organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages o1171-o1172

Bis(5-amino-3-carb­­oxy-1H-1,2,4-triazol-4-ium) sulfate dihydrate

aLaboratoire de Chimie Appliquée et Technologie des Matériaux LCATM, Université Larbi Ben M'Hidi, 04000 Oum El Bouaghi, Algeria, bUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Faculté des Sciences Exactes, Université Mentouri Constantine 25000, Algeria, and cCentre de Difractométrie X, UMR 6226 CNRS Unité Sciences Chimiques de Rennes, Université de Rennes I, 263 Avenue du Général Leclerc, 35042 Rennes, France
*Correspondence e-mail: fadilaber@yahoo.fr

(Received 3 April 2011; accepted 12 April 2011; online 16 April 2011)

The crystal structure of the title compound, 2C3H5N4O2+·SO42−·2H2O, displays a three-dimensional framework in which mixed infinite chains [oriented parallel to (510) and ([\overline{5}]10)] inter­fere, forming tunnels extending parallel to the c axis. Inter­molecular O—H⋯O, N—H⋯O and O—H⋯N hydrogen bonds ensure the unity of the structure and generate centrosymmetric R44(14) and R42(8) rings. The S atom lies on a twofold axis.

Related literature

For uses of 1,2,4 triazole derivatives, see: Beckmann & Brooker, (2003[Beckmann, U. & Brooker, S. (2003). Coord. Chem. Rev. 245, 17-29.]); Bhargava et al. (1981[Bhargava, K. P., Tandon, M. & Bhalla, T. N. (1981). Indian J. Chem. Sect. B, 20, 1017-1018.]); Fujigaya et al. (2003[Fujigaya, T., Jiang, D. L. & Aida, T. (2003). J. Am. Chem. Soc. 125, 14690-14691.]); Hirota et al. (1991[Hirota, T., Sasaki, K., Yamamoto, T. & Nakayama, T. (1991). J. Heterocycl. Chem. 28, 257-261.]); Li et al. (2004[Li, W., Wu, Q., Yu, Y., Luo, M., Hu, L., Gu, Y., Niu, F. & Hu, J. (2004). Spectrochim. Acta Part A, 60, 2343-2354.]); Matulková et al. (2008[Matulková, I., Nemec, I., Teubner, K., Nemec, P. & Micka, Z. (2008). J. Mol. Struct. 873, 46-60]). For related hybrid compounds, see: Berrah et al. (2011a[Berrah, F., Ouakkaf, A., Bouacida, S. & Roisnel, T. (2011a). Acta Cryst. E67, o525-o526.],b[Berrah, F., Ouakkaf, A., Bouacida, S. & Roisnel, T. (2011b). Acta Cryst. E67, o677-o678.],c[Berrah, F., Ouakkaf, A., Bouacida, S. & Roisnel, T. (2011c). Acta Cryst. E67, o953-o954.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

[Scheme 1]

Experimental

Crystal data
  • 2C3H5N4O2+·SO42−·2H2O

  • Mr = 390.31

  • Monoclinic, C 2/c

  • a = 19.4350 (9) Å

  • b = 5.8467 (2) Å

  • c = 13.3343 (6) Å

  • β = 109.981 (2)°

  • V = 1423.98 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 150 K

  • 0.48 × 0.08 × 0.06 mm

Data collection
  • Bruker APEXII diffractometer

  • 11018 measured reflections

  • 1620 independent reflections

  • 1470 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.077

  • S = 1.08

  • 1620 reflections

  • 121 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H2W⋯N2 0.83 (2) 2.16 (2) 2.9774 (16) 169 (2)
O1W—H1W⋯O1i 0.89 (2) 1.93 (2) 2.7941 (17) 163 (2)
O2—H2⋯O1Wii 0.82 1.74 2.5403 (16) 165
N1—H1⋯O4iii 0.86 1.94 2.7107 (16) 149
N3—H3⋯O4iv 0.86 1.79 2.6436 (15) 171
N4—H4A⋯O3v 0.86 2.17 2.8452 (17) 136
N4—H4B⋯O3vi 0.86 2.08 2.9255 (16) 168
Symmetry codes: (i) [x, -y+1, z-{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (iii) -x+1, -y+1, -z+1; (iv) [-x+1, y-1, -z+{\script{3\over 2}}]; (v) -x+1, -y, -z+1; (vi) x, y-1, z.

Data collection: APEX2 (Bruker, 2001[Bruker (2001). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg & Berndt, 2001[Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

1,2,4-triazole derivatives are remarkable substances exhibiting a wide range of properties; while several compounds incorporating 1,2,4-triazole moieties show pharmacological and biological activities (antidepressants, anti-inflammatory, fungicides) (Bhargava et al., 1981; Hirota et al., 1991; Li et al., 2004), a number of them find use in material field and coordination chemistry (magnetic and non-linear optics properties, multidentate ligands) (Beckmann & Brooker, 2003; Fujigaya et al., 2003; Matulková et al., 2008).

Our recent investigation on some N-heterocycle compounds with inorganic acids (Berrah et al., 2011a,b,c), has revealed their ability to generate original networks stabilized in particular by hydrogen bonds; we report herein the structure of a new hybrid compound obtained from a disubstituted 1,2,4-triazole derivative (5-amino-1,2,4 triazol-1H-3-carboxylic acid hydrate) and the sulfuric acid.

The molecular structure and the atom-numbering scheme of the title compound are shown in Fig. 1. The sulfur atom lies in the twofold axis and the sulfate anion shows a quite regular geometry compared with that seen in similar compounds (Berrah et al., 2011b,c). The triazole ring exhibits a short distance of 1.3046 (18) Å revealing the double-bond character of the C2N2 bond, two long distances 1.3648 (18) Å and 1.3774 (17) Å related to the single bonds C2—N3 and N1—N2, respectively. The C3—N1 and C3 N3 bonds lengths are respectively 1.3420 (18) Å and 1.3480 (18) Å which suggests the delocalization of the double bond (N1 C3 N3).

The crystal structure of the title compound (Fig. 2) displays a three-dimensional framework where mixed infinite chains interfere to form tunnels parallel the c axis. According to their orientation, we can distinguish two kinds of chains: the first one directed along the (510) plane and the second along the (510) plane (Fig. 2). In a mixed chain, the cations adopt a head to head configuration in a way that NH2, of two adjacent cations, are linked (via N—H···O hydrogen bonds) to two sulfate anions and C—OH are linked (by O—H···O hydrogen bonds) to two water molecules (Fig. 3) (Table 1). Consequently, centro-symmetric R44(14) and R24(8) graph-set rings are created (Etter et al., 1990; Bernstein et al., 1995).

Related literature top

For uses of 1,2,4 triazole derivatives, see: Beckmann & Brooker, (2003); Bhargava et al. (1981); Fujigaya et al. (2003); Hirota et al. (1991); Li et al. (2004); Matulková et al. (2008). For related hybrid compounds, see: Berrah et al. (2011a,b,c). For hydrogen-bond motifs, see: Bernstein et al. (1995); Etter et al. (1990).

Experimental top

The title compound was synthesized by reacting 5-amino-1,2,4 triazol-1H-3-carboxylic acid hydrate with some excess of sulfuric acid in aqueous solution. Slow evaporation leads to well crystallized colorless needles.

Refinement top

The H atoms of the water molecules were located in difference Fourier maps and were refined with Uiso(H) = 1.5Ueq(O). The remaining H atoms were located in difference Fourier maps but introduced in calculated positions and treated as riding on their parent atoms (N or O) with, O—H = 0.82 Å and N—H = 0.86 Å with Uiso(H) = 1.2 Ueq(N) and Uiso(H) = 1.5 Ueq(O).

Computing details top

Data collection: APEX2 (Bruker,2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atomic labeling scheme. Displacement are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. (Brandenburg & Berndt, 2001) A diagram of the three-dimensional packing of (I). (510) and (-510) planes have been presented to illustrate the mixed infinite chains. Hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. (Brandenburg & Berndt, 2001) A view of the mixed infinite chain. Hydrogen bonds are shown as dashed lines.
Bis(5-amino-3-carboxy-1H-1,2,4-triazol-4-ium) sulfate dihydrate top
Crystal data top
2C3H5N4O2+·SO42·2H2OF(000) = 808
Mr = 390.31Dx = 1.821 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 19.4350 (9) ÅCell parameters from 1620 reflections
b = 5.8467 (2) Åθ = 3.3–27.4°
c = 13.3343 (6) ŵ = 0.31 mm1
β = 109.981 (2)°T = 150 K
V = 1423.98 (10) Å3Needle, colourless
Z = 40.48 × 0.08 × 0.06 mm
Data collection top
Bruker APEXII
diffractometer
Rint = 0.032
Graphite monochromatorθmax = 27.5°, θmin = 3.3°
CCD rotation images, thin slices scansh = 2425
11018 measured reflectionsk = 77
1620 independent reflectionsl = 1715
1470 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0343P)2 + 1.9446P]
where P = (Fo2 + 2Fc2)/3
1620 reflections(Δ/σ)max = 0.009
121 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
2C3H5N4O2+·SO42·2H2OV = 1423.98 (10) Å3
Mr = 390.31Z = 4
Monoclinic, C2/cMo Kα radiation
a = 19.4350 (9) ŵ = 0.31 mm1
b = 5.8467 (2) ÅT = 150 K
c = 13.3343 (6) Å0.48 × 0.08 × 0.06 mm
β = 109.981 (2)°
Data collection top
Bruker APEXII
diffractometer
1470 reflections with I > 2σ(I)
11018 measured reflectionsRint = 0.032
1620 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.077H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.37 e Å3
1620 reflectionsΔρmin = 0.41 e Å3
121 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.32927 (7)0.3566 (2)0.60560 (11)0.0136 (3)
C20.35578 (7)0.2304 (2)0.52873 (11)0.0123 (3)
C30.40656 (7)0.0381 (2)0.46589 (11)0.0129 (3)
N10.38002 (6)0.1265 (2)0.39270 (9)0.0138 (3)
H10.38270.1250.32960.017*
N20.34797 (6)0.2981 (2)0.43222 (9)0.0138 (3)
N30.39065 (6)0.0245 (2)0.55278 (9)0.0123 (2)
H30.40050.05020.61160.015*
N40.44239 (7)0.2252 (2)0.45703 (10)0.0169 (3)
H4A0.4510.25190.3990.02*
H4B0.45710.32010.50930.02*
O10.33947 (6)0.28073 (19)0.69430 (8)0.0188 (2)
O20.29439 (6)0.54386 (18)0.56322 (8)0.0186 (2)
H20.28170.6120.60770.028*
O30.48758 (5)0.50548 (17)0.65377 (8)0.0158 (2)
O40.56503 (6)0.79464 (19)0.76558 (8)0.0190 (2)
S10.50.64445 (8)0.750.01101 (13)
O1W0.25419 (6)0.69140 (19)0.32536 (9)0.0194 (2)
H1W0.2751 (11)0.724 (4)0.2772 (17)0.029*
H2W0.2786 (11)0.586 (4)0.3624 (17)0.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0118 (6)0.0150 (7)0.0148 (7)0.0021 (5)0.0054 (5)0.0017 (5)
C20.0117 (6)0.0128 (6)0.0122 (7)0.0015 (5)0.0037 (5)0.0008 (5)
C30.0119 (6)0.0151 (7)0.0117 (6)0.0026 (5)0.0040 (5)0.0008 (5)
N10.0177 (6)0.0155 (6)0.0097 (6)0.0011 (5)0.0066 (5)0.0003 (4)
N20.0150 (6)0.0143 (6)0.0126 (6)0.0001 (4)0.0053 (5)0.0008 (4)
N30.0145 (5)0.0138 (6)0.0093 (5)0.0010 (4)0.0052 (4)0.0015 (4)
N40.0220 (6)0.0162 (6)0.0145 (6)0.0034 (5)0.0087 (5)0.0002 (5)
O10.0230 (5)0.0213 (5)0.0155 (5)0.0024 (4)0.0108 (4)0.0015 (4)
O20.0227 (5)0.0175 (5)0.0170 (5)0.0062 (4)0.0086 (4)0.0006 (4)
O30.0182 (5)0.0164 (5)0.0125 (5)0.0004 (4)0.0051 (4)0.0035 (4)
O40.0221 (5)0.0243 (6)0.0133 (5)0.0105 (4)0.0094 (4)0.0049 (4)
S10.0129 (2)0.0119 (2)0.0090 (2)00.00474 (17)0
O1W0.0228 (6)0.0202 (5)0.0187 (6)0.0065 (4)0.0117 (5)0.0044 (4)
Geometric parameters (Å, º) top
C1—O11.2144 (18)N3—H30.86
C1—O21.3098 (17)N4—H4A0.86
C1—C21.4905 (19)N4—H4B0.86
C2—N21.3046 (18)O2—H20.82
C2—N31.3648 (18)O3—S11.4674 (10)
C3—N41.3236 (19)O4—S11.4941 (10)
C3—N11.3420 (18)S1—O3i1.4674 (10)
C3—N31.3480 (18)S1—O4i1.4941 (10)
N1—N21.3774 (17)O1W—H1W0.89 (2)
N1—H10.86O1W—H2W0.83 (2)
O1—C1—O2127.86 (13)C3—N3—H3126.9
O1—C1—C2120.61 (13)C2—N3—H3126.9
O2—C1—C2111.50 (12)C3—N4—H4A120
N2—C2—N3112.37 (12)C3—N4—H4B120
N2—C2—C1125.24 (13)H4A—N4—H4B120
N3—C2—C1122.38 (12)C1—O2—H2109.5
N4—C3—N1127.67 (13)O3—S1—O3i112.76 (9)
N4—C3—N3125.69 (13)O3—S1—O4109.00 (6)
N1—C3—N3106.63 (12)O3i—S1—O4108.98 (6)
C3—N1—N2110.85 (11)O3—S1—O4i108.98 (6)
C3—N1—H1124.6O3i—S1—O4i109.00 (6)
N2—N1—H1124.6O4—S1—O4i108.01 (9)
C2—N2—N1103.94 (11)H1W—O1W—H2W106.3 (19)
C3—N3—C2106.20 (11)
O1—C1—C2—N2179.54 (13)C1—C2—N2—N1179.34 (12)
O2—C1—C2—N22.06 (19)C3—N1—N2—C20.42 (14)
O1—C1—C2—N31.6 (2)N4—C3—N3—C2177.99 (13)
O2—C1—C2—N3176.82 (12)N1—C3—N3—C21.19 (14)
N4—C3—N1—N2178.13 (13)N2—C2—N3—C31.00 (16)
N3—C3—N1—N21.03 (15)C1—C2—N3—C3179.99 (12)
N3—C2—N2—N10.37 (15)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H2W···N20.83 (2)2.16 (2)2.9774 (16)169 (2)
O1W—H1W···O1ii0.89 (2)1.93 (2)2.7941 (17)163 (2)
O2—H2···O1Wiii0.821.742.5403 (16)165
N1—H1···O4iv0.861.942.7107 (16)149
N3—H3···O4v0.861.792.6436 (15)171
N4—H4A···O3vi0.862.172.8452 (17)136
N4—H4B···O3vii0.862.082.9255 (16)168
Symmetry codes: (ii) x, y+1, z1/2; (iii) x+1/2, y+3/2, z+1; (iv) x+1, y+1, z+1; (v) x+1, y1, z+3/2; (vi) x+1, y, z+1; (vii) x, y1, z.

Experimental details

Crystal data
Chemical formula2C3H5N4O2+·SO42·2H2O
Mr390.31
Crystal system, space groupMonoclinic, C2/c
Temperature (K)150
a, b, c (Å)19.4350 (9), 5.8467 (2), 13.3343 (6)
β (°) 109.981 (2)
V3)1423.98 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.48 × 0.08 × 0.06
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
11018, 1620, 1470
Rint0.032
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.077, 1.08
No. of reflections1620
No. of parameters121
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.37, 0.41

Computer programs: APEX2 (Bruker,2001), SAINT (Bruker, 2001), SIR2002 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H2W···N20.83 (2)2.16 (2)2.9774 (16)169 (2)
O1W—H1W···O1i0.89 (2)1.93 (2)2.7941 (17)163 (2)
O2—H2···O1Wii0.821.742.5403 (16)165
N1—H1···O4iii0.861.942.7107 (16)149
N3—H3···O4iv0.861.792.6436 (15)171
N4—H4A···O3v0.862.172.8452 (17)136
N4—H4B···O3vi0.862.082.9255 (16)168
Symmetry codes: (i) x, y+1, z1/2; (ii) x+1/2, y+3/2, z+1; (iii) x+1, y+1, z+1; (iv) x+1, y1, z+3/2; (v) x+1, y, z+1; (vi) x, y1, z.
 

Footnotes

Current address: Département Sciences de la Matière, Faculté des Sciences Exactes et Sciences de la Nature et de la Vie, Université Larbi Ben M'hidi, 04000 Oum El Bouaghi, Algeria.

Acknowledgements

We are grateful to the LCATM Laboratory, Université Larbi Ben M′Hidi, Oum El Bouaghi, Algeria, for financial support.

References

First citationBeckmann, U. & Brooker, S. (2003). Coord. Chem. Rev. 245, 17–29.  Web of Science CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBerrah, F., Ouakkaf, A., Bouacida, S. & Roisnel, T. (2011a). Acta Cryst. E67, o525–o526.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBerrah, F., Ouakkaf, A., Bouacida, S. & Roisnel, T. (2011b). Acta Cryst. E67, o677–o678.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBerrah, F., Ouakkaf, A., Bouacida, S. & Roisnel, T. (2011c). Acta Cryst. E67, o953–o954.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBhargava, K. P., Tandon, M. & Bhalla, T. N. (1981). Indian J. Chem. Sect. B, 20, 1017–1018.  Google Scholar
First citationBrandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.  Google Scholar
First citationBruker (2001). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFujigaya, T., Jiang, D. L. & Aida, T. (2003). J. Am. Chem. Soc. 125, 14690–14691.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHirota, T., Sasaki, K., Yamamoto, T. & Nakayama, T. (1991). J. Heterocycl. Chem. 28, 257–261.  CrossRef CAS Google Scholar
First citationLi, W., Wu, Q., Yu, Y., Luo, M., Hu, L., Gu, Y., Niu, F. & Hu, J. (2004). Spectrochim. Acta Part A, 60, 2343–2354.  CrossRef Google Scholar
First citationMatulková, I., Nemec, I., Teubner, K., Nemec, P. & Micka, Z. (2008). J. Mol. Struct. 873, 46–60  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages o1171-o1172
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds