metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages m611-m612

Di­aqua­(2,2′-bi­pyridine-κ2N,N′)bis­­(perchlorato-κO)copper(II)

aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Mentouri-Constantine, 25000 Algeria, and bLaboratoire de Chimie de Coordination, UPR CNRS 8241, 205 Route de Narbonne, 31077 Toulouse Cedex, France
*Correspondence e-mail: bouacida_sofiane@yahoo.fr

(Received 26 March 2011; accepted 12 April 2011; online 16 April 2011)

The central CuN2O4 motif of the title compound, [Cu(ClO4)2(C10H8N2)(H2O)2], exhibits a Jahn–Teller-distorted octa­hedral geometry around the metal atom, showing a considerably long Cu—O bond distance of 2.5058 (12) Å towards the second perchlorate group, giving a (4 + 1+1)-type coordination mode. In the crystal, the components are linked via inter­molecular O—H⋯O hydrogen bonds, forming layers parallel to (001). Additional stabilization within these layers is provided by ππ [centroid–centroid distances of 3.7848 (9)–4.4231 (9) Å] stacking inter­actions.

Related literature

For applications of related compounds, see: Kurzak et al. (1999[Kurzak, K., Kuzniarska-Biernacka, I. & Zurowska, B. (1999). J. Solution Chem. 28, 133-151.]). For the coordination spheres of copper in related compounds, see: Hathaway (1973[Hathaway, B. J. (1973). Struct. Bonding (Berlin), 14, 49-69.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(ClO4)2(C10H8N2)(H2O)2]

  • Mr = 454.67

  • Monoclinic, P 21 /n

  • a = 7.1378 (4) Å

  • b = 12.7853 (7) Å

  • c = 16.8033 (11) Å

  • β = 92.025 (6)°

  • V = 1532.49 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.83 mm−1

  • T = 296 K

  • 0.13 × 0.07 × 0.05 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire2 diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Wrocław, Poland.]) Tmin = 0.580, Tmax = 1.000

  • 16487 measured reflections

  • 5135 independent reflections

  • 4239 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.080

  • S = 1.05

  • 5135 reflections

  • 238 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.63 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯O10i 0.72 (2) 2.04 (2) 2.7078 (17) 155 (3)
O1W—H2W⋯O3ii 0.88 (2) 1.89 (2) 2.7665 (17) 177.3 (18)
O2W—H3W⋯O3iii 0.76 (2) 2.13 (2) 2.8802 (18) 169 (2)
O2W—H4W⋯O4 0.78 (2) 2.37 (2) 2.9518 (19) 133 (2)
O2W—H4W⋯O7iv 0.78 (2) 2.26 (3) 2.8349 (18) 132 (2)
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y+1, -z; (iii) x+1, y, z; (iv) -x+2, -y+1, -z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Wrocław, Poland.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis CCD; program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg & Berndt, 2001[Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Copper(II) complexes containing O, N-donor atoms are very important owing to their significant catalytic activity in the preparative oxygenation of phenols and other substances, and their significant antibacterial and anticancer activity (Kurzak et al., 1999).

The asymmetric unit of (I), and the atomic numbering used, is illustrated in Fig. 1. The CuII atom is located in a Jahn-Teller distorted octahedral coordination environment with two N atoms from one 2,2'-bipyridine ligand (N1, N2) (d(Cu—N) = 1.9723 (13)–1.9805 (12) Å) and two O atoms from two water molecular adopting a planar arrangement (d(Cu—O) = 1.9621 (12)–1.9719 (12) Å). The Cu(II) center is displaced out of the N2O2 plane by 0.028 (2)Å in the direction of one of perchlorate ligand with d(Cu—O9) = 2.3287 (12) Å. The O atom of the second perchlorate group occupies a sixth coordination site at a longer distance of 2.5058 (12) Å, completing the overall (4 + 1 + 1) type coordination. O9 is situated slightly off the axial direct of the square pyramid, nevertheless it is close enough to the Cu atom (Hathaway, 1973). The bipyridine rings of the 2,2'-bipyridine ligand are twisted relative to each other at 2.2 (8)°.

The crystal structure can be described as alternating layers of polyhedral (ClO4 tetrahedrals and CuN2O4 octahedrals) perpendicular to c axis (Fig. 2).

The crystal packing in (I) is governed by classical hydrogen bond,viz. water molecules and perchlorate (Table 1, Fig. 3). All water H atoms are involved in these hydrogen bonds In the crystal, the components of the structure are linked via intermolecular O—H···O hydrogen bonds to form a two-dimensional layers parallel to (001) plane (Fig. 3). Additional stabilization within these layers is provided by ππ [3.7848 (9)Å to 4.4231 (9) Å] stacking interactions. These interaction bonds link the molecules within the layers and also link the layers together and reinforcing the cohesion of the structure.

The combination of these hydrogen bonds generates an alternating centrosymmetric rings in two-dimensional network which can be described by the graph-set motif R42(12) and R44(16) (Bernstein et al. 1995; Etter et al., 1990).

Related literature top

For applications of related structures, see: Kurzak et al. (1999). For the geometry of copper complexes, see: Hathaway (1973). For hydrogen-bond motifs, see: Bernstein et al. (1995); Etter et al. (1990).

Experimental top

The title compound was prepared by adding a methanol solution (10 ml) of copper (II) acetate monohydrate (0.1 mmol) to a methanol solution (10 ml) of 2,2'-bipyridine (0.1 mmol) and (1 ml) the perchloric acid. The mixture was stirred for about 2 h at 323 K and filtered. The filtrate was slowly evaporated at room temperature to yield blue crystals of (I) suitable for X-ray analysis.

Refinement top

H atoms of water molecule were located in difference Fourier maps and refined isotropically using restraints Uiso(H) = 1.5Ueq(O). The remaining H atoms were localized on Fourier maps but introduced in calculated positions and treated as riding on their parent atoms (Caryl) with Caryl—Haryl=0.93Å and Uiso(Haryl)=1.2Ueq(Caryl).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis CCD (Oxford Diffraction, 2008); data reduction: CrysAlis CCD (Oxford Diffraction, 2008); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. (Farrugia, 1997) The asymmetric unit of the title compound with the atomic labeling scheme. Displacements are drawn at the 50% probability level.
[Figure 2] Fig. 2. (Brandenburg & Berndt, 2001) A diagram of the layered crystal packing in (I), viewed down the b axis, showing layers parallel to (001) with alterning polyhedrals (ClO4 and CuN2O4).
[Figure 3] Fig. 3. (Brandenburg & Berndt, 2001) A part of crystal packing of (I) showing hydrogen bond connections in the same layer as dashed line.
Diaqua(2,2'-bipyridine-κ2N,N')bis(perchlorato- κO)copper(II) top
Crystal data top
[Cu(ClO4)2(C10H8N2)(H2O)2]F(000) = 916
Mr = 454.67Dx = 1.971 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.7107 Å
a = 7.1378 (4) ÅCell parameters from 9763 reflections
b = 12.7853 (7) Åθ = 3.0–32.3°
c = 16.8033 (11) ŵ = 1.83 mm1
β = 92.025 (6)°T = 296 K
V = 1532.49 (16) Å3Needle, blue
Z = 40.13 × 0.07 × 0.05 mm
Data collection top
Oxford Diffraction Xcalibur Sapphire2
diffractometer
5135 independent reflections
Radiation source: Enhance (Mo) X-ray Source4239 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 8.2632 pixels mm-1θmax = 32.3°, θmin = 3.1°
ω scansh = 106
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
k = 1919
Tmin = 0.580, Tmax = 1.000l = 2525
16487 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0469P)2]
where P = (Fo2 + 2Fc2)/3
5135 reflections(Δ/σ)max = 0.001
238 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.63 e Å3
Crystal data top
[Cu(ClO4)2(C10H8N2)(H2O)2]V = 1532.49 (16) Å3
Mr = 454.67Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.1378 (4) ŵ = 1.83 mm1
b = 12.7853 (7) ÅT = 296 K
c = 16.8033 (11) Å0.13 × 0.07 × 0.05 mm
β = 92.025 (6)°
Data collection top
Oxford Diffraction Xcalibur Sapphire2
diffractometer
5135 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
4239 reflections with I > 2σ(I)
Tmin = 0.580, Tmax = 1.000Rint = 0.034
16487 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.080H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.42 e Å3
5135 reflectionsΔρmin = 0.63 e Å3
238 parameters
Special details top

Experimental. CrysAlis RED, Oxford Diffraction Ltd. (Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8677 (2)0.16080 (13)0.14228 (10)0.0255 (3)
H10.88930.22820.16130.031*
C20.8928 (3)0.07755 (15)0.19373 (11)0.0302 (4)
H20.93180.08860.24650.036*
C30.8593 (3)0.02215 (14)0.16589 (11)0.0299 (4)
H30.87590.07940.19950.036*
C40.8012 (2)0.03613 (13)0.08784 (11)0.0263 (3)
H40.77650.10290.06810.032*
C50.7797 (2)0.05028 (11)0.03897 (10)0.0189 (3)
C60.7203 (2)0.04419 (11)0.04548 (9)0.0181 (3)
C70.6861 (2)0.04880 (12)0.08553 (11)0.0244 (3)
H70.69750.11250.0590.029*
C80.6349 (2)0.04559 (13)0.16509 (11)0.0283 (4)
H80.60920.10710.19290.034*
C90.6220 (2)0.04947 (14)0.20331 (11)0.0269 (3)
H90.5890.05290.25730.032*
C100.6588 (2)0.13967 (12)0.16024 (10)0.0226 (3)
H100.65180.20390.18610.027*
N10.81339 (18)0.14762 (10)0.06591 (8)0.0196 (2)
N20.70407 (17)0.13722 (9)0.08243 (8)0.0186 (2)
O1W0.66836 (17)0.36086 (9)0.09192 (8)0.0237 (2)
H1W0.568 (3)0.3587 (18)0.0987 (14)0.036*
H2W0.691 (3)0.4275 (19)0.0820 (14)0.036*
O2W0.86002 (18)0.37137 (9)0.05755 (9)0.0274 (3)
H3W0.958 (3)0.394 (2)0.0544 (15)0.041*
H4W0.805 (3)0.415 (2)0.0787 (15)0.041*
O30.24885 (18)0.43183 (9)0.05923 (9)0.0361 (3)
O40.51492 (18)0.41771 (11)0.14266 (8)0.0363 (3)
O50.2632 (2)0.30038 (12)0.15559 (9)0.0406 (3)
O60.45262 (17)0.28891 (10)0.04596 (8)0.0313 (3)
O71.1044 (2)0.43059 (10)0.13244 (9)0.0389 (3)
O81.02596 (19)0.27740 (10)0.20091 (8)0.0322 (3)
O91.06594 (16)0.27377 (10)0.06166 (7)0.0256 (2)
O101.32354 (16)0.29465 (11)0.14184 (8)0.0324 (3)
Cu10.76523 (3)0.258975 (14)0.013428 (12)0.01792 (6)
Cl10.37148 (5)0.35902 (3)0.10177 (2)0.02055 (8)
Cl21.12857 (5)0.32027 (3)0.13482 (2)0.01947 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0304 (8)0.0241 (8)0.0220 (8)0.0019 (6)0.0012 (7)0.0029 (6)
C20.0336 (9)0.0365 (9)0.0204 (8)0.0073 (7)0.0003 (7)0.0032 (7)
C30.0333 (9)0.0288 (8)0.0279 (9)0.0083 (7)0.0037 (7)0.0103 (7)
C40.0307 (8)0.0175 (7)0.0308 (9)0.0039 (6)0.0037 (7)0.0051 (6)
C50.0184 (6)0.0152 (6)0.0233 (7)0.0020 (5)0.0016 (6)0.0006 (5)
C60.0178 (6)0.0126 (6)0.0237 (7)0.0008 (5)0.0010 (5)0.0004 (5)
C70.0276 (8)0.0130 (6)0.0326 (9)0.0012 (6)0.0015 (7)0.0030 (6)
C80.0293 (8)0.0220 (7)0.0334 (9)0.0058 (6)0.0005 (7)0.0109 (7)
C90.0281 (8)0.0286 (8)0.0239 (8)0.0041 (6)0.0028 (6)0.0053 (6)
C100.0230 (7)0.0215 (7)0.0230 (8)0.0012 (6)0.0027 (6)0.0001 (6)
N10.0219 (6)0.0160 (5)0.0209 (6)0.0015 (5)0.0011 (5)0.0007 (5)
N20.0195 (6)0.0139 (5)0.0222 (6)0.0011 (4)0.0013 (5)0.0000 (4)
O1W0.0211 (5)0.0150 (5)0.0345 (7)0.0007 (4)0.0064 (5)0.0023 (4)
O2W0.0233 (6)0.0193 (6)0.0394 (7)0.0001 (4)0.0027 (5)0.0115 (5)
O30.0356 (7)0.0183 (6)0.0527 (9)0.0008 (5)0.0205 (6)0.0035 (5)
O40.0308 (6)0.0373 (7)0.0398 (8)0.0013 (6)0.0138 (6)0.0121 (6)
O50.0461 (8)0.0378 (8)0.0386 (8)0.0010 (6)0.0145 (7)0.0068 (6)
O60.0275 (6)0.0290 (6)0.0379 (7)0.0014 (5)0.0065 (5)0.0122 (5)
O70.0552 (9)0.0157 (6)0.0452 (8)0.0009 (6)0.0055 (7)0.0011 (5)
O80.0338 (7)0.0316 (6)0.0302 (7)0.0026 (5)0.0140 (6)0.0030 (5)
O90.0221 (5)0.0294 (6)0.0254 (6)0.0003 (5)0.0015 (5)0.0040 (5)
O100.0187 (5)0.0460 (8)0.0325 (7)0.0012 (5)0.0009 (5)0.0046 (6)
Cu10.02028 (10)0.01089 (9)0.02227 (10)0.00087 (6)0.00360 (7)0.00050 (6)
Cl10.02118 (16)0.01651 (15)0.02369 (18)0.00116 (12)0.00293 (13)0.00168 (13)
Cl20.01900 (16)0.01621 (15)0.02290 (17)0.00066 (12)0.00351 (13)0.00004 (12)
Geometric parameters (Å, º) top
C1—N11.338 (2)C10—N21.336 (2)
C1—C21.379 (2)C10—H100.93
C1—H10.93N1—Cu11.9723 (13)
C2—C31.376 (3)N2—Cu11.9805 (12)
C2—H20.93O1W—Cu11.9621 (12)
C3—C41.373 (3)O2W—Cu11.9719 (12)
C3—H30.93O1W—H1W0.72 (2)
C4—C51.382 (2)O1W—H2W0.88 (2)
C4—H40.93O2W—H3W0.76 (2)
C5—N11.3432 (19)O2W—H4W0.78 (3)
C5—C61.469 (2)O3—Cl11.4490 (12)
C6—N21.3448 (18)O4—Cl11.4260 (12)
C6—C71.384 (2)O5—Cl11.4236 (15)
C7—C81.374 (3)O6—Cl11.4342 (13)
C7—H70.93O7—Cl21.4217 (13)
C8—C91.376 (3)O8—Cl21.4187 (12)
C8—H80.93O9—Cl21.4503 (13)
C9—C101.382 (2)O10—Cl21.4386 (12)
C9—H90.93O9—Cu12.3287 (12)
N1—C1—C2122.07 (16)C10—N2—C6119.10 (13)
N1—C1—H1119C10—N2—Cu1126.53 (10)
C2—C1—H1119C6—N2—Cu1114.28 (10)
C3—C2—C1119.00 (16)Cu1—O1W—H1W113.8 (19)
C3—C2—H2120.5Cu1—O1W—H2W117.2 (15)
C1—C2—H2120.5H1W—O1W—H2W104 (2)
C4—C3—C2119.23 (16)Cu1—O2W—H3W122.0 (19)
C4—C3—H3120.4Cu1—O2W—H4W129.3 (17)
C2—C3—H3120.4H3W—O2W—H4W104 (2)
C3—C4—C5119.14 (16)Cl2—O9—Cu1130.08 (7)
C3—C4—H4120.4O1W—Cu1—O2W91.60 (6)
C5—C4—H4120.4O1W—Cu1—N1169.24 (5)
N1—C5—C4121.71 (15)O2W—Cu1—N193.97 (6)
N1—C5—C6114.64 (13)O1W—Cu1—N293.62 (5)
C4—C5—C6123.65 (14)O2W—Cu1—N2172.19 (5)
N2—C6—C7121.64 (14)N1—Cu1—N281.83 (6)
N2—C6—C5114.61 (12)O1W—Cu1—O991.11 (5)
C7—C6—C5123.74 (14)O2W—Cu1—O981.41 (5)
C8—C7—C6118.94 (15)N1—Cu1—O998.81 (5)
C8—C7—H7120.5N2—Cu1—O992.69 (5)
C6—C7—H7120.5O5—Cl1—O4111.57 (9)
C7—C8—C9119.45 (15)O5—Cl1—O6109.09 (9)
C7—C8—H8120.3O4—Cl1—O6110.14 (8)
C9—C8—H8120.3O5—Cl1—O3108.65 (9)
C8—C9—C10118.96 (16)O4—Cl1—O3108.10 (8)
C8—C9—H9120.5O6—Cl1—O3109.25 (9)
C10—C9—H9120.5O8—Cl2—O7110.21 (8)
N2—C10—C9121.87 (15)O8—Cl2—O10108.78 (8)
N2—C10—H10119.1O7—Cl2—O10110.30 (9)
C9—C10—H10119.1O8—Cl2—O9109.82 (8)
C1—N1—C5118.84 (14)O7—Cl2—O9109.97 (9)
C1—N1—Cu1126.52 (11)O10—Cl2—O9107.71 (7)
C5—N1—Cu1114.59 (10)
N1—C1—C2—C30.6 (3)C7—C6—N2—Cu1178.80 (12)
C1—C2—C3—C40.3 (3)C5—C6—N2—Cu10.18 (17)
C2—C3—C4—C50.7 (3)C1—N1—Cu1—O1W113.5 (3)
C3—C4—C5—N10.3 (3)C5—N1—Cu1—O1W63.8 (3)
C3—C4—C5—C6179.30 (16)C1—N1—Cu1—O2W7.58 (15)
N1—C5—C6—N21.7 (2)C5—N1—Cu1—O2W175.14 (11)
C4—C5—C6—N2178.72 (15)C1—N1—Cu1—N2179.04 (15)
N1—C5—C6—C7177.30 (15)C5—N1—Cu1—N21.76 (11)
C4—C5—C6—C72.3 (3)C1—N1—Cu1—O989.49 (14)
N2—C6—C7—C80.2 (3)C5—N1—Cu1—O993.24 (11)
C5—C6—C7—C8178.64 (16)C10—N2—Cu1—O1W13.96 (14)
C6—C7—C8—C91.1 (3)C6—N2—Cu1—O1W169.38 (11)
C7—C8—C9—C100.8 (3)C10—N2—Cu1—N1175.84 (14)
C8—C9—C10—N20.9 (3)C6—N2—Cu1—N10.82 (11)
C2—C1—N1—C51.0 (3)C10—N2—Cu1—O977.32 (14)
C2—C1—N1—Cu1178.17 (13)C6—N2—Cu1—O999.34 (11)
C4—C5—N1—C10.5 (2)Cl2—O9—Cu1—O1W13.93 (10)
C6—C5—N1—C1179.83 (14)Cl2—O9—Cu1—O2W105.38 (10)
C4—C5—N1—Cu1178.04 (13)Cl2—O9—Cu1—N1161.89 (10)
C6—C5—N1—Cu12.33 (18)Cl2—O9—Cu1—N279.74 (10)
C9—C10—N2—C62.2 (2)Cu1—O9—Cl2—O852.93 (12)
C9—C10—N2—Cu1178.71 (12)Cu1—O9—Cl2—O768.52 (11)
C7—C6—N2—C101.9 (2)Cu1—O9—Cl2—O10171.24 (9)
C5—C6—N2—C10177.11 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O10i0.72 (2)2.04 (2)2.7078 (17)155 (3)
O1W—H2W···O3ii0.88 (2)1.89 (2)2.7665 (17)177.3 (18)
O2W—H3W···O3iii0.76 (2)2.13 (2)2.8802 (18)169 (2)
O2W—H4W···O40.78 (2)2.37 (2)2.9518 (19)133 (2)
O2W—H4W···O7iv0.78 (2)2.26 (3)2.8349 (18)132 (2)
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z; (iii) x+1, y, z; (iv) x+2, y+1, z.

Experimental details

Crystal data
Chemical formula[Cu(ClO4)2(C10H8N2)(H2O)2]
Mr454.67
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)7.1378 (4), 12.7853 (7), 16.8033 (11)
β (°) 92.025 (6)
V3)1532.49 (16)
Z4
Radiation typeMo Kα
µ (mm1)1.83
Crystal size (mm)0.13 × 0.07 × 0.05
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire2
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.580, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
16487, 5135, 4239
Rint0.034
(sin θ/λ)max1)0.751
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.080, 1.05
No. of reflections5135
No. of parameters238
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.42, 0.63

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), SIR2002 (Burla et al., 2003), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O10i0.72 (2)2.04 (2)2.7078 (17)155 (3)
O1W—H2W···O3ii0.88 (2)1.89 (2)2.7665 (17)177.3 (18)
O2W—H3W···O3iii0.76 (2)2.13 (2)2.8802 (18)169 (2)
O2W—H4W···O40.78 (2)2.37 (2)2.9518 (19)133 (2)
O2W—H4W···O7iv0.78 (2)2.26 (3)2.8349 (18)132 (2)
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z; (iii) x+1, y, z; (iv) x+2, y+1, z.
 

Footnotes

Current address: Département Sciences de la Matière, Faculté des Sciences Exactes et Sciences de la Nature et de la Vie, Université Larbi Ben M'hidi, Oum El Bouaghi 04000, Algeria.

Acknowledgements

This work was supported by the Unité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Mentouri-Constantine, Algeria and the Laboratoire de Chimie de Coordination, Toulouse, France. Thanks are due to the MESRS (Ministére de l'Enseignement Supérieur et de la Recherche Scientifique - Algérie) for financial support.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHathaway, B. J. (1973). Struct. Bonding (Berlin), 14, 49–69.  CrossRef CAS Google Scholar
First citationKurzak, K., Kuzniarska-Biernacka, I. & Zurowska, B. (1999). J. Solution Chem. 28, 133–151.  Web of Science CrossRef CAS Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Wrocław, Poland.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages m611-m612
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds