (11)0.0352 (3)
H101.01220.05740.21930.042*
C40.67859 (14)0.18811 (9)0.53937 (9)0.0239 (2)
C90.88945 (16)0.01310 (9)0.34053 (10)0.0280 (2)
C140.84615 (17)0.38702 (10)0.47216 (13)0.0379 (3)
H140.85170.4590.48120.045*
C150.77392 (17)0.32417 (10)0.54105 (12)0.0346 (3)
H150.72960.35470.59570.041*
C110.96888 (17)0.18704 (10)0.29171 (11)0.0336 (3)
H111.01680.23020.24670.04*
H70.704 (2)0.0100 (13)0.5544 (14)0.043 (5)*
H2N0.798 (3)0.1327 (18)0.4091 (18)0.080 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0597 (6)0.0256 (4)0.0362 (5)0.0031 (4)0.0217 (5)0.0042 (4)
O20.0637 (7)0.0342 (5)0.0348 (5)0.0030 (5)0.0249 (5)0.0036 (4)
O10.0847 (9)0.0207 (4)0.0502 (7)0.0069 (5)0.0308 (6)0.0002 (4)
N20.0325 (5)0.0198 (4)0.0283 (5)0.0011 (4)0.0097 (4)0.0016 (4)
N10.0419 (6)0.0241 (5)0.0322 (6)0.0016 (4)0.0134 (5)0.0031 (4)
C170.0224 (5)0.0216 (5)0.0260 (6)0.0003 (4)0.0023 (4)0.0025 (4)
C80.0253 (5)0.0215 (5)0.0235 (5)0.0003 (4)0.0044 (4)0.0014 (4)
C60.0332 (6)0.0226 (5)0.0282 (6)0.0006 (4)0.0111 (5)0.0012 (4)
C10.0320 (6)0.0206 (4)0.0264 (6)0.0007 (4)0.0089 (5)0.0015 (4)
C70.0256 (5)0.0212 (5)0.0271 (6)0.0002 (4)0.0052 (4)0.0017 (4)
C20.0395 (7)0.0196 (5)0.0335 (6)0.0000 (4)0.0148 (5)0.0022 (4)
C120.0257 (5)0.0236 (5)0.0329 (6)0.0022 (4)0.0054 (5)0.0037 (4)
C160.0334 (6)0.0251 (5)0.0302 (6)0.0001 (5)0.0073 (5)0.0012 (4)
C30.0369 (6)0.0222 (5)0.0306 (6)0.0001 (4)0.0151 (5)0.0018 (4)
C50.0326 (6)0.0193 (4)0.0290 (6)0.0019 (4)0.0097 (5)0.0026 (4)
C130.0334 (6)0.0245 (5)0.0499 (9)0.0044 (5)0.0108 (6)0.0053 (5)
C100.0471 (8)0.0325 (6)0.0291 (6)0.0030 (5)0.0164 (6)0.0009 (5)
C40.0268 (5)0.0201 (4)0.0259 (6)0.0012 (4)0.0075 (4)0.0005 (4)
C90.0334 (6)0.0257 (5)0.0259 (6)0.0012 (4)0.0076 (5)0.0006 (4)
C140.0357 (7)0.0220 (5)0.0565 (9)0.0029 (5)0.0079 (7)0.0021 (6)
C150.0367 (7)0.0260 (6)0.0413 (8)0.0011 (5)0.0059 (6)0.0060 (5)
C110.0382 (7)0.0319 (6)0.0329 (7)0.0054 (5)0.0129 (6)0.0046 (5)
Geometric parameters (Å, º) top
O3—C91.2714 (15)C2—H20.93
O2—N11.2274 (14)C12—C131.4021 (17)
O1—N11.2312 (14)C12—C111.4304 (18)
N2—C71.3279 (15)C16—C151.3810 (17)
N2—C41.3951 (14)C16—H160.93
N2—H2N1.09 (2)C3—C41.4015 (16)
N1—C11.4504 (14)C3—H30.93
C17—C161.4039 (16)C5—C41.3931 (16)
C17—C121.4163 (15)C5—H50.93
C17—C81.4546 (16)C13—C141.372 (2)
C8—C71.3957 (15)C13—H130.93
C8—C91.4450 (16)C10—C111.3405 (18)
C6—C11.3827 (17)C10—C91.4421 (17)
C6—C51.3855 (16)C10—H100.93
C6—H60.93C14—C151.395 (2)
C1—C21.3866 (16)C14—H140.93
C7—H70.962 (19)C15—H150.93
C2—C31.3763 (16)C11—H110.93
C7—N2—C4127.33 (10)C17—C16—H16119.3
C7—N2—H2N109.9 (12)C2—C3—C4120.22 (11)
C4—N2—H2N122.8 (12)C2—C3—H3119.9
O2—N1—O1122.91 (11)C4—C3—H3119.9
O2—N1—C1118.62 (10)C6—C5—C4119.81 (10)
O1—N1—C1118.47 (10)C6—C5—H5120.1
C16—C17—C12117.28 (11)C4—C5—H5120.1
C16—C17—C8123.91 (10)C14—C13—C12120.93 (12)
C12—C17—C8118.81 (10)C14—C13—H13119.5
C7—C8—C9118.96 (10)C12—C13—H13119.5
C7—C8—C17121.07 (10)C11—C10—C9121.53 (12)
C9—C8—C17119.96 (10)C11—C10—H10119.2
C1—C6—C5119.07 (10)C9—C10—H10119.2
C1—C6—H6120.5C5—C4—N2123.17 (10)
C5—C6—H6120.5C5—C4—C3120.04 (10)
C6—C1—C2122.04 (11)N2—C4—C3116.79 (10)
C6—C1—N1119.32 (10)O3—C9—C10119.44 (11)
C2—C1—N1118.64 (10)O3—C9—C8122.68 (11)
N2—C7—C8121.95 (11)C10—C9—C8117.87 (11)
N2—C7—H7112.6 (10)C13—C14—C15119.19 (12)
C8—C7—H7125.4 (10)C13—C14—H14120.4
C3—C2—C1118.81 (11)C15—C14—H14120.4
C3—C2—H2120.6C16—C15—C14120.79 (12)
C1—C2—H2120.6C16—C15—H15119.6
C13—C12—C17120.46 (11)C14—C15—H15119.6
C13—C12—C11120.03 (11)C10—C11—C12122.29 (11)
C17—C12—C11119.50 (11)C10—C11—H11118.9
C15—C16—C17121.34 (11)C12—C11—H11118.9
C15—C16—H16119.3
C16—C17—C8—C70.89 (19)C1—C6—C5—C40.0 (2)
C12—C17—C8—C7179.83 (12)C17—C12—C13—C140.2 (2)
C16—C17—C8—C9179.95 (12)C11—C12—C13—C14179.64 (14)
C12—C17—C8—C91.11 (18)C6—C5—C4—N2179.26 (12)
C5—C6—C1—C20.6 (2)C6—C5—C4—C30.6 (2)
C5—C6—C1—N1179.78 (12)C7—N2—C4—C50.3 (2)
O2—N1—C1—C63.2 (2)C7—N2—C4—C3179.85 (12)
O1—N1—C1—C6176.80 (13)C2—C3—C4—C50.6 (2)
O2—N1—C1—C2177.56 (13)C2—C3—C4—N2179.28 (12)
O1—N1—C1—C22.4 (2)C11—C10—C9—O3177.94 (14)
C4—N2—C7—C8179.22 (12)C11—C10—C9—C81.8 (2)
C9—C8—C7—N20.77 (19)C7—C8—C9—O31.8 (2)
C17—C8—C7—N2179.84 (11)C17—C8—C9—O3179.16 (12)
C6—C1—C2—C30.6 (2)C7—C8—C9—C10178.46 (12)
N1—C1—C2—C3179.80 (12)C17—C8—C9—C100.62 (19)
C16—C17—C12—C130.20 (19)C12—C13—C14—C150.2 (2)
C8—C17—C12—C13178.81 (12)C17—C16—C15—C141.4 (2)
C16—C17—C12—C11179.27 (12)C13—C14—C15—C161.0 (2)
C8—C17—C12—C111.71 (18)C9—C10—C11—C121.3 (2)
C12—C17—C16—C150.98 (19)C13—C12—C11—C10179.98 (14)
C8—C17—C16—C15177.98 (13)C17—C12—C11—C100.5 (2)
C1—C2—C3—C40.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O31.09 (2)1.57 (2)2.5287 (15)143 (2)
C5—H5···O2i0.932.593.5136 (16)173
C16—H16···O2i0.932.533.4455 (17)169
Symmetry code: (i) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC17H12N2O3
Mr292.29
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)8.0503 (6), 12.8174 (9), 13.1833 (10)
β (°) 97.271 (5)
V3)1349.37 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.15 × 0.06 × 0.04
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
44074, 7946, 3658
Rint0.074
(sin θ/λ)max1)0.891
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.190, 0.96
No. of reflections7946
No. of parameters207
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.53, 0.26

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SIR2002 (Burla et al., 2003), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O31.09 (2)1.57 (2)2.5287 (15)143 (2)
C5—H5···O2i0.932.593.5136 (16)173
C16—H16···O2i0.932.533.4455 (17)169
Symmetry code: (i) x+1, y+1/2, z+3/2.
 

Acknowledgements

This work was supported by the Unité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Mentouri-Constantine, Algeria and the Laboratoire de Chimie de Coordination, Toulouse, France. Thanks are due to the MESRS (Ministére de l'Enseignement Supérieur et de la Recherche Scientifique - Algérie) for financial support.

References

First citationAli, H. M., Mohamed Mustafa, M. I., Rizal, M. R. & Ng, S. W. (2008). Acta Cryst. E64, m718–m719.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationChen, H. Q., Hall, S., Zheng, B. & Rhodes, J. (1997). Biodrugs, 7, 217–231.  CrossRef PubMed CAS Web of Science Google Scholar
First citationDao, V.-T., Gaspard, C., Mayer, M., Werner, G. H., Nguyen, S. N. & Michelot, R. J. (2000). Eur. J. Med. Chem. 35, 805–813.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Adnan, R. (2008). Acta Cryst. E64, o576–o577.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFan, Y. H., He, X. T., Bi, C. F., Guo, F., Bao, Y. & Chen, R. (2007). Russ. J. Coord. Chem. 33, 535–538.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Kia, R., Vijesh, A. M. & Isloor, A. M. (2009). Acta Cryst. E65, o349–o350.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKargar, H., Jamshidvand, A., Fun, H.-K. & Kia, R. (2009). Acta Cryst. E65, m403–m404.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKarthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482–7489.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKim, H.-J., Kim, W., Lough, A. J., Kim, B. M. & Chin, J. (2005). J. Am. Chem. Soc. 127, 16776–16777.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNadeem, S., Shah, M. R. & VanDerveer, D. (2009). Acta Cryst. E65, o897.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNimitsiriwat, N., Marshall, E. L., Gibson, V. C., Elsegood, M. R. J. & Dale, S. H. (2004). J. Am. Chem. Soc. 126, 13598–13599.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRen, S., Wang, R., Komatsu, K., Bonaz-Krause, P., Zyrianov, Y., McKenna, C. E., Csipke, C., Tokes, Z. A. & Lien, E. J. (2002). J. Med. Chem. 45, 410–419.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSriram, D., Yogeeswari, P., Myneedu, N. S. & Saraswat, V. (2006). Bioorg. Med. Chem. Lett. 16, 2127–2129.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYeap, C. S., Kia, R., Kargar, H. & Fun, H.-K. (2009). Acta Cryst. E65, m570–m571.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages o1123-o1124
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds