organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1077

2,4-Di­chloro­anilinium 4-chloro­benzene­sulfonate monohydrate

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 1 April 2011; accepted 4 April 2011; online 7 April 2011)

The asymmetric unit of the title compound, C6H6Cl2N+·C6H4ClO3S·H2O, contains two 2,4-dichloro­anilinium cations, two 4-chloro­phenyl­sulfonate anions and two water mol­ecules. The three H atoms of the positively charged NH3 group have two O atoms of the negatively charged sulfonate anion and one O atom of the water mol­ecule as acceptors. Similarly, the two H atoms of the water mol­ecule have two O atoms of two different negatively charged sulfonate anions as acceptors. Further, one of the O atoms of the sulfonate anion is involved in simultaneous hydrogen bonds with two H atoms, one from the positively charged NH3 group and the other from the water mol­ecule. In the crystal, mol­ecules are packed into a layer structure through N—H⋯O(S), N—H⋯O(H2O) and N—H⋯O(S)⋯H—O(H2O) (three-centre) hydrogen bonding, the chains running along the c axis.

Related literature

For the effect of substituents on the oxidative strengths of N-chloro, N-aryl­sulfonamides, see: Gowda & Kumar (2003[Gowda, B. T. & Kumar, B. H. A. (2003). Oxid. Commun. 26, 403-425.]). For the effect of substituents on the structures of N-(ar­yl)-amides, see: Gowda et al. (2004[Gowda, B. T., Svoboda, I. & Fuess, H. (2004). Z. Naturforsch. Teil A, 55, 845-852.]), on N-(ar­yl)-methane­sulfonamides, see: Gowda et al. (2007[Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2570.]) and on anilinium aryl­sulfonates, see: Shakuntala et al. (2011[Shakuntala, K., Foro, S. & Gowda, B. T. (2011). Acta Cryst. E67, o967.]). For restrained geometry, see: Nardelli (1999[Nardelli, M. (1999). J. Appl. Cryst. 32, 563-571.]).

[Scheme 1]

Experimental

Crystal data
  • C6H6Cl2N+·C6H4ClO3S·H2O

  • Mr = 372.64

  • Triclinic, [P \overline 1]

  • a = 7.7589 (8) Å

  • b = 14.143 (2) Å

  • c = 14.358 (2) Å

  • α = 90.99 (1)°

  • β = 99.56 (1)°

  • γ = 90.68 (1)°

  • V = 1553.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.74 mm−1

  • T = 293 K

  • 0.40 × 0.16 × 0.06 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.757, Tmax = 0.957

  • 11006 measured reflections

  • 6341 independent reflections

  • 2585 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.081

  • S = 0.84

  • 6341 reflections

  • 409 parameters

  • 18 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H11N⋯O1i 0.91 (2) 1.89 (2) 2.765 (4) 160 (3)
N1—H12N⋯O3ii 0.93 (2) 1.83 (2) 2.752 (4) 171 (3)
N1—H13N⋯O7 0.90 (2) 1.90 (2) 2.785 (4) 169 (3)
N2—H21N⋯O6iii 0.91 (2) 1.92 (2) 2.777 (4) 156 (3)
N2—H22N⋯O4iv 0.93 (2) 1.82 (2) 2.741 (4) 176 (3)
N2—H23N⋯O8iii 0.91 (2) 1.92 (2) 2.807 (4) 164 (3)
O7—H71O⋯O2 0.84 (2) 1.96 (2) 2.778 (4) 163 (4)
O7—H72O⋯O6ii 0.84 (2) 2.13 (3) 2.879 (4) 148 (5)
O8—H81O⋯O1ii 0.83 (2) 2.18 (3) 2.900 (4) 146 (4)
O8—H82O⋯O5i 0.85 (2) 2.03 (2) 2.830 (4) 158 (4)
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y+1, -z; (iii) -x+1, -y, -z+1; (iv) x, y, z+1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The amine and sulfonate moieties are important constituents of many important compounds. As a part of studying the substituent effects on the structures of this class of compounds (Gowda & Kumar, 2003; Gowda et al., 2004, 2007; Shakuntala et al., 2011), in the present work, the crystal structure of 2,4-dichloroanilinium, 4-chlorobenzenesulfonate monohydrate (I) has been determined. The compound (I) showed interesting H-bonding in its crystal structure (Fig. 1). It shows 3-centre H-bonding.

The asymmetric unit of (I) contains two 2,4-dichloroanilinium cations, two 4-chlorophenylsulfonate anions and two water molecules. Three H-atoms of the positively charged NH3 group have two O atoms of the negatively charged sulfonate anion and one O atom of the water molecule as acceptors. Similarly two H atoms of the water molecule have two O atoms of two different negatively charged sulfonate anions as acceptors. Further, one of the O atoms of the sulfonate anion is involved in simultaneous H-bonding with two H atoms one from the positively charged NH3 group of 2,4-dichloroanilinium cation and the other from the water molecule.

The above behavior is in contrast to the N—H···O(S) hydrogen bonding of the three H-atoms of the positively charged NH3 group of 2,5-Dichloroanilinium, 4-chlorobenzenesulfonate, having three O atoms of the negatively charged sulfonate anion as acceptors, with each oxygen forming H-bonding with three H-atoms, one each from three positively charged NH3 groups (Shakuntala et al., 2011).

The crystal packing of (I) through N1—H11N···O1, N1—H12N···O3, N1—H13N···O7, N2—H21N···O6, N2—H22N···O4 and N2—H23N···O8 hydrogen bonding (Table 1) is shown in Fig. 2.

Related literature top

For the effect of substituents on the oxidative strengths of N-chloro, N-arylsulfonamides, see: Gowda & Kumar (2003). For the effect of substituents on the structures of N-(aryl)-amides, see: Gowda et al. (2004), on N-(aryl)-methanesulfonamides, see: Gowda et al. (2007) and on anilinium arylsulfonates, see: Shakuntala et al. (2011). For restrained geometry, see: Nardelli (1999).

Experimental top

The solution of chlorobenzene (10 ml) in chloroform (40 ml) was treated dropwise with chlorosulfonic acid (25 ml) at 0° C. After the initial evolution of hydrogen chloride subsided, the reaction mixture was brought to room temperature and poured into crushed ice in a beaker. The chloroform layer was separated, washed with cold water and allowed to evaporate slowly. The residual 4-chlorobenzenesulfonylchloride was treated with 2,4-dichloroaniline in the stoichiometric ratio and boiled for ten minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 ml). The resultant title compound (I) was filtered under suction and washed thoroughly with cold water. It was then recrystallized to constant melting point from dilute ethanol.

Rod like colorless single crystals used in X-ray diffraction studies were grown in ethanolic solution by slow evaporation at room temperature.

Refinement top

The H atoms of the NH groups were located in a difference map and later restrained to the distance N—H = 0.89 (2) Å. The H atoms of the water molecules were located in difference map and were refined with restrained geometry (Nardelli, 1999), viz. O—H distance was restrained to 0.85 (3) Å and H—H distance was restrained to 1.365 Å, thus leading to the angle of 107 Å. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing in the title compound. Hydrogen bonds are shown as dashed lines.
2,4-Dichloroanilinium 4-chlorobenzenesulfonate monohydrate top
Crystal data top
C6H6Cl2N+·C6H4ClO3S·H2OZ = 4
Mr = 372.64F(000) = 760
Triclinic, P1Dx = 1.593 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.7589 (8) ÅCell parameters from 2092 reflections
b = 14.143 (2) Åθ = 2.6–27.9°
c = 14.358 (2) ŵ = 0.74 mm1
α = 90.99 (1)°T = 293 K
β = 99.56 (1)°Rod, colorless
γ = 90.68 (1)°0.40 × 0.16 × 0.06 mm
V = 1553.3 (3) Å3
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
6341 independent reflections
Radiation source: fine-focus sealed tube2585 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Rotation method data acquisition using ω and ϕ scansθmax = 26.4°, θmin = 2.7°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 79
Tmin = 0.757, Tmax = 0.957k = 1717
11006 measured reflectionsl = 1617
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 0.84 w = 1/[σ2(Fo2) + (0.0253P)2]
where P = (Fo2 + 2Fc2)/3
6341 reflections(Δ/σ)max = 0.008
409 parametersΔρmax = 0.23 e Å3
18 restraintsΔρmin = 0.25 e Å3
Crystal data top
C6H6Cl2N+·C6H4ClO3S·H2Oγ = 90.68 (1)°
Mr = 372.64V = 1553.3 (3) Å3
Triclinic, P1Z = 4
a = 7.7589 (8) ÅMo Kα radiation
b = 14.143 (2) ŵ = 0.74 mm1
c = 14.358 (2) ÅT = 293 K
α = 90.99 (1)°0.40 × 0.16 × 0.06 mm
β = 99.56 (1)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
6341 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
2585 reflections with I > 2σ(I)
Tmin = 0.757, Tmax = 0.957Rint = 0.038
11006 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05118 restraints
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 0.84Δρmax = 0.23 e Å3
6341 reflectionsΔρmin = 0.25 e Å3
409 parameters
Special details top

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.16798 (13)0.34833 (8)0.45361 (8)0.0716 (4)
S10.83184 (12)0.59893 (7)0.12314 (7)0.0428 (3)
O10.9760 (3)0.6154 (2)0.0733 (2)0.0761 (10)
O20.7727 (3)0.68469 (18)0.16210 (19)0.0660 (8)
O30.6928 (3)0.54560 (17)0.06588 (16)0.0513 (7)
C10.9151 (4)0.5269 (3)0.2179 (3)0.0324 (9)
C20.9687 (4)0.5667 (3)0.3058 (3)0.0473 (11)
H20.95250.63080.31630.057*
C31.0466 (5)0.5113 (3)0.3786 (3)0.0522 (11)
H31.08420.53780.43840.063*
C41.0680 (4)0.4174 (3)0.3621 (3)0.0447 (11)
C51.0119 (5)0.3772 (3)0.2755 (3)0.0539 (12)
H51.02490.31270.26530.065*
C60.9360 (4)0.4332 (3)0.2034 (3)0.0494 (11)
H60.89830.40640.14380.059*
Cl20.38560 (13)0.65629 (7)0.28843 (8)0.0665 (3)
Cl30.65092 (13)0.32972 (8)0.42426 (8)0.0766 (4)
N10.3174 (4)0.5540 (2)0.1014 (2)0.0409 (9)
H11N0.207 (3)0.572 (2)0.107 (2)0.049*
H12N0.302 (4)0.520 (2)0.0444 (17)0.049*
H13N0.370 (4)0.6097 (16)0.096 (2)0.049*
C70.3979 (4)0.4994 (3)0.1817 (3)0.0347 (9)
C80.4360 (4)0.5398 (3)0.2709 (3)0.0386 (10)
C90.5141 (4)0.4879 (3)0.3451 (3)0.0478 (11)
H90.54040.51500.40530.057*
C100.5531 (4)0.3955 (3)0.3298 (3)0.0461 (11)
C110.5190 (4)0.3543 (3)0.2417 (3)0.0494 (11)
H110.54870.29180.23190.059*
C120.4399 (4)0.4075 (3)0.1685 (3)0.0446 (11)
H120.41430.38020.10830.054*
Cl40.59083 (14)0.14370 (8)0.45223 (8)0.0731 (4)
S20.73669 (12)0.10495 (7)0.12039 (7)0.0406 (3)
O40.8462 (3)0.05186 (18)0.06669 (17)0.0506 (7)
O50.8168 (3)0.19290 (18)0.15824 (18)0.0641 (8)
O60.5644 (3)0.1171 (2)0.06778 (19)0.0699 (9)
C130.7069 (4)0.0346 (3)0.2159 (3)0.0328 (9)
C140.7135 (4)0.0734 (3)0.3042 (3)0.0512 (11)
H140.74180.13720.31510.061*
C150.6781 (5)0.0181 (3)0.3773 (3)0.0569 (12)
H150.68180.04450.43750.068*
C160.6378 (4)0.0750 (3)0.3607 (3)0.0451 (11)
C170.6327 (5)0.1152 (3)0.2739 (3)0.0551 (12)
H170.60610.17920.26350.066*
C180.6676 (5)0.0592 (3)0.2012 (3)0.0538 (12)
H180.66430.08600.14130.065*
Cl50.72539 (12)0.15530 (7)0.71771 (7)0.0605 (3)
Cl60.92906 (13)0.17163 (8)0.58487 (8)0.0729 (4)
N20.7614 (4)0.0527 (2)0.9026 (2)0.0405 (9)
H21N0.644 (2)0.062 (2)0.900 (2)0.049*
H22N0.785 (4)0.015 (2)0.9571 (17)0.049*
H23N0.823 (4)0.1072 (16)0.908 (2)0.049*
C190.7992 (4)0.0024 (3)0.8240 (3)0.0345 (9)
C200.7885 (4)0.0384 (3)0.7357 (3)0.0360 (10)
C210.8287 (4)0.0129 (3)0.6623 (3)0.0461 (11)
H210.82260.01470.60260.055*
C220.8782 (4)0.1061 (3)0.6782 (3)0.0461 (11)
C230.8912 (4)0.1472 (3)0.7650 (3)0.0534 (12)
H230.92740.21000.77500.064*
C240.8500 (4)0.0946 (3)0.8383 (3)0.0472 (11)
H240.85700.12240.89810.057*
O70.4460 (3)0.7318 (2)0.0649 (3)0.0845 (11)
H71O0.549 (4)0.730 (3)0.095 (2)0.101*
H72O0.450 (5)0.757 (3)0.013 (2)0.101*
O80.0953 (4)0.2321 (2)0.0594 (2)0.0762 (10)
H81O0.079 (5)0.256 (3)0.007 (2)0.091*
H82O0.004 (4)0.225 (3)0.075 (3)0.091*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0821 (8)0.0756 (9)0.0568 (8)0.0228 (6)0.0064 (6)0.0255 (7)
S10.0377 (6)0.0442 (7)0.0456 (7)0.0034 (5)0.0033 (5)0.0096 (5)
O10.0391 (15)0.111 (3)0.086 (2)0.0155 (15)0.0234 (15)0.063 (2)
O20.0791 (19)0.0450 (16)0.065 (2)0.0196 (13)0.0149 (15)0.0021 (12)
O30.0536 (15)0.0588 (18)0.0377 (18)0.0021 (12)0.0035 (11)0.0008 (12)
C10.031 (2)0.031 (3)0.034 (3)0.0002 (18)0.0031 (17)0.003 (2)
C20.067 (3)0.032 (3)0.044 (3)0.002 (2)0.012 (2)0.003 (2)
C30.071 (3)0.050 (3)0.034 (3)0.003 (2)0.004 (2)0.001 (2)
C40.043 (2)0.051 (3)0.041 (3)0.004 (2)0.006 (2)0.011 (2)
C50.067 (3)0.036 (3)0.054 (3)0.006 (2)0.000 (2)0.007 (2)
C60.063 (3)0.038 (3)0.040 (3)0.009 (2)0.011 (2)0.009 (2)
Cl20.0937 (8)0.0391 (7)0.0702 (9)0.0015 (6)0.0252 (6)0.0063 (6)
Cl30.0746 (8)0.0844 (10)0.0662 (9)0.0040 (6)0.0051 (6)0.0361 (7)
N10.037 (2)0.045 (3)0.041 (2)0.0020 (17)0.0088 (19)0.0030 (19)
C70.027 (2)0.037 (3)0.039 (3)0.0050 (18)0.0020 (18)0.009 (2)
C80.043 (2)0.033 (3)0.041 (3)0.0060 (19)0.012 (2)0.003 (2)
C90.053 (3)0.057 (3)0.033 (3)0.011 (2)0.005 (2)0.001 (2)
C100.041 (2)0.047 (3)0.049 (3)0.002 (2)0.002 (2)0.017 (2)
C110.057 (3)0.038 (3)0.052 (3)0.006 (2)0.003 (2)0.005 (2)
C120.048 (2)0.038 (3)0.045 (3)0.001 (2)0.001 (2)0.005 (2)
Cl40.0945 (8)0.0798 (9)0.0496 (8)0.0056 (7)0.0221 (6)0.0264 (7)
S20.0369 (6)0.0439 (7)0.0414 (7)0.0017 (5)0.0067 (5)0.0070 (5)
O40.0577 (16)0.0560 (17)0.0412 (18)0.0027 (12)0.0169 (11)0.0013 (12)
O50.0817 (18)0.0481 (16)0.068 (2)0.0198 (13)0.0294 (15)0.0073 (13)
O60.0351 (15)0.103 (2)0.072 (2)0.0003 (14)0.0030 (14)0.0520 (19)
C130.034 (2)0.030 (3)0.034 (3)0.0005 (18)0.0042 (18)0.0015 (19)
C140.066 (3)0.043 (3)0.042 (3)0.005 (2)0.003 (2)0.003 (2)
C150.087 (3)0.057 (4)0.026 (3)0.013 (3)0.007 (2)0.004 (2)
C160.051 (2)0.050 (3)0.036 (3)0.007 (2)0.010 (2)0.007 (2)
C170.078 (3)0.041 (3)0.047 (3)0.010 (2)0.014 (2)0.001 (2)
C180.076 (3)0.052 (3)0.035 (3)0.015 (2)0.014 (2)0.005 (2)
Cl50.0848 (8)0.0356 (7)0.0567 (8)0.0043 (6)0.0006 (6)0.0018 (6)
Cl60.0835 (8)0.0727 (9)0.0622 (8)0.0099 (6)0.0088 (6)0.0308 (7)
N20.0316 (19)0.044 (3)0.046 (2)0.0005 (17)0.0062 (19)0.0010 (19)
C190.026 (2)0.040 (3)0.038 (3)0.0024 (18)0.0059 (18)0.005 (2)
C200.033 (2)0.032 (3)0.042 (3)0.0005 (18)0.0015 (19)0.002 (2)
C210.053 (3)0.047 (3)0.035 (3)0.002 (2)0.001 (2)0.001 (2)
C220.041 (2)0.049 (3)0.047 (3)0.000 (2)0.004 (2)0.017 (2)
C230.060 (3)0.036 (3)0.062 (4)0.008 (2)0.004 (2)0.005 (3)
C240.053 (3)0.043 (3)0.044 (3)0.006 (2)0.005 (2)0.004 (2)
O70.066 (2)0.069 (2)0.114 (3)0.0011 (18)0.002 (2)0.048 (2)
O80.079 (2)0.062 (2)0.094 (3)0.0067 (19)0.030 (2)0.0388 (19)
Geometric parameters (Å, º) top
Cl1—C41.734 (4)S2—O51.441 (2)
S1—O21.439 (3)S2—O41.447 (2)
S1—O31.440 (2)S2—C131.752 (4)
S1—O11.443 (2)C13—C181.363 (4)
S1—C11.754 (3)C13—C141.365 (5)
C1—C61.354 (4)C14—C151.382 (5)
C1—C21.371 (5)C14—H140.9300
C2—C31.380 (5)C15—C161.358 (5)
C2—H20.9300C15—H150.9300
C3—C41.362 (5)C16—C171.356 (5)
C3—H30.9300C17—C181.380 (5)
C4—C51.360 (5)C17—H170.9300
C5—C61.372 (5)C18—H180.9300
C5—H50.9300Cl5—C201.721 (4)
C6—H60.9300Cl6—C221.738 (4)
Cl2—C81.721 (4)N2—C191.451 (5)
Cl3—C101.732 (4)N2—H21N0.910 (17)
N1—C71.455 (4)N2—H22N0.928 (18)
N1—H11N0.914 (17)N2—H23N0.911 (17)
N1—H12N0.932 (17)C19—C241.360 (4)
N1—H13N0.896 (18)C19—C201.374 (5)
C7—C121.362 (4)C20—C211.366 (5)
C7—C81.379 (5)C21—C221.373 (5)
C8—C91.366 (5)C21—H210.9300
C9—C101.367 (5)C22—C231.354 (5)
C9—H90.9300C23—C241.377 (5)
C10—C111.367 (5)C23—H230.9300
C11—C121.369 (5)C24—H240.9300
C11—H110.9300O7—H71O0.84 (2)
C12—H120.9300O7—H72O0.84 (2)
Cl4—C161.731 (4)O8—H81O0.83 (2)
S2—O61.436 (2)O8—H82O0.85 (2)
O2—S1—O3112.90 (15)O6—S2—O4111.72 (16)
O2—S1—O1112.42 (19)O5—S2—O4112.72 (14)
O3—S1—O1111.54 (18)O6—S2—C13105.10 (15)
O2—S1—C1107.55 (17)O5—S2—C13107.66 (17)
O3—S1—C1106.54 (16)O4—S2—C13106.43 (16)
O1—S1—C1105.33 (15)C18—C13—C14119.3 (4)
C6—C1—C2119.9 (4)C18—C13—S2119.7 (3)
C6—C1—S1120.3 (3)C14—C13—S2120.9 (3)
C2—C1—S1119.7 (3)C13—C14—C15120.1 (4)
C1—C2—C3119.7 (4)C13—C14—H14119.9
C1—C2—H2120.1C15—C14—H14119.9
C3—C2—H2120.1C16—C15—C14119.4 (4)
C4—C3—C2119.3 (4)C16—C15—H15120.3
C4—C3—H3120.4C14—C15—H15120.3
C2—C3—H3120.4C17—C16—C15121.4 (4)
C5—C4—C3121.2 (4)C17—C16—Cl4119.3 (4)
C5—C4—Cl1119.7 (4)C15—C16—Cl4119.3 (3)
C3—C4—Cl1119.1 (3)C16—C17—C18118.7 (4)
C4—C5—C6118.9 (4)C16—C17—H17120.7
C4—C5—H5120.5C18—C17—H17120.7
C6—C5—H5120.5C13—C18—C17121.1 (4)
C1—C6—C5120.9 (4)C13—C18—H18119.5
C1—C6—H6119.5C17—C18—H18119.5
C5—C6—H6119.5C19—N2—H21N111 (2)
C7—N1—H11N112 (2)C19—N2—H22N108 (2)
C7—N1—H12N113 (2)H21N—N2—H22N100 (3)
H11N—N1—H12N104 (3)C19—N2—H23N112 (2)
C7—N1—H13N114 (2)H21N—N2—H23N114 (3)
H11N—N1—H13N102 (3)H22N—N2—H23N111 (3)
H12N—N1—H13N111 (3)C24—C19—C20119.8 (4)
C12—C7—C8119.3 (4)C24—C19—N2119.8 (4)
C12—C7—N1119.7 (4)C20—C19—N2120.5 (4)
C8—C7—N1121.0 (4)C21—C20—C19120.4 (4)
C9—C8—C7120.2 (4)C21—C20—Cl5119.9 (3)
C9—C8—Cl2120.1 (3)C19—C20—Cl5119.7 (3)
C7—C8—Cl2119.8 (3)C20—C21—C22118.9 (4)
C8—C9—C10119.2 (4)C20—C21—H21120.6
C8—C9—H9120.4C22—C21—H21120.6
C10—C9—H9120.4C23—C22—C21121.5 (4)
C11—C10—C9121.7 (4)C23—C22—Cl6119.6 (4)
C11—C10—Cl3119.3 (4)C21—C22—Cl6118.9 (3)
C9—C10—Cl3119.0 (3)C22—C23—C24119.0 (4)
C10—C11—C12118.2 (4)C22—C23—H23120.5
C10—C11—H11120.9C24—C23—H23120.5
C12—C11—H11120.9C19—C24—C23120.5 (4)
C7—C12—C11121.5 (4)C19—C24—H24119.8
C7—C12—H12119.2C23—C24—H24119.8
C11—C12—H12119.2H71O—O7—H72O108 (3)
O6—S2—O5112.63 (17)H81O—O8—H82O107 (3)
O2—S1—C1—C6162.0 (3)O6—S2—C13—C1873.4 (3)
O3—S1—C1—C640.7 (3)O5—S2—C13—C18166.3 (3)
O1—S1—C1—C677.9 (3)O4—S2—C13—C1845.2 (3)
O2—S1—C1—C221.8 (3)O6—S2—C13—C14103.1 (3)
O3—S1—C1—C2143.1 (3)O5—S2—C13—C1417.2 (3)
O1—S1—C1—C298.3 (3)O4—S2—C13—C14138.3 (3)
C6—C1—C2—C31.2 (5)C18—C13—C14—C150.9 (5)
S1—C1—C2—C3175.0 (3)S2—C13—C14—C15175.6 (3)
C1—C2—C3—C40.5 (5)C13—C14—C15—C160.4 (5)
C2—C3—C4—C50.8 (6)C14—C15—C16—C170.4 (6)
C2—C3—C4—Cl1179.4 (3)C14—C15—C16—Cl4179.2 (3)
C3—C4—C5—C61.4 (6)C15—C16—C17—C180.7 (6)
Cl1—C4—C5—C6178.8 (3)Cl4—C16—C17—C18179.0 (3)
C2—C1—C6—C50.7 (6)C14—C13—C18—C170.7 (5)
S1—C1—C6—C5175.5 (3)S2—C13—C18—C17175.9 (3)
C4—C5—C6—C10.6 (6)C16—C17—C18—C130.1 (6)
C12—C7—C8—C90.4 (5)C24—C19—C20—C210.0 (5)
N1—C7—C8—C9178.9 (3)N2—C19—C20—C21178.3 (3)
C12—C7—C8—Cl2179.3 (3)C24—C19—C20—Cl5179.6 (2)
N1—C7—C8—Cl20.8 (4)N2—C19—C20—Cl51.3 (4)
C7—C8—C9—C100.3 (5)C19—C20—C21—C220.6 (5)
Cl2—C8—C9—C10180.0 (3)Cl5—C20—C21—C22179.8 (2)
C8—C9—C10—C111.3 (6)C20—C21—C22—C231.3 (5)
C8—C9—C10—Cl3179.6 (2)C20—C21—C22—Cl6179.9 (3)
C9—C10—C11—C121.6 (6)C21—C22—C23—C241.4 (6)
Cl3—C10—C11—C12179.3 (3)Cl6—C22—C23—C24179.8 (3)
C8—C7—C12—C110.0 (5)C20—C19—C24—C230.2 (5)
N1—C7—C12—C11178.6 (3)N2—C19—C24—C23178.1 (3)
C10—C11—C12—C70.9 (5)C22—C23—C24—C190.8 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11N···O1i0.91 (2)1.89 (2)2.765 (4)160 (3)
N1—H12N···O3ii0.93 (2)1.83 (2)2.752 (4)171 (3)
N1—H13N···O70.90 (2)1.90 (2)2.785 (4)169 (3)
N2—H21N···O6iii0.91 (2)1.92 (2)2.777 (4)156 (3)
N2—H22N···O4iv0.93 (2)1.82 (2)2.741 (4)176 (3)
N2—H23N···O8iii0.91 (2)1.92 (2)2.807 (4)164 (3)
O7—H71O···O20.84 (2)1.96 (2)2.778 (4)163 (4)
O7—H72O···O6ii0.84 (2)2.13 (3)2.879 (4)148 (5)
O8—H81O···O1ii0.83 (2)2.18 (3)2.900 (4)146 (4)
O8—H82O···O5i0.85 (2)2.03 (2)2.830 (4)158 (4)
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z; (iii) x+1, y, z+1; (iv) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC6H6Cl2N+·C6H4ClO3S·H2O
Mr372.64
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.7589 (8), 14.143 (2), 14.358 (2)
α, β, γ (°)90.99 (1), 99.56 (1), 90.68 (1)
V3)1553.3 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.74
Crystal size (mm)0.40 × 0.16 × 0.06
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.757, 0.957
No. of measured, independent and
observed [I > 2σ(I)] reflections
11006, 6341, 2585
Rint0.038
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.081, 0.84
No. of reflections6341
No. of parameters409
No. of restraints18
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.25

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11N···O1i0.914 (17)1.89 (2)2.765 (4)160 (3)
N1—H12N···O3ii0.932 (17)1.827 (19)2.752 (4)171 (3)
N1—H13N···O70.896 (18)1.901 (19)2.785 (4)169 (3)
N2—H21N···O6iii0.910 (17)1.92 (2)2.777 (4)156 (3)
N2—H22N···O4iv0.928 (18)1.815 (18)2.741 (4)176 (3)
N2—H23N···O8iii0.911 (17)1.92 (2)2.807 (4)164 (3)
O7—H71O···O20.84 (2)1.96 (2)2.778 (4)163 (4)
O7—H72O···O6ii0.84 (2)2.13 (3)2.879 (4)148 (5)
O8—H81O···O1ii0.83 (2)2.18 (3)2.900 (4)146 (4)
O8—H82O···O5i0.85 (2)2.03 (2)2.830 (4)158 (4)
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z; (iii) x+1, y, z+1; (iv) x, y, z+1.
 

Acknowledgements

KS thanks the University Grants Commission, Government of India, New Delhi, for the award of a research fellowship under its faculty improvement program.

References

First citationGowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2570.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T. & Kumar, B. H. A. (2003). Oxid. Commun. 26, 403–425.  CAS Google Scholar
First citationGowda, B. T., Svoboda, I. & Fuess, H. (2004). Z. Naturforsch. Teil A, 55, 845–852.  Google Scholar
First citationNardelli, M. (1999). J. Appl. Cryst. 32, 563–571.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationShakuntala, K., Foro, S. & Gowda, B. T. (2011). Acta Cryst. E67, o967.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1077
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds