organic compounds
Bis(5-amino-3-carboxy-1H-1,2,4-triazol-4-ium) sulfate dihydrate
aLaboratoire de Chimie Appliquée et Technologie des Matériaux LCATM, Université Larbi Ben M'Hidi, 04000 Oum El Bouaghi, Algeria, bUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Faculté des Sciences Exactes, Université Mentouri Constantine 25000, Algeria, and cCentre de Difractométrie X, UMR 6226 CNRS Unité Sciences Chimiques de Rennes, Université de Rennes I, 263 Avenue du Général Leclerc, 35042 Rennes, France
*Correspondence e-mail: fadilaber@yahoo.fr
The 3H5N4O2+·SO42−·2H2O, displays a three-dimensional framework in which mixed infinite chains [oriented parallel to (510) and (10)] interfere, forming tunnels extending parallel to the c axis. Intermolecular O—H⋯O, N—H⋯O and O—H⋯N hydrogen bonds ensure the unity of the structure and generate centrosymmetric R44(14) and R42(8) rings. The S atom lies on a twofold axis.
of the title compound, 2CRelated literature
For uses of 1,2,4 triazole derivatives, see: Beckmann & Brooker, (2003); Bhargava et al. (1981); Fujigaya et al. (2003); Hirota et al. (1991); Li et al. (2004); Matulková et al. (2008). For related hybrid compounds, see: Berrah et al. (2011a,b,c). For hydrogen-bond motifs, see: Bernstein et al. (1995); Etter et al. (1990).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: APEX2 (Bruker, 2001); cell SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536811013882/bq2295sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811013882/bq2295Isup2.hkl
The title compound was synthesized by reacting 5-amino-1,2,4 triazol-1H-3-carboxylic acid hydrate with some excess of sulfuric acid in aqueous solution. Slow evaporation leads to well crystallized colorless needles.
The H atoms of the water molecules were located in difference Fourier maps and were refined with Uiso(H) = 1.5Ueq(O). The remaining H atoms were located in difference Fourier maps but introduced in calculated positions and treated as riding on their parent atoms (N or O) with, O—H = 0.82 Å and N—H = 0.86 Å with Uiso(H) = 1.2 Ueq(N) and Uiso(H) = 1.5 Ueq(O).
Data collection: APEX2 (Bruker,2001); cell
SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. The molecular structure of the title compound with the atomic labeling scheme. Displacement are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines. | |
Fig. 2. (Brandenburg & Berndt, 2001) A diagram of the three-dimensional packing of (I). (510) and (-510) planes have been presented to illustrate the mixed infinite chains. Hydrogen bonds are shown as dashed lines. | |
Fig. 3. (Brandenburg & Berndt, 2001) A view of the mixed infinite chain. Hydrogen bonds are shown as dashed lines. |
2C3H5N4O2+·SO42−·2H2O | F(000) = 808 |
Mr = 390.31 | Dx = 1.821 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 19.4350 (9) Å | Cell parameters from 1620 reflections |
b = 5.8467 (2) Å | θ = 3.3–27.4° |
c = 13.3343 (6) Å | µ = 0.31 mm−1 |
β = 109.981 (2)° | T = 150 K |
V = 1423.98 (10) Å3 | Needle, colourless |
Z = 4 | 0.48 × 0.08 × 0.06 mm |
Bruker APEXII diffractometer | Rint = 0.032 |
Graphite monochromator | θmax = 27.5°, θmin = 3.3° |
CCD rotation images, thin slices scans | h = −24→25 |
11018 measured reflections | k = −7→7 |
1620 independent reflections | l = −17→15 |
1470 reflections with I > 2σ(I) |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.029 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.077 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0343P)2 + 1.9446P] where P = (Fo2 + 2Fc2)/3 |
1620 reflections | (Δ/σ)max = 0.009 |
121 parameters | Δρmax = 0.37 e Å−3 |
0 restraints | Δρmin = −0.41 e Å−3 |
2C3H5N4O2+·SO42−·2H2O | V = 1423.98 (10) Å3 |
Mr = 390.31 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 19.4350 (9) Å | µ = 0.31 mm−1 |
b = 5.8467 (2) Å | T = 150 K |
c = 13.3343 (6) Å | 0.48 × 0.08 × 0.06 mm |
β = 109.981 (2)° |
Bruker APEXII diffractometer | 1470 reflections with I > 2σ(I) |
11018 measured reflections | Rint = 0.032 |
1620 independent reflections |
R[F2 > 2σ(F2)] = 0.029 | 0 restraints |
wR(F2) = 0.077 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.08 | Δρmax = 0.37 e Å−3 |
1620 reflections | Δρmin = −0.41 e Å−3 |
121 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.32927 (7) | 0.3566 (2) | 0.60560 (11) | 0.0136 (3) | |
C2 | 0.35578 (7) | 0.2304 (2) | 0.52873 (11) | 0.0123 (3) | |
C3 | 0.40656 (7) | −0.0381 (2) | 0.46589 (11) | 0.0129 (3) | |
N1 | 0.38002 (6) | 0.1265 (2) | 0.39270 (9) | 0.0138 (3) | |
H1 | 0.3827 | 0.125 | 0.3296 | 0.017* | |
N2 | 0.34797 (6) | 0.2981 (2) | 0.43222 (9) | 0.0138 (3) | |
N3 | 0.39065 (6) | 0.0245 (2) | 0.55278 (9) | 0.0123 (2) | |
H3 | 0.4005 | −0.0502 | 0.6116 | 0.015* | |
N4 | 0.44239 (7) | −0.2252 (2) | 0.45703 (10) | 0.0169 (3) | |
H4A | 0.451 | −0.2519 | 0.399 | 0.02* | |
H4B | 0.4571 | −0.3201 | 0.5093 | 0.02* | |
O1 | 0.33947 (6) | 0.28073 (19) | 0.69430 (8) | 0.0188 (2) | |
O2 | 0.29439 (6) | 0.54386 (18) | 0.56322 (8) | 0.0186 (2) | |
H2 | 0.2817 | 0.612 | 0.6077 | 0.028* | |
O3 | 0.48758 (5) | 0.50548 (17) | 0.65377 (8) | 0.0158 (2) | |
O4 | 0.56503 (6) | 0.79464 (19) | 0.76558 (8) | 0.0190 (2) | |
S1 | 0.5 | 0.64445 (8) | 0.75 | 0.01101 (13) | |
O1W | 0.25419 (6) | 0.69140 (19) | 0.32536 (9) | 0.0194 (2) | |
H1W | 0.2751 (11) | 0.724 (4) | 0.2772 (17) | 0.029* | |
H2W | 0.2786 (11) | 0.586 (4) | 0.3624 (17) | 0.029* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0118 (6) | 0.0150 (7) | 0.0148 (7) | −0.0021 (5) | 0.0054 (5) | −0.0017 (5) |
C2 | 0.0117 (6) | 0.0128 (6) | 0.0122 (7) | −0.0015 (5) | 0.0037 (5) | −0.0008 (5) |
C3 | 0.0119 (6) | 0.0151 (7) | 0.0117 (6) | −0.0026 (5) | 0.0040 (5) | −0.0008 (5) |
N1 | 0.0177 (6) | 0.0155 (6) | 0.0097 (6) | 0.0011 (5) | 0.0066 (5) | −0.0003 (4) |
N2 | 0.0150 (6) | 0.0143 (6) | 0.0126 (6) | −0.0001 (4) | 0.0053 (5) | −0.0008 (4) |
N3 | 0.0145 (5) | 0.0138 (6) | 0.0093 (5) | 0.0010 (4) | 0.0052 (4) | 0.0015 (4) |
N4 | 0.0220 (6) | 0.0162 (6) | 0.0145 (6) | 0.0034 (5) | 0.0087 (5) | −0.0002 (5) |
O1 | 0.0230 (5) | 0.0213 (5) | 0.0155 (5) | 0.0024 (4) | 0.0108 (4) | 0.0015 (4) |
O2 | 0.0227 (5) | 0.0175 (5) | 0.0170 (5) | 0.0062 (4) | 0.0086 (4) | −0.0006 (4) |
O3 | 0.0182 (5) | 0.0164 (5) | 0.0125 (5) | −0.0004 (4) | 0.0051 (4) | −0.0035 (4) |
O4 | 0.0221 (5) | 0.0243 (6) | 0.0133 (5) | −0.0105 (4) | 0.0094 (4) | −0.0049 (4) |
S1 | 0.0129 (2) | 0.0119 (2) | 0.0090 (2) | 0 | 0.00474 (17) | 0 |
O1W | 0.0228 (6) | 0.0202 (5) | 0.0187 (6) | 0.0065 (4) | 0.0117 (5) | 0.0044 (4) |
C1—O1 | 1.2144 (18) | N3—H3 | 0.86 |
C1—O2 | 1.3098 (17) | N4—H4A | 0.86 |
C1—C2 | 1.4905 (19) | N4—H4B | 0.86 |
C2—N2 | 1.3046 (18) | O2—H2 | 0.82 |
C2—N3 | 1.3648 (18) | O3—S1 | 1.4674 (10) |
C3—N4 | 1.3236 (19) | O4—S1 | 1.4941 (10) |
C3—N1 | 1.3420 (18) | S1—O3i | 1.4674 (10) |
C3—N3 | 1.3480 (18) | S1—O4i | 1.4941 (10) |
N1—N2 | 1.3774 (17) | O1W—H1W | 0.89 (2) |
N1—H1 | 0.86 | O1W—H2W | 0.83 (2) |
O1—C1—O2 | 127.86 (13) | C3—N3—H3 | 126.9 |
O1—C1—C2 | 120.61 (13) | C2—N3—H3 | 126.9 |
O2—C1—C2 | 111.50 (12) | C3—N4—H4A | 120 |
N2—C2—N3 | 112.37 (12) | C3—N4—H4B | 120 |
N2—C2—C1 | 125.24 (13) | H4A—N4—H4B | 120 |
N3—C2—C1 | 122.38 (12) | C1—O2—H2 | 109.5 |
N4—C3—N1 | 127.67 (13) | O3—S1—O3i | 112.76 (9) |
N4—C3—N3 | 125.69 (13) | O3—S1—O4 | 109.00 (6) |
N1—C3—N3 | 106.63 (12) | O3i—S1—O4 | 108.98 (6) |
C3—N1—N2 | 110.85 (11) | O3—S1—O4i | 108.98 (6) |
C3—N1—H1 | 124.6 | O3i—S1—O4i | 109.00 (6) |
N2—N1—H1 | 124.6 | O4—S1—O4i | 108.01 (9) |
C2—N2—N1 | 103.94 (11) | H1W—O1W—H2W | 106.3 (19) |
C3—N3—C2 | 106.20 (11) | ||
O1—C1—C2—N2 | −179.54 (13) | C1—C2—N2—N1 | −179.34 (12) |
O2—C1—C2—N2 | 2.06 (19) | C3—N1—N2—C2 | −0.42 (14) |
O1—C1—C2—N3 | 1.6 (2) | N4—C3—N3—C2 | 177.99 (13) |
O2—C1—C2—N3 | −176.82 (12) | N1—C3—N3—C2 | −1.19 (14) |
N4—C3—N1—N2 | −178.13 (13) | N2—C2—N3—C3 | 1.00 (16) |
N3—C3—N1—N2 | 1.03 (15) | C1—C2—N3—C3 | −179.99 (12) |
N3—C2—N2—N1 | −0.37 (15) |
Symmetry code: (i) −x+1, y, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H2W···N2 | 0.83 (2) | 2.16 (2) | 2.9774 (16) | 169 (2) |
O1W—H1W···O1ii | 0.89 (2) | 1.93 (2) | 2.7941 (17) | 163 (2) |
O2—H2···O1Wiii | 0.82 | 1.74 | 2.5403 (16) | 165 |
N1—H1···O4iv | 0.86 | 1.94 | 2.7107 (16) | 149 |
N3—H3···O4v | 0.86 | 1.79 | 2.6436 (15) | 171 |
N4—H4A···O3vi | 0.86 | 2.17 | 2.8452 (17) | 136 |
N4—H4B···O3vii | 0.86 | 2.08 | 2.9255 (16) | 168 |
Symmetry codes: (ii) x, −y+1, z−1/2; (iii) −x+1/2, −y+3/2, −z+1; (iv) −x+1, −y+1, −z+1; (v) −x+1, y−1, −z+3/2; (vi) −x+1, −y, −z+1; (vii) x, y−1, z. |
Experimental details
Crystal data | |
Chemical formula | 2C3H5N4O2+·SO42−·2H2O |
Mr | 390.31 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 150 |
a, b, c (Å) | 19.4350 (9), 5.8467 (2), 13.3343 (6) |
β (°) | 109.981 (2) |
V (Å3) | 1423.98 (10) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.31 |
Crystal size (mm) | 0.48 × 0.08 × 0.06 |
Data collection | |
Diffractometer | Bruker APEXII diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11018, 1620, 1470 |
Rint | 0.032 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.029, 0.077, 1.08 |
No. of reflections | 1620 |
No. of parameters | 121 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.37, −0.41 |
Computer programs: APEX2 (Bruker,2001), SAINT (Bruker, 2001), SIR2002 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H2W···N2 | 0.83 (2) | 2.16 (2) | 2.9774 (16) | 169 (2) |
O1W—H1W···O1i | 0.89 (2) | 1.93 (2) | 2.7941 (17) | 163 (2) |
O2—H2···O1Wii | 0.82 | 1.74 | 2.5403 (16) | 165 |
N1—H1···O4iii | 0.86 | 1.94 | 2.7107 (16) | 149 |
N3—H3···O4iv | 0.86 | 1.79 | 2.6436 (15) | 171 |
N4—H4A···O3v | 0.86 | 2.17 | 2.8452 (17) | 136 |
N4—H4B···O3vi | 0.86 | 2.08 | 2.9255 (16) | 168 |
Symmetry codes: (i) x, −y+1, z−1/2; (ii) −x+1/2, −y+3/2, −z+1; (iii) −x+1, −y+1, −z+1; (iv) −x+1, y−1, −z+3/2; (v) −x+1, −y, −z+1; (vi) x, y−1, z. |
Footnotes
‡Current address: Département Sciences de la Matière, Faculté des Sciences Exactes et Sciences de la Nature et de la Vie, Université Larbi Ben M'hidi, 04000 Oum El Bouaghi, Algeria.
Acknowledgements
We are grateful to the LCATM Laboratory, Université Larbi Ben M′Hidi, Oum El Bouaghi, Algeria, for financial support.
References
Beckmann, U. & Brooker, S. (2003). Coord. Chem. Rev. 245, 17–29. Web of Science CrossRef CAS Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Berrah, F., Ouakkaf, A., Bouacida, S. & Roisnel, T. (2011a). Acta Cryst. E67, o525–o526. Web of Science CrossRef IUCr Journals Google Scholar
Berrah, F., Ouakkaf, A., Bouacida, S. & Roisnel, T. (2011b). Acta Cryst. E67, o677–o678. Web of Science CrossRef IUCr Journals Google Scholar
Berrah, F., Ouakkaf, A., Bouacida, S. & Roisnel, T. (2011c). Acta Cryst. E67, o953–o954. Web of Science CrossRef IUCr Journals Google Scholar
Bhargava, K. P., Tandon, M. & Bhalla, T. N. (1981). Indian J. Chem. Sect. B, 20, 1017–1018. Google Scholar
Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany. Google Scholar
Bruker (2001). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef CAS Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Fujigaya, T., Jiang, D. L. & Aida, T. (2003). J. Am. Chem. Soc. 125, 14690–14691. Web of Science CrossRef PubMed CAS Google Scholar
Hirota, T., Sasaki, K., Yamamoto, T. & Nakayama, T. (1991). J. Heterocycl. Chem. 28, 257–261. CrossRef CAS Google Scholar
Li, W., Wu, Q., Yu, Y., Luo, M., Hu, L., Gu, Y., Niu, F. & Hu, J. (2004). Spectrochim. Acta Part A, 60, 2343–2354. CrossRef Google Scholar
Matulková, I., Nemec, I., Teubner, K., Nemec, P. & Micka, Z. (2008). J. Mol. Struct. 873, 46–60 Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
1,2,4-triazole derivatives are remarkable substances exhibiting a wide range of properties; while several compounds incorporating 1,2,4-triazole moieties show pharmacological and biological activities (antidepressants, anti-inflammatory, fungicides) (Bhargava et al., 1981; Hirota et al., 1991; Li et al., 2004), a number of them find use in material field and coordination chemistry (magnetic and non-linear optics properties, multidentate ligands) (Beckmann & Brooker, 2003; Fujigaya et al., 2003; Matulková et al., 2008).
Our recent investigation on some N-heterocycle compounds with inorganic acids (Berrah et al., 2011a,b,c), has revealed their ability to generate original networks stabilized in particular by hydrogen bonds; we report herein the structure of a new hybrid compound obtained from a disubstituted 1,2,4-triazole derivative (5-amino-1,2,4 triazol-1H-3-carboxylic acid hydrate) and the sulfuric acid.
The molecular structure and the atom-numbering scheme of the title compound are shown in Fig. 1. The sulfur atom lies in the twofold axis and the sulfate anion shows a quite regular geometry compared with that seen in similar compounds (Berrah et al., 2011b,c). The triazole ring exhibits a short distance of 1.3046 (18) Å revealing the double-bond character of the C2═N2 bond, two long distances 1.3648 (18) Å and 1.3774 (17) Å related to the single bonds C2—N3 and N1—N2, respectively. The C3—N1 and C3═ N3 bonds lengths are respectively 1.3420 (18) Å and 1.3480 (18) Å which suggests the delocalization of the double bond (N1 ≐C3 ≐N3).
The crystal structure of the title compound (Fig. 2) displays a three-dimensional framework where mixed infinite chains interfere to form tunnels parallel the c axis. According to their orientation, we can distinguish two kinds of chains: the first one directed along the (510) plane and the second along the (510) plane (Fig. 2). In a mixed chain, the cations adopt a head to head configuration in a way that NH2, of two adjacent cations, are linked (via N—H···O hydrogen bonds) to two sulfate anions and C—OH are linked (by O—H···O hydrogen bonds) to two water molecules (Fig. 3) (Table 1). Consequently, centro-symmetric R44(14) and R24(8) graph-set rings are created (Etter et al., 1990; Bernstein et al., 1995).