organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages o1177-o1178

4-{2-[2-(4-Chloro­benzyl­­idene)hydrazinyl­­idene]-3,6-di­hydro-2H-1,3,4-thia­diazin-5-yl}-3-phenyl­sydnone

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India
*Correspondence e-mail: hkfun@usm.my

(Received 1 April 2011; accepted 13 April 2011; online 22 April 2011)

The title compound, C18H13ClN6O2S, exists in trans and cis configurations with respect to the acyclic C=N bonds [C=N = 1.2837 (15) and 1.3000 (14) Å, respectively]. The 3,6-dihydro-2H-1,3,4-thia­diazine ring adopts a half-boat conformation. The sydnone ring is approximately planar [maximum deviation = 0.002 (1) Å] and forms dihedral angles of 50.45 (7) and 61.21 (6)° with the aromatic rings. In the crystal, inter­molecular N—H⋯N, C—H⋯Cl and C—H⋯S hydrogen bonds link the mol­ecules into layers parallel to ab plane. The crystal packing is stabilized by C—H⋯π inter­actions and further consolidated by ππ inter­actions involving the phenyl rings [centroid–centroid distance = 3.6306 (7) Å].

Related literature

For background to sydnones and their biological activity, see: Newton & Ramsden (1982[Newton, C. G. & Ramsden, C. A. (1982). Tetrahedron, 38, 2965-3011.]); Wagner & Hill (1974[Wagner, H. & Hill, J. B. (1974). J. Med. Chem. 17, 1337-1338.]); Kalluraya & Rahiman (1997[Kalluraya, B. & Rahiman, A. M. (1997). Pol. J. Chem. 71, 1049-1052.]); Kalluraya et al. (2003[Kalluraya, B., Vishwanatha, P., Hedge, J. C., Priya, V. F. & Rai, G. (2003). Indian J. Heterocycl. Chem. 12, 355-356.]). For related structures, see: Fun et al. (2010[Fun, H.-K., Loh, W.-S., Nithinchandra, Kalluraya, B. & Nayak, S. P. (2010). Acta Cryst. E66, o2367-o2368.]); Fun, Loh et al. (2011[Fun, H.-K., Loh, W.-S., Nithinchandra & Kalluraya, B. (2011). Acta Cryst. E67, o1175-o1176.]); Fun, Quah et al. (2011[Fun, H.-K., Quah, C. K., Nithinchandra, & Kalluraya, B. (2011). Acta Cryst. E67, o977-o978.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C18H13ClN6O2S

  • Mr = 412.85

  • Triclinic, [P \overline 1]

  • a = 7.3180 (3) Å

  • b = 10.1567 (5) Å

  • c = 12.4721 (6) Å

  • α = 96.686 (1)°

  • β = 95.285 (1)°

  • γ = 95.229 (1)°

  • V = 911.92 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 100 K

  • 0.51 × 0.23 × 0.07 mm

Data collection
  • Bruker SMART APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.842, Tmax = 0.976

  • 18115 measured reflections

  • 6480 independent reflections

  • 5506 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.113

  • S = 1.05

  • 6480 reflections

  • 257 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C1–C6 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1N3⋯N2i 0.84 (2) 2.03 (2) 2.8752 (14) 178 (2)
C9—H9A⋯Cl1ii 0.97 2.78 3.4904 (13) 130
C18—H18A⋯S1iii 0.93 2.86 3.6729 (12) 147
C17—H17ACg2iv 0.93 2.64 3.5208 (15) 158
Symmetry codes: (i) -x, -y+1, -z; (ii) -x+1, -y, -z; (iii) x-1, y, z; (iv) -x, -y, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Sydnones are a class of mesoionic compounds containing a 1,2,3-oxadiazole ring system. A number of sydnone derivatives have shown diverse biological activities such as anti-inflammatory, analgesic and anti-arthritic (Newton & Ramsden, 1982; Wagner & Hill, 1974) properties. Sydnones possessing heterocyclic moieties at the 4-position are also known for a wide range of biological properties (Kalluraya & Rahiman, 1997). Encouraged by these reports and in continuation of our research for biologically active nitrogen-containing heterocycles, a thiadiazine moiety at the 4-position of the phenylsydnone was introduced. The title compound was synthesized by the condensation of 4-bromoacetyl-3-arylsydnones with N'-[(4-chlorophenyl)methylidene]thiocarbonohydrazide. 4-Bromoacetyl-3-arylsydnones were in turn obtained by the photochemical bromination of 4-acetyl-3-arylsydnones (Kalluraya et al., 2003).

The title compound (Fig. 1) exists in trans and cis configurations with respect to the acyclic C7N1 and C8N2 bonds [C7N1 = 1.2837 (15) Å and C8N2 = 1.3000 (14) Å], respectively. The 3,6-dihydro-2H-1,3,4-thiadiazine ring (N3/N4/C10/C9/S1) adopts a half-boat conformation with the puckering parameter (Cremer & Pople, 1975), Q = 0.5266 (11) Å; Θ = 108.31 (12)°; ϕ = 138.02 (13)°. The sydnone ring (N5/N6/O1/C12/C11) is approximately planar with a maximum deviation of 0.002 (1) Å at atom N5 and forms dihedral angles of 50.45 (7)° and 61.21 (6)° with the phenyl rings (C1–C6 & C13–C18), respectively. Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to the related structures (Fun et al., 2010; Fun & Loh et al., 2011; Fun & Quah et al., 2011).

In the crystal packing (Fig. 2), intermolecular N3—H1N3···N2, C9—H9A···Cl1 and C18—H18A···S1 hydrogen bonds (Table 1) link the molecules into layers parallel to ab plane. The crystal packing is stabilized by C—H···π interactions (Table 1) and further consolidated by ππ interactions (Table 1), involving the centroids of phenyl rings (Cg1; C13–C18) with the separation of Cg1···Cg1v being 3.6306 (7) Å [symmetry code: (v) -1 - x, -y, 1 - z].

Related literature top

For background to sydnones and their biological activity, see: Newton & Ramsden (1982); Wagner & Hill (1974); Kalluraya & Rahiman (1997); Kalluraya et al. (2003). For related structures, see: Fun et al. (2010); Fun, Loh et al. (2011); Fun, Quah et al. (2011). For ring conformations, see: Cremer & Pople (1975). For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

To a solution of 4-bromoacetyl-3-(p-anisyl)sydnone (0.01 mol) and N'-[(4-chlorophenyl)methylidene]thiocarbonohydrazide (0.01 mol) in ethanol, a catalytic amount of anhydrous sodium acetate was added. The solution was stirred at room temperature for 2–3 h. The solid product that separated out was filtered and dried. It was then recrystallized from ethanol. Crystals suitable for X-ray analysis were obtained from 1:2 mixtures of DMF and ethanol by slow evaporation.

Refinement top

H1N3 was located from the difference Fourier map and refined freely [N–H = 0.84 (2) Å]. The remaining H atoms were positioned geometrically and refined using a riding model with Uiso(H) = 1.2 Ueq(C) [C–H = 0.93 or 0.97 Å].

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the b axis. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.
4-{2-[2-(4-Chlorobenzylidene)hydrazinylidene]-3,6-dihydro-2H- 1,3,4-thiadiazin-5-yl}-3-phenyl-1,2,3-oxadiazol-3-ium-5-olate top
Crystal data top
C18H13ClN6O2SZ = 2
Mr = 412.85F(000) = 424
Triclinic, P1Dx = 1.504 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.3180 (3) ÅCell parameters from 8568 reflections
b = 10.1567 (5) Åθ = 2.8–35.0°
c = 12.4721 (6) ŵ = 0.35 mm1
α = 96.686 (1)°T = 100 K
β = 95.285 (1)°Plate, light purple
γ = 95.229 (1)°0.51 × 0.23 × 0.07 mm
V = 911.92 (7) Å3
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
6480 independent reflections
Radiation source: fine-focus sealed tube5506 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 32.5°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1111
Tmin = 0.842, Tmax = 0.976k = 1515
18115 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0611P)2 + 0.3032P]
where P = (Fo2 + 2Fc2)/3
6480 reflections(Δ/σ)max = 0.001
257 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C18H13ClN6O2Sγ = 95.229 (1)°
Mr = 412.85V = 911.92 (7) Å3
Triclinic, P1Z = 2
a = 7.3180 (3) ÅMo Kα radiation
b = 10.1567 (5) ŵ = 0.35 mm1
c = 12.4721 (6) ÅT = 100 K
α = 96.686 (1)°0.51 × 0.23 × 0.07 mm
β = 95.285 (1)°
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
6480 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
5506 reflections with I > 2σ(I)
Tmin = 0.842, Tmax = 0.976Rint = 0.022
18115 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.53 e Å3
6480 reflectionsΔρmin = 0.27 e Å3
257 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.07800 (5)0.08403 (3)0.18284 (3)0.03779 (9)
S10.17791 (4)0.27870 (3)0.20939 (2)0.02534 (8)
O10.27472 (13)0.52923 (9)0.54724 (7)0.02723 (18)
O20.14178 (14)0.66439 (9)0.43584 (8)0.02957 (19)
N10.32516 (14)0.31817 (9)0.01686 (8)0.02134 (17)
N20.16931 (14)0.38648 (10)0.02374 (7)0.02176 (17)
N30.07075 (13)0.42674 (10)0.12269 (8)0.02133 (17)
N40.14591 (13)0.45733 (9)0.21809 (7)0.01985 (17)
N50.27251 (13)0.33810 (9)0.45894 (7)0.01958 (16)
N60.32110 (15)0.39514 (10)0.55021 (8)0.02548 (19)
C10.63437 (17)0.17276 (12)0.03615 (9)0.0237 (2)
H1A0.56900.14330.01850.028*
C20.78848 (17)0.11197 (12)0.06418 (10)0.0265 (2)
H2A0.82630.04130.02950.032*
C30.88538 (17)0.15913 (12)0.14545 (10)0.0264 (2)
C40.83211 (18)0.26371 (12)0.19913 (10)0.0275 (2)
H4A0.89940.29410.25270.033*
C50.67620 (18)0.32191 (11)0.17115 (9)0.0250 (2)
H5A0.63740.39110.20730.030*
C60.57626 (16)0.27820 (11)0.08939 (9)0.02146 (19)
C70.41298 (16)0.34357 (11)0.06406 (9)0.0225 (2)
H7A0.37150.40530.10770.027*
C80.08764 (15)0.36783 (10)0.10979 (8)0.01926 (18)
C90.02848 (18)0.25579 (12)0.27750 (11)0.0272 (2)
H9A0.11320.18560.23530.033*
H9B0.00390.22760.34790.033*
C100.12334 (14)0.38080 (10)0.29279 (9)0.01908 (18)
C110.19794 (15)0.42203 (10)0.39393 (9)0.01953 (18)
C120.19652 (16)0.55221 (11)0.45021 (9)0.0229 (2)
C130.30832 (14)0.19503 (10)0.43535 (9)0.01922 (18)
C140.22133 (15)0.11515 (11)0.50272 (9)0.02130 (19)
H14A0.14360.15230.56410.026*
C150.25405 (16)0.02255 (11)0.47558 (10)0.0241 (2)
H15A0.19760.07840.51940.029*
C160.36970 (17)0.07694 (12)0.38406 (11)0.0257 (2)
H16A0.39010.16900.36670.031*
C170.45555 (17)0.00539 (12)0.31792 (10)0.0261 (2)
H17A0.53340.03180.25660.031*
C180.42526 (15)0.14293 (12)0.34325 (10)0.0235 (2)
H18A0.48200.19880.29950.028*
H1N30.095 (3)0.481 (2)0.0777 (16)0.040 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.02970 (16)0.03100 (16)0.0513 (2)0.00136 (11)0.01490 (14)0.00771 (13)
S10.02671 (14)0.02899 (15)0.02507 (14)0.01210 (10)0.00651 (10)0.01304 (10)
O10.0348 (5)0.0217 (4)0.0254 (4)0.0064 (3)0.0034 (3)0.0011 (3)
O20.0342 (5)0.0175 (4)0.0367 (5)0.0035 (3)0.0001 (4)0.0044 (3)
N10.0247 (4)0.0201 (4)0.0196 (4)0.0045 (3)0.0019 (3)0.0024 (3)
N20.0257 (4)0.0222 (4)0.0183 (4)0.0059 (3)0.0016 (3)0.0039 (3)
N30.0241 (4)0.0227 (4)0.0187 (4)0.0064 (3)0.0012 (3)0.0067 (3)
N40.0212 (4)0.0194 (4)0.0196 (4)0.0031 (3)0.0011 (3)0.0054 (3)
N50.0213 (4)0.0185 (4)0.0200 (4)0.0044 (3)0.0019 (3)0.0051 (3)
N60.0314 (5)0.0235 (4)0.0228 (4)0.0057 (4)0.0055 (4)0.0042 (3)
C10.0275 (5)0.0233 (5)0.0211 (5)0.0033 (4)0.0040 (4)0.0037 (4)
C20.0280 (5)0.0254 (5)0.0262 (5)0.0047 (4)0.0037 (4)0.0021 (4)
C30.0251 (5)0.0236 (5)0.0285 (5)0.0011 (4)0.0061 (4)0.0051 (4)
C40.0320 (6)0.0228 (5)0.0259 (5)0.0057 (4)0.0093 (4)0.0023 (4)
C50.0336 (6)0.0194 (5)0.0213 (5)0.0027 (4)0.0054 (4)0.0014 (4)
C60.0261 (5)0.0193 (4)0.0184 (4)0.0010 (4)0.0027 (4)0.0007 (3)
C70.0286 (5)0.0199 (5)0.0192 (4)0.0036 (4)0.0022 (4)0.0028 (3)
C80.0220 (4)0.0168 (4)0.0187 (4)0.0023 (3)0.0007 (3)0.0032 (3)
C90.0342 (6)0.0197 (5)0.0329 (6)0.0097 (4)0.0137 (5)0.0118 (4)
C100.0200 (4)0.0160 (4)0.0223 (4)0.0030 (3)0.0022 (3)0.0058 (3)
C110.0214 (4)0.0167 (4)0.0216 (4)0.0038 (3)0.0014 (3)0.0059 (3)
C120.0240 (5)0.0197 (5)0.0251 (5)0.0053 (4)0.0007 (4)0.0040 (4)
C130.0198 (4)0.0168 (4)0.0222 (4)0.0021 (3)0.0038 (3)0.0057 (3)
C140.0233 (5)0.0209 (5)0.0213 (5)0.0043 (4)0.0035 (4)0.0070 (3)
C150.0247 (5)0.0205 (5)0.0301 (5)0.0059 (4)0.0074 (4)0.0091 (4)
C160.0247 (5)0.0189 (5)0.0347 (6)0.0008 (4)0.0099 (4)0.0039 (4)
C170.0227 (5)0.0252 (5)0.0290 (5)0.0025 (4)0.0019 (4)0.0018 (4)
C180.0205 (5)0.0242 (5)0.0259 (5)0.0004 (4)0.0005 (4)0.0074 (4)
Geometric parameters (Å, º) top
Cl1—C31.7379 (13)C4—C51.3861 (18)
S1—C81.7374 (10)C4—H4A0.9300
S1—C91.8097 (12)C5—C61.3984 (16)
O1—N61.3788 (13)C5—H5A0.9300
O1—C121.4197 (15)C6—C71.4607 (16)
O2—C121.2117 (14)C7—H7A0.9300
N1—C71.2837 (15)C9—C101.5030 (15)
N1—N21.3921 (13)C9—H9A0.9700
N2—C81.3000 (14)C9—H9B0.9700
N3—C81.3659 (14)C10—C111.4526 (15)
N3—N41.3712 (13)C11—C121.4217 (15)
N3—H1N30.85 (2)C13—C141.3870 (14)
N4—C101.2896 (13)C13—C181.3881 (16)
N5—N61.3101 (14)C14—C151.3935 (16)
N5—C111.3563 (13)C14—H14A0.9300
N5—C131.4434 (14)C15—C161.3836 (18)
C1—C21.3874 (17)C15—H15A0.9300
C1—C61.4018 (16)C16—C171.3912 (18)
C1—H1A0.9300C16—H16A0.9300
C2—C31.3940 (17)C17—C181.3886 (17)
C2—H2A0.9300C17—H17A0.9300
C3—C41.3861 (19)C18—H18A0.9300
C8—S1—C997.34 (5)N3—C8—S1119.98 (8)
N6—O1—C12111.31 (8)C10—C9—S1112.38 (8)
C7—N1—N2112.59 (9)C10—C9—H9A109.1
C8—N2—N1112.52 (9)S1—C9—H9A109.1
C8—N3—N4126.88 (9)C10—C9—H9B109.1
C8—N3—H1N3114.7 (14)S1—C9—H9B109.1
N4—N3—H1N3111.8 (14)H9A—C9—H9B107.9
C10—N4—N3118.20 (9)N4—C10—C11115.66 (9)
N6—N5—C11115.55 (9)N4—C10—C9123.01 (10)
N6—N5—C13117.95 (9)C11—C10—C9121.33 (9)
C11—N5—C13126.46 (9)N5—C11—C12105.58 (9)
N5—N6—O1104.02 (9)N5—C11—C10125.07 (9)
C2—C1—C6120.65 (11)C12—C11—C10129.17 (10)
C2—C1—H1A119.7O2—C12—O1120.14 (11)
C6—C1—H1A119.7O2—C12—C11136.24 (12)
C1—C2—C3118.54 (11)O1—C12—C11103.54 (9)
C1—C2—H2A120.7C14—C13—C18122.57 (10)
C3—C2—H2A120.7C14—C13—N5119.37 (10)
C4—C3—C2122.18 (11)C18—C13—N5118.04 (9)
C4—C3—Cl1118.32 (10)C13—C14—C15117.91 (10)
C2—C3—Cl1119.49 (10)C13—C14—H14A121.0
C5—C4—C3118.46 (11)C15—C14—H14A121.0
C5—C4—H4A120.8C16—C15—C14120.63 (10)
C3—C4—H4A120.8C16—C15—H15A119.7
C4—C5—C6121.04 (11)C14—C15—H15A119.7
C4—C5—H5A119.5C15—C16—C17120.33 (11)
C6—C5—H5A119.5C15—C16—H16A119.8
C5—C6—C1119.11 (11)C17—C16—H16A119.8
C5—C6—C7118.29 (10)C18—C17—C16120.13 (11)
C1—C6—C7122.59 (10)C18—C17—H17A119.9
N1—C7—C6121.78 (10)C16—C17—H17A119.9
N1—C7—H7A119.1C13—C18—C17118.43 (10)
C6—C7—H7A119.1C13—C18—H18A120.8
N2—C8—N3117.39 (9)C17—C18—H18A120.8
N2—C8—S1122.56 (8)
C7—N1—N2—C8175.59 (10)S1—C9—C10—C11137.68 (9)
C8—N3—N4—C1032.21 (16)N6—N5—C11—C120.24 (13)
C11—N5—N6—O10.32 (13)C13—N5—C11—C12177.95 (10)
C13—N5—N6—O1178.24 (9)N6—N5—C11—C10175.72 (10)
C12—O1—N6—N50.28 (12)C13—N5—C11—C106.57 (17)
C6—C1—C2—C30.77 (18)N4—C10—C11—N5145.80 (11)
C1—C2—C3—C40.37 (19)C9—C10—C11—N533.52 (17)
C1—C2—C3—Cl1179.55 (9)N4—C10—C11—C1239.82 (16)
C2—C3—C4—C50.58 (18)C9—C10—C11—C12140.87 (12)
Cl1—C3—C4—C5178.61 (9)N6—O1—C12—O2177.42 (10)
C3—C4—C5—C61.14 (18)N6—O1—C12—C110.15 (12)
C4—C5—C6—C10.75 (17)N5—C11—C12—O2176.55 (13)
C4—C5—C6—C7179.85 (11)C10—C11—C12—O21.3 (2)
C2—C1—C6—C50.23 (17)N5—C11—C12—O10.04 (11)
C2—C1—C6—C7178.83 (11)C10—C11—C12—O1175.28 (10)
N2—N1—C7—C6177.30 (10)N6—N5—C13—C1463.26 (14)
C5—C6—C7—N1172.94 (11)C11—N5—C13—C14119.08 (12)
C1—C6—C7—N18.00 (18)N6—N5—C13—C18118.73 (11)
N1—N2—C8—N3177.81 (9)C11—N5—C13—C1858.93 (15)
N1—N2—C8—S15.18 (14)C18—C13—C14—C150.06 (16)
N4—N3—C8—N2157.47 (11)N5—C13—C14—C15177.86 (10)
N4—N3—C8—S119.62 (15)C13—C14—C15—C160.09 (16)
C9—S1—C8—N2165.26 (10)C14—C15—C16—C170.21 (17)
C9—S1—C8—N317.80 (10)C15—C16—C17—C180.17 (18)
C8—S1—C9—C1043.84 (10)C14—C13—C18—C170.10 (17)
N3—N4—C10—C11177.00 (9)N5—C13—C18—C17177.85 (10)
N3—N4—C10—C93.70 (16)C16—C17—C18—C130.01 (17)
S1—C9—C10—N443.07 (15)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
N3—H1N3···N2i0.84 (2)2.03 (2)2.8752 (14)178 (2)
C9—H9A···Cl1ii0.972.783.4904 (13)130
C18—H18A···S1iii0.932.863.6729 (12)147
C17—H17A···Cg2iv0.932.643.5208 (15)158
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z; (iii) x1, y, z; (iv) x, y, z.

Experimental details

Crystal data
Chemical formulaC18H13ClN6O2S
Mr412.85
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.3180 (3), 10.1567 (5), 12.4721 (6)
α, β, γ (°)96.686 (1), 95.285 (1), 95.229 (1)
V3)911.92 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.35
Crystal size (mm)0.51 × 0.23 × 0.07
Data collection
DiffractometerBruker SMART APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.842, 0.976
No. of measured, independent and
observed [I > 2σ(I)] reflections
18115, 6480, 5506
Rint0.022
(sin θ/λ)max1)0.756
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.113, 1.05
No. of reflections6480
No. of parameters257
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.53, 0.27

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
N3—H1N3···N2i0.84 (2)2.03 (2)2.8752 (14)178 (2)
C9—H9A···Cl1ii0.972.783.4904 (13)130
C18—H18A···S1iii0.932.863.6729 (12)147
C17—H17A···Cg2iv0.932.643.5208 (15)158
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z; (iii) x1, y, z; (iv) x, y, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: C-7581-2009.

Acknowledgements

The authors thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). WSL also thanks the Malaysian Government and USM for the award of a research fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFun, H.-K., Loh, W.-S., Nithinchandra & Kalluraya, B. (2011). Acta Cryst. E67, o1175–o1176.  Google Scholar
First citationFun, H.-K., Loh, W.-S., Nithinchandra, Kalluraya, B. & Nayak, S. P. (2010). Acta Cryst. E66, o2367–o2368.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Nithinchandra, & Kalluraya, B. (2011). Acta Cryst. E67, o977–o978.  Google Scholar
First citationKalluraya, B. & Rahiman, A. M. (1997). Pol. J. Chem. 71, 1049–1052.  CAS Google Scholar
First citationKalluraya, B., Vishwanatha, P., Hedge, J. C., Priya, V. F. & Rai, G. (2003). Indian J. Heterocycl. Chem. 12, 355–356.  CAS Google Scholar
First citationNewton, C. G. & Ramsden, C. A. (1982). Tetrahedron, 38, 2965–3011.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWagner, H. & Hill, J. B. (1974). J. Med. Chem. 17, 1337–1338.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages o1177-o1178
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds