organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1219

4-Chloro-N-(3,5-di­chloro­phenyl)benzene­sulfonamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 16 April 2011; accepted 19 April 2011; online 29 April 2011)

In the title compound, C12H8Cl3NO2S, the dihedral angle between the aromatic rings is 87.9 (1)° and the C—S—N—C torsion angle is 77.8 (2)°. In the crystal, inversion dimers linked by pairs of N—H⋯O hydrogen bonds occur.

Related literature

For hydrogen-bonding preferences of sulfonamides, see; Adsmond & Grant (2001[Adsmond, D. A. & Grant, D. J. W. (2001). J. Pharm. Sci. 90, 2058-2077.]). For our study of the effect of substituents on the structures of N-(ar­yl)-amides, see: Gowda et al. (2004[Gowda, B. T., Svoboda, I. & Fuess, H. (2004). Z. Naturforsch. Teil A, 55, 845-852.]); on the structures of N-(ar­yl)aryl­sulfonamides, see: Shakuntala et al. (2011a[Shakuntala, K., Foro, S. & Gowda, B. T. (2011a). Acta Cryst. E67, o232.],b[Shakuntala, K., Foro, S. & Gowda, B. T. (2011b). Acta Cryst. E67, o1017.]); and on the oxidative strengths of N-chloro-N-aryl­sulfonamides, see: Gowda & Kumar (2003[Gowda, B. T. & Kumar, B. H. A. (2003). Oxid. Commun. 26, 403-425.]).

[Scheme 1]

Experimental

Crystal data
  • C12H8Cl3NO2S

  • Mr = 336.60

  • Triclinic, [P \overline 1]

  • a = 4.935 (1) Å

  • b = 11.630 (2) Å

  • c = 13.115 (2) Å

  • α = 113.52 (2)°

  • β = 90.49 (1)°

  • γ = 96.50 (1)°

  • V = 684.6 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.82 mm−1

  • T = 293 K

  • 0.32 × 0.20 × 0.10 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.780, Tmax = 0.923

  • 4440 measured reflections

  • 2785 independent reflections

  • 2236 reflections with I > 2σ(I)

  • Rint = 0.013

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.086

  • S = 1.03

  • 2785 reflections

  • 175 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.84 (2) 2.08 (2) 2.917 (2) 170 (2)
Symmetry code: (i) -x+1, -y+1, -z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The amide and sulfonamide moieties are important constituents of many biologically important compounds. As a part of studying the substituent effects on the structures and other aspects of this class of compounds (Gowda & Kumar, 2003; Gowda et al., 2004; Shakuntala et al., 2011a,b), in the present work, the crystal structure of 4-chloro-N-(3,5-dichlorophenyl)benzenesulfonamide (I) has been determined (Fig. 1). The molecule is twisted at the S atom with the C—SO2—NH—C torsion angle of 77.8 (2)°, compared to the values of -58.4 (3)° in 4-chloro-N-(3-chlorophenyl)benzenesulfonamide (II) (Shakuntala et al., 2011b) and -56.7 (2)° in 4-chloro-N-(2,3-dichlorophenyl)-benzenesulfonamide (III) (Shakuntala et al., 2011a). The conformation of the N—H bond is anti to one of the meta-chloro group in the anilino benzene ring and syn to the other.

The sulfonyl and the anilino benzene rings in (I) are tilted relative to each other by 87.9 (1)°, compared to the values of 77.1 (1)° in (II) and 56.5 (1)° in (III).

Intermolecular N—H···O(S) hydrogen bonding interactions generate inversion related dimers which are further packed via van der Waals interactions in the crystal structure (Fig. 2).

Related literature top

For hydrogen-bonding preferences of sulfonamides, see; Adsmond & Grant (2001). For our study of the effect of substituents on the structures of N-(aryl)-amides, see: Gowda et al. (2004); on the structures of N-(aryl)arylsulfonamides, see: Shakuntala et al. (2011a,b); and on the oxidative strengths of N-chloro-N-arylsulfonamides, see: Gowda & Kumar (2003).

Experimental top

The solution of chlorobenzene (10 ml) in chloroform (40 ml) was added dropwise with chlorosulfonic acid (25 ml) at 0° C. After the initial evolution of hydrogen chloride subsided, the reaction mixture was brought to room temperature and poured into crushed ice in a beaker. The chloroform layer was separated, washed with cold water and allowed to evaporate slowly. The residual 4-chlorobenzenesulfonylchloride was treated with 3,5-dichloroaniline in the stoichiometric ratio and boiled for 15 min. The reaction mixture was then cooled to room temperature and added to ice cold water (100 ml). The resultant 4-chloro-N-(3,5-dichlorophenyl)-benzenesulfonamide was filtered under suction and washed thoroughly with cold water. It was then recrystallized to constant melting point from dilute ethanol. The compound was characterized by FT–IR and NMR spectra.

Prism like colorless single crystals used in X-ray diffraction studies were grown in ethanolic solution by slow evaporation at room temperature.

Refinement top

The H atom of the NH group was located in a difference map and later restrained to the distance N—H = 0.86 (2) Å. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom labeling scheme and displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing of (I) with hydrogen bonding shown as dashed lines.
4-Chloro-N-(3,5-dichlorophenyl)benzenesulfonamide top
Crystal data top
C12H8Cl3NO2SZ = 2
Mr = 336.60F(000) = 340
Triclinic, P1Dx = 1.633 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.935 (1) ÅCell parameters from 1578 reflections
b = 11.630 (2) Åθ = 3.0–27.8°
c = 13.115 (2) ŵ = 0.82 mm1
α = 113.52 (2)°T = 293 K
β = 90.49 (1)°Prism, colourless
γ = 96.50 (1)°0.32 × 0.20 × 0.10 mm
V = 684.6 (2) Å3
Data collection top
Oxford Diffraction Xcalibur
diffractometer with Sapphire CCD detector
2785 independent reflections
Radiation source: fine-focus sealed tube2236 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.013
Rotation method data acquisition using ω and ϕ scansθmax = 26.4°, θmin = 3.0°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 64
Tmin = 0.780, Tmax = 0.923k = 1414
4440 measured reflectionsl = 1516
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0393P)2 + 0.3103P]
where P = (Fo2 + 2Fc2)/3
2785 reflections(Δ/σ)max = 0.005
175 parametersΔρmax = 0.36 e Å3
1 restraintΔρmin = 0.33 e Å3
Crystal data top
C12H8Cl3NO2Sγ = 96.50 (1)°
Mr = 336.60V = 684.6 (2) Å3
Triclinic, P1Z = 2
a = 4.935 (1) ÅMo Kα radiation
b = 11.630 (2) ŵ = 0.82 mm1
c = 13.115 (2) ÅT = 293 K
α = 113.52 (2)°0.32 × 0.20 × 0.10 mm
β = 90.49 (1)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with Sapphire CCD detector
2785 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
2236 reflections with I > 2σ(I)
Tmin = 0.780, Tmax = 0.923Rint = 0.013
4440 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0341 restraint
wR(F2) = 0.086H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.36 e Å3
2785 reflectionsΔρmin = 0.33 e Å3
175 parameters
Special details top

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7071 (4)0.7199 (2)0.24024 (17)0.0357 (5)
C20.8325 (5)0.7573 (2)0.34566 (19)0.0443 (5)
H20.77460.71640.39130.053*
C31.0431 (5)0.8552 (2)0.3823 (2)0.0506 (6)
H31.12950.88070.45250.061*
C41.1242 (5)0.9149 (2)0.3139 (2)0.0466 (6)
C50.9996 (5)0.8800 (2)0.2095 (2)0.0507 (6)
H51.05650.92210.16480.061*
C60.7896 (5)0.7817 (2)0.17258 (19)0.0454 (5)
H60.70350.75690.10240.055*
C70.7357 (4)0.39831 (19)0.18639 (16)0.0330 (4)
C80.6937 (4)0.4095 (2)0.29448 (17)0.0388 (5)
H80.57760.46440.33870.047*
C90.8290 (5)0.3369 (2)0.33442 (18)0.0416 (5)
C101.0005 (5)0.2536 (2)0.27211 (19)0.0463 (6)
H101.08920.20570.30100.056*
C111.0357 (4)0.2439 (2)0.16442 (19)0.0400 (5)
C120.9083 (4)0.3151 (2)0.12094 (18)0.0365 (5)
H120.93730.30770.04870.044*
N10.5991 (4)0.46264 (17)0.13400 (14)0.0382 (4)
H1N0.645 (5)0.452 (2)0.0694 (15)0.046*
O10.3111 (3)0.58358 (15)0.28347 (12)0.0442 (4)
O20.2996 (3)0.59558 (15)0.09918 (12)0.0442 (4)
Cl11.39180 (14)1.03860 (7)0.36017 (7)0.0681 (2)
Cl20.77531 (16)0.35067 (7)0.46970 (5)0.0603 (2)
Cl31.24838 (13)0.13818 (6)0.08193 (6)0.05370 (18)
S10.45009 (11)0.58943 (5)0.19092 (4)0.03502 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0393 (11)0.0375 (11)0.0312 (10)0.0088 (9)0.0033 (9)0.0137 (9)
C20.0567 (14)0.0441 (13)0.0365 (12)0.0058 (11)0.0029 (10)0.0210 (10)
C30.0594 (15)0.0460 (13)0.0460 (14)0.0057 (11)0.0123 (11)0.0187 (11)
C40.0438 (13)0.0368 (12)0.0563 (15)0.0068 (10)0.0006 (11)0.0154 (11)
C50.0588 (15)0.0504 (14)0.0501 (14)0.0054 (12)0.0082 (12)0.0279 (12)
C60.0553 (14)0.0514 (14)0.0321 (11)0.0054 (11)0.0030 (10)0.0197 (10)
C70.0362 (11)0.0341 (11)0.0301 (10)0.0015 (8)0.0025 (8)0.0159 (8)
C80.0454 (12)0.0407 (12)0.0311 (11)0.0013 (9)0.0002 (9)0.0164 (9)
C90.0505 (13)0.0444 (12)0.0329 (11)0.0039 (10)0.0028 (10)0.0212 (10)
C100.0528 (14)0.0444 (13)0.0480 (14)0.0032 (11)0.0076 (11)0.0263 (11)
C110.0390 (12)0.0362 (11)0.0423 (12)0.0001 (9)0.0002 (9)0.0145 (10)
C120.0388 (11)0.0382 (11)0.0327 (11)0.0005 (9)0.0000 (9)0.0160 (9)
N10.0495 (11)0.0440 (10)0.0249 (9)0.0105 (8)0.0057 (8)0.0166 (8)
O10.0453 (9)0.0560 (10)0.0342 (8)0.0078 (7)0.0101 (7)0.0206 (7)
O20.0448 (9)0.0574 (10)0.0330 (8)0.0125 (7)0.0027 (7)0.0194 (7)
Cl10.0579 (4)0.0520 (4)0.0911 (6)0.0058 (3)0.0129 (4)0.0292 (4)
Cl20.0874 (5)0.0668 (4)0.0378 (3)0.0071 (3)0.0023 (3)0.0333 (3)
Cl30.0543 (4)0.0469 (3)0.0610 (4)0.0135 (3)0.0063 (3)0.0209 (3)
S10.0375 (3)0.0434 (3)0.0262 (3)0.0081 (2)0.0021 (2)0.0154 (2)
Geometric parameters (Å, º) top
C1—C61.385 (3)C7—N11.415 (3)
C1—C21.389 (3)C8—C91.381 (3)
C1—S11.760 (2)C8—H80.9300
C2—C31.376 (3)C9—C101.375 (3)
C2—H20.9300C9—Cl21.742 (2)
C3—C41.373 (4)C10—C111.385 (3)
C3—H30.9300C10—H100.9300
C4—C51.379 (3)C11—C121.377 (3)
C4—Cl11.744 (2)C11—Cl31.742 (2)
C5—C61.376 (3)C12—H120.9300
C5—H50.9300N1—S11.6274 (19)
C6—H60.9300N1—H1N0.844 (16)
C7—C121.391 (3)O1—S11.4207 (16)
C7—C81.390 (3)O2—S11.4387 (15)
C6—C1—C2120.5 (2)C7—C8—H8120.9
C6—C1—S1120.01 (17)C10—C9—C8123.1 (2)
C2—C1—S1119.48 (17)C10—C9—Cl2118.69 (17)
C3—C2—C1119.6 (2)C8—C9—Cl2118.17 (19)
C3—C2—H2120.2C9—C10—C11117.1 (2)
C1—C2—H2120.2C9—C10—H10121.4
C2—C3—C4119.2 (2)C11—C10—H10121.4
C2—C3—H3120.4C12—C11—C10122.1 (2)
C4—C3—H3120.4C12—C11—Cl3119.20 (18)
C3—C4—C5121.8 (2)C10—C11—Cl3118.70 (18)
C3—C4—Cl1119.2 (2)C11—C12—C7119.2 (2)
C5—C4—Cl1119.0 (2)C11—C12—H12120.4
C6—C5—C4119.0 (2)C7—C12—H12120.4
C6—C5—H5120.5C7—N1—S1128.77 (14)
C4—C5—H5120.5C7—N1—H1N116.4 (17)
C5—C6—C1119.8 (2)S1—N1—H1N111.1 (17)
C5—C6—H6120.1O1—S1—O2120.01 (10)
C1—C6—H6120.1O1—S1—N1108.60 (10)
C12—C7—C8120.25 (19)O2—S1—N1104.03 (9)
C12—C7—N1116.01 (18)O1—S1—C1108.36 (10)
C8—C7—N1123.65 (19)O2—S1—C1107.64 (10)
C9—C8—C7118.2 (2)N1—S1—C1107.59 (10)
C9—C8—H8120.9
C6—C1—C2—C31.0 (3)C9—C10—C11—Cl3179.32 (18)
S1—C1—C2—C3176.71 (18)C10—C11—C12—C70.9 (3)
C1—C2—C3—C40.5 (4)Cl3—C11—C12—C7179.18 (16)
C2—C3—C4—C50.4 (4)C8—C7—C12—C110.3 (3)
C2—C3—C4—Cl1179.78 (18)N1—C7—C12—C11176.30 (19)
C3—C4—C5—C60.6 (4)C12—C7—N1—S1162.46 (16)
Cl1—C4—C5—C6179.53 (18)C8—C7—N1—S121.1 (3)
C4—C5—C6—C10.0 (4)C7—N1—S1—O139.3 (2)
C2—C1—C6—C50.8 (3)C7—N1—S1—O2168.24 (18)
S1—C1—C6—C5176.95 (18)C7—N1—S1—C177.8 (2)
C12—C7—C8—C90.5 (3)C6—C1—S1—O1151.25 (18)
N1—C7—C8—C9176.8 (2)C2—C1—S1—O131.0 (2)
C7—C8—C9—C100.6 (3)C6—C1—S1—O220.1 (2)
C7—C8—C9—Cl2179.79 (16)C2—C1—S1—O2162.20 (17)
C8—C9—C10—C110.0 (4)C6—C1—S1—N191.51 (19)
Cl2—C9—C10—C11179.18 (17)C2—C1—S1—N186.23 (19)
C9—C10—C11—C120.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.84 (2)2.08 (2)2.917 (2)170 (2)
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC12H8Cl3NO2S
Mr336.60
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)4.935 (1), 11.630 (2), 13.115 (2)
α, β, γ (°)113.52 (2), 90.49 (1), 96.50 (1)
V3)684.6 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.82
Crystal size (mm)0.32 × 0.20 × 0.10
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.780, 0.923
No. of measured, independent and
observed [I > 2σ(I)] reflections
4440, 2785, 2236
Rint0.013
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.086, 1.03
No. of reflections2785
No. of parameters175
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.36, 0.33

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.844 (16)2.082 (17)2.917 (2)170 (2)
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

KS thanks the University Grants Commission, Government of India, New Delhi, for the award of a research fellowship under its faculty improvement programme.

References

First citationAdsmond, D. A. & Grant, D. J. W. (2001). J. Pharm. Sci. 90, 2058–2077.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGowda, B. T. & Kumar, B. H. A. (2003). Oxid. Commun. 26, 403–425.  CAS Google Scholar
First citationGowda, B. T., Svoboda, I. & Fuess, H. (2004). Z. Naturforsch. Teil A, 55, 845–852.  Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationShakuntala, K., Foro, S. & Gowda, B. T. (2011a). Acta Cryst. E67, o232.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShakuntala, K., Foro, S. & Gowda, B. T. (2011b). Acta Cryst. E67, o1017.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1219
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds