organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1066

(2-Chloro-3,5-di­nitro­phen­yl)(piperidin-1-yl)methanone

aState Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, People's Republic of China
*Correspondence e-mail: yuluot@scu.edu.cn

(Received 14 March 2011; accepted 28 March 2011; online 7 April 2011)

In the title compound, C12H12ClN3O5, the piperidine ring adopts a chair conformation. One of the nitro groups is almost coplanar with the aromatic ring [O—N—C—C = −1.4 (2)°], whereas the other one is significantly twisted out of the ring plane [O—N—C—C = 34.7 (2)°]. The crystal packing is stabilized by inter­molecular ππ stacking inter­actions with centroid–centroid distances of 3.579 (3) Å.

Related literature

For the biological activity of benzamide derivatives, see: Christophe et al. (2009[Christophe, T., Jackson, M., Jeon, H. K., Fenistein, D., Contreras-Dominguez, M., Kim, J., Genovesio, A., Carralot, J. P., Ewann, F., Kim, E. H., Lee, S. Y., Kang, S., Seo, M. J., Park, E. J., Skovierova, H., Pham, H., Riccardi, G., Nam, J. Y., Marsollier, L., Kempf, M., Joly-Guillou, M. L., Oh, T., Shin, W. K., No, Z., Nehrbass, U., Brosch, R., Cole, S. T. & Brodin, P. (2009). PLoS Pathog. 5, 1-10.]).

[Scheme 1]

Experimental

Crystal data
  • C12H12ClN3O5

  • Mr = 313.70

  • Orthorhombic, P b c a

  • a = 10.7864 (3) Å

  • b = 11.1264 (3) Å

  • c = 21.9775 (5) Å

  • V = 2637.60 (11) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 150 K

  • 0.40 × 0.38 × 0.20 mm

Data collection
  • Oxford Diffraction Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.979, Tmax = 1.0

  • 6722 measured reflections

  • 2696 independent reflections

  • 2240 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.077

  • S = 1.05

  • 2696 reflections

  • 238 parameters

  • All H-atom parameters refined

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

Benzamide derivatives are of great importance owing to their antibacterial properties (Christophe et al., 2009). The title compound is one of the key intermediates in our synthetic investigations of antibacterial drugs.

The piperidine ring adopts a chair conformation. As shown in Fig.1, the amide group forms a dihedral angles of 75.96 (5)° and 51.61 (9)° with the benzene ring and the piperidine ring, respectively. The crystal packing is strengthened by intermolecular ππ stacking interaction with centroid–centroid distances of 3.579 (3) Å.

Related literature top

For the biological activity of benzamide derivatives, see: Christophe et al. (2009).

Experimental top

A solution of 3.42 g (12.9 mmol) of 2-chloro-3,5-dinitrobenzoyl chloride in 20 ml of dichloromethane was added to a solution of 1.097 g (12.9 mmol) piperidine with a catalyst of 1.82 g (17.9 mmol) triethylamine. The mixture was stirred for 2 h at room temperature and extracted with water and dichloromethane, then the organic solvent was evaporated and the title compound was recrystallized from ethanol (yield 3.24 g, 80%). Crystals suitable for X-ray analysis were obtained by slow evaporation from a solution of ethyl acetate.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2006); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of the title compound.
(2-Chloro-3,5-dinitrophenyl)(piperidin-1-yl)methanone top
Crystal data top
C12H12ClN3O5F(000) = 1296
Mr = 313.70Dx = 1.580 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.7107 Å
Hall symbol: -P 2ac 2abCell parameters from 3316 reflections
a = 10.7864 (3) Åθ = 3.2–29.1°
b = 11.1264 (3) ŵ = 0.32 mm1
c = 21.9775 (5) ÅT = 150 K
V = 2637.60 (11) Å3Block, yellow
Z = 80.40 × 0.38 × 0.20 mm
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
2696 independent reflections
Radiation source: fine-focus sealed tube2240 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 16.0874 pixels mm-1θmax = 26.4°, θmin = 3.2°
ω scansh = 137
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2006)
k = 1313
Tmin = 0.979, Tmax = 1.0l = 2715
6722 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077All H-atom parameters refined
S = 1.05 w = 1/[σ2(Fo2) + (0.0283P)2 + 0.9862P]
where P = (Fo2 + 2Fc2)/3
2696 reflections(Δ/σ)max < 0.001
238 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C12H12ClN3O5V = 2637.60 (11) Å3
Mr = 313.70Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 10.7864 (3) ŵ = 0.32 mm1
b = 11.1264 (3) ÅT = 150 K
c = 21.9775 (5) Å0.40 × 0.38 × 0.20 mm
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
2696 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2006)
2240 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 1.0Rint = 0.021
6722 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.077All H-atom parameters refined
S = 1.05Δρmax = 0.25 e Å3
2696 reflectionsΔρmin = 0.24 e Å3
238 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.14710 (4)0.51437 (4)0.126198 (18)0.02618 (12)
O10.28382 (11)0.39665 (10)0.03083 (6)0.0308 (3)
O20.37259 (10)0.52238 (11)0.03080 (6)0.0297 (3)
O30.06436 (13)0.74355 (12)0.14870 (6)0.0376 (3)
O40.09872 (13)0.81129 (12)0.10265 (6)0.0409 (4)
O50.18116 (11)0.60708 (11)0.10878 (6)0.0331 (3)
N10.28706 (12)0.49108 (12)0.00224 (6)0.0219 (3)
N20.00012 (14)0.75653 (13)0.10356 (7)0.0269 (3)
N30.05433 (13)0.73621 (12)0.15851 (6)0.0238 (3)
C10.10865 (14)0.58412 (14)0.05898 (7)0.0179 (3)
C20.17880 (14)0.57192 (13)0.00600 (7)0.0178 (3)
C30.14762 (15)0.63140 (14)0.04708 (7)0.0188 (3)
H30.1955 (17)0.6182 (15)0.0830 (8)0.028 (5)*
C40.04113 (15)0.69969 (13)0.04645 (7)0.0191 (3)
C50.03125 (16)0.71333 (14)0.00470 (7)0.0204 (4)
H50.1055 (16)0.7566 (15)0.0036 (7)0.018 (4)*
C60.00352 (14)0.65690 (13)0.05846 (7)0.0177 (3)
C70.08451 (15)0.66492 (14)0.11200 (7)0.0207 (3)
C80.05941 (16)0.80784 (16)0.16249 (9)0.0274 (4)
H8A0.1068 (18)0.7963 (17)0.1263 (9)0.034 (5)*
H8B0.1111 (17)0.7754 (16)0.1984 (9)0.032 (5)*
C90.02738 (18)0.93938 (16)0.17196 (8)0.0274 (4)
H9A0.0143 (18)0.9693 (16)0.1353 (9)0.031 (5)*
H9B0.1038 (18)0.9841 (16)0.1769 (8)0.029 (5)*
C100.05450 (17)0.95620 (17)0.22745 (8)0.0274 (4)
H10A0.0069 (16)0.9325 (15)0.2639 (8)0.025 (5)*
H10B0.0785 (17)1.0388 (17)0.2320 (8)0.033 (5)*
C110.16990 (17)0.87786 (17)0.22253 (9)0.0306 (4)
H11A0.2230 (19)0.9067 (18)0.1888 (9)0.040 (6)*
H11B0.2193 (18)0.8836 (16)0.2593 (10)0.041 (6)*
C120.13634 (17)0.74677 (16)0.21155 (8)0.0269 (4)
H12A0.2103 (16)0.7001 (15)0.2041 (8)0.022 (4)*
H12B0.0908 (17)0.7123 (15)0.2473 (9)0.028 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0277 (2)0.0334 (2)0.0174 (2)0.00122 (18)0.00259 (17)0.00550 (16)
O10.0322 (7)0.0251 (6)0.0350 (7)0.0091 (6)0.0015 (6)0.0029 (6)
O20.0189 (6)0.0370 (7)0.0332 (7)0.0013 (5)0.0053 (5)0.0070 (6)
O30.0446 (8)0.0466 (8)0.0216 (7)0.0021 (7)0.0007 (6)0.0093 (6)
O40.0399 (8)0.0395 (8)0.0434 (8)0.0123 (7)0.0068 (7)0.0168 (7)
O50.0250 (6)0.0402 (7)0.0341 (7)0.0139 (6)0.0082 (6)0.0182 (6)
N10.0188 (7)0.0246 (7)0.0222 (7)0.0011 (6)0.0029 (6)0.0045 (6)
N20.0329 (8)0.0232 (7)0.0246 (8)0.0050 (7)0.0055 (7)0.0064 (6)
N30.0220 (7)0.0285 (7)0.0209 (7)0.0096 (6)0.0061 (6)0.0079 (6)
C10.0199 (7)0.0175 (8)0.0162 (7)0.0048 (7)0.0022 (7)0.0008 (6)
C20.0172 (7)0.0166 (8)0.0198 (8)0.0012 (7)0.0015 (6)0.0035 (6)
C30.0215 (8)0.0191 (8)0.0159 (8)0.0049 (7)0.0011 (7)0.0026 (6)
C40.0244 (8)0.0141 (7)0.0187 (8)0.0030 (7)0.0036 (7)0.0014 (6)
C50.0203 (8)0.0154 (8)0.0256 (9)0.0010 (7)0.0010 (7)0.0022 (7)
C60.0193 (7)0.0151 (7)0.0186 (8)0.0038 (6)0.0001 (7)0.0048 (6)
C70.0205 (8)0.0189 (8)0.0228 (9)0.0007 (7)0.0018 (7)0.0032 (7)
C80.0225 (9)0.0332 (10)0.0266 (10)0.0106 (8)0.0062 (8)0.0110 (8)
C90.0303 (10)0.0295 (10)0.0224 (9)0.0119 (8)0.0016 (8)0.0023 (7)
C100.0308 (9)0.0256 (9)0.0258 (9)0.0027 (8)0.0018 (8)0.0077 (8)
C110.0261 (9)0.0381 (11)0.0277 (10)0.0018 (8)0.0076 (8)0.0098 (8)
C120.0272 (9)0.0322 (9)0.0212 (9)0.0100 (8)0.0084 (8)0.0058 (8)
Geometric parameters (Å, º) top
Cl1—C11.7196 (16)C5—H50.935 (17)
O1—N11.2247 (17)C5—C61.389 (2)
O2—N11.2246 (17)C6—C71.515 (2)
O3—N21.2200 (19)C8—H8A0.95 (2)
O4—N21.2260 (19)C8—H8B1.032 (19)
O5—C71.2273 (19)C8—C91.518 (3)
N1—C21.476 (2)C9—H9A0.98 (2)
N2—C41.474 (2)C9—H9B0.97 (2)
N3—C71.334 (2)C9—C101.517 (2)
N3—C81.466 (2)C10—H10A0.987 (18)
N3—C121.468 (2)C10—H10B0.960 (19)
C1—C21.395 (2)C10—C111.523 (2)
C1—C61.394 (2)C11—H11A0.99 (2)
C2—C31.383 (2)C11—H11B0.97 (2)
C3—H30.954 (18)C11—C121.522 (3)
C3—C41.377 (2)C12—H12A0.966 (17)
C4—C51.377 (2)C12—H12B1.004 (19)
O1—N1—C2118.12 (13)C6—C1—Cl1117.75 (12)
O2—N1—O1124.73 (14)C6—C1—C2119.41 (14)
O2—N1—C2117.11 (13)C6—C5—H5119.0 (10)
O3—N2—O4124.53 (15)C7—N3—C8124.97 (14)
O3—N2—C4118.00 (14)C7—N3—C12120.59 (13)
O4—N2—C4117.45 (15)C8—N3—C12114.43 (13)
O5—C7—N3124.28 (15)C8—C9—H9A108.6 (11)
O5—C7—C6117.18 (14)C8—C9—H9B108.5 (10)
N3—C7—C6118.51 (13)H8A—C8—H8B107.6 (15)
N3—C8—H8A109.0 (11)C9—C8—H8A111.5 (12)
N3—C8—H8B107.9 (10)C9—C8—H8B110.8 (10)
N3—C8—C9109.99 (15)C9—C10—H10A108.5 (10)
N3—C12—C11110.24 (15)C9—C10—H10B111.1 (11)
N3—C12—H12A108.7 (10)C9—C10—C11110.37 (15)
N3—C12—H12B107.2 (10)H9A—C9—H9B107.9 (15)
C1—C2—N1122.34 (14)C10—C9—C8111.20 (15)
C1—C6—C7122.55 (14)C10—C9—H9A110.6 (11)
C2—C1—Cl1122.84 (12)C10—C9—H9B110.0 (11)
C2—C3—H3119.5 (11)C10—C11—H11A109.9 (12)
C3—C2—N1115.90 (14)C10—C11—H11B110.6 (11)
C3—C2—C1121.70 (14)H10A—C10—H10B108.1 (15)
C3—C4—N2118.68 (14)C11—C10—H10A109.2 (10)
C4—C3—C2117.30 (15)C11—C10—H10B109.5 (11)
C4—C3—H3122.9 (11)C11—C12—H12A110.2 (10)
C4—C5—H5121.5 (10)C11—C12—H12B111.0 (10)
C4—C5—C6119.43 (15)H11A—C11—H11B106.6 (16)
C5—C4—N2118.47 (14)C12—C11—C10111.42 (15)
C5—C4—C3122.80 (15)C12—C11—H11A109.2 (12)
C5—C6—C1119.29 (14)C12—C11—H11B109.0 (11)
C5—C6—C7117.69 (14)H12A—C12—H12B109.3 (14)
Cl1—C1—C2—N14.4 (2)C2—C3—C4—N2175.24 (14)
Cl1—C1—C2—C3178.34 (12)C2—C3—C4—C52.1 (2)
Cl1—C1—C6—C5179.12 (12)C3—C4—C5—C60.3 (2)
Cl1—C1—C6—C77.17 (19)C4—C5—C6—C12.2 (2)
O1—N1—C2—C134.7 (2)C4—C5—C6—C7174.59 (14)
O1—N1—C2—C3142.65 (15)C5—C6—C7—O571.21 (19)
O2—N1—C2—C1147.16 (15)C5—C6—C7—N3106.95 (18)
O2—N1—C2—C335.45 (19)C6—C1—C2—N1176.46 (13)
O3—N2—C4—C32.2 (2)C6—C1—C2—C30.8 (2)
O3—N2—C4—C5179.72 (14)C7—N3—C8—C9123.65 (18)
O4—N2—C4—C3176.04 (14)C7—N3—C12—C11124.47 (17)
O4—N2—C4—C51.4 (2)C8—N3—C7—O5178.63 (17)
N1—C2—C3—C4174.76 (13)C8—N3—C7—C60.6 (2)
N2—C4—C5—C6177.67 (14)C8—N3—C12—C1156.3 (2)
N3—C8—C9—C1055.5 (2)C8—C9—C10—C1155.0 (2)
C1—C2—C3—C42.6 (2)C9—C10—C11—C1254.1 (2)
C1—C6—C7—O5100.86 (19)C10—C11—C12—N353.7 (2)
C1—C6—C7—N381.0 (2)C12—N3—C7—O52.2 (3)
C2—C1—C6—C51.7 (2)C12—N3—C7—C6179.80 (15)
C2—C1—C6—C7173.67 (14)C12—N3—C8—C957.1 (2)

Experimental details

Crystal data
Chemical formulaC12H12ClN3O5
Mr313.70
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)150
a, b, c (Å)10.7864 (3), 11.1264 (3), 21.9775 (5)
V3)2637.60 (11)
Z8
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.40 × 0.38 × 0.20
Data collection
DiffractometerOxford Diffraction Xcalibur Eos
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2006)
Tmin, Tmax0.979, 1.0
No. of measured, independent and
observed [I > 2σ(I)] reflections
6722, 2696, 2240
Rint0.021
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.077, 1.05
No. of reflections2696
No. of parameters238
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.25, 0.24

Computer programs: CrysAlis PRO (Oxford Diffraction, 2006), CrysAlis PRO (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

 

Acknowledgements

We thank the Analytical and Testing Center of Sichuan University for the X-ray measurements.

References

First citationChristophe, T., Jackson, M., Jeon, H. K., Fenistein, D., Contreras-Dominguez, M., Kim, J., Genovesio, A., Carralot, J. P., Ewann, F., Kim, E. H., Lee, S. Y., Kang, S., Seo, M. J., Park, E. J., Skovierova, H., Pham, H., Riccardi, G., Nam, J. Y., Marsollier, L., Kempf, M., Joly-Guillou, M. L., Oh, T., Shin, W. K., No, Z., Nehrbass, U., Brosch, R., Cole, S. T. & Brodin, P. (2009). PLoS Pathog. 5, 1–10.  Web of Science CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2006). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1066
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds