organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1115

(3R,4S)-3,4-Iso­propyl­idene­dioxy-5-phenylsulfonylmethyl-3,4-di­hydro-2H-pyrrole 1-oxide

aDepartamento de Quimica Organica, Universidad de Salamanca, Plaza de los Caidos, 37008-Salamanca. Spain, and bServicio General de Rayos X, Universidad de Salamanca, Plaza de los Caidos, 37008-Salamanca. Spain
*Correspondence e-mail: ddm@usal.es

(Received 17 March 2011; accepted 22 March 2011; online 13 April 2011)

The title compound, C14H17NO5S, was prepared by oxidation of (2R,3S,4R)-2-phenyl­sulfonyl­methyl-1-hy­droxy-3,4-iso­pro­pyl­idene­dioxy­pyrrolidine. Its crystal structure confirms unequivocally its configuration. Two inter­molecular C—H⋯O inter­actions help to establish the packing.

Related literature

For the preparation, see: Flores et al. (2010[Flores, M. F., Nunez, M. G., Moro, R. F., Garrido, N. M., Marcos, I. S., Iglesias, E. F., Garcia, P. & Diez, D. (2010). Molecules, 15, 1473-1484]). For the standard oxidation of hydroxyl­amines to nitro­nes with manganese dioxide, see: Cicchi et al. (2001[Cicchi, S., Marradi, M., Goti, A. & Brandi, A. (2001). Tetrahedron Lett. 42, 6503-6505.]). For background to organocatalysts, see: Berkessel & Groger (2005[Berkessel, A. & Groger, H. (2005). Asymmetric Organocatalysis. From Biomimetic Concepts to Applications in Asymmetric Synthesis. Weinheim: Wiley-VCH.]); Macmillan (2008[Macmillan, D. W. C. (2008). Nature (London), 455, 304-308.]). For analogues of the organocatalyst L-proline, see: Andrey et al. (2004[Andrey, O., Alexakis, A., Tomassini, A. & Bernardinelli, G. (2004). Adv. Synth. Catal. 346, 1147-1168.]); Cobb et al. (2004[Cobb, A. J. A., Longbottom, D. A., Shaw, D. M. & Ley, S. V. (2004). J. Chem. Soc. Chem. Commun. pp. 1808-1809.]); Tanaka et al. (2004[Tanaka, F., Mase, N. & Barbas, C. F. (2004). J. Am. Chem. Soc. 126, 3692-3693.]); Wang et al. (2005[Wang, W., Wang, J. & Li, H. (2005). Angew. Chem. Int. Ed. Engl. 44, 1369-1371.]).

[Scheme 1]

Experimental

Crystal data
  • C14H17NO5S

  • Mr = 311.35

  • Orthorhombic, P 21 21 21

  • a = 5.6424 (2) Å

  • b = 15.5592 (7) Å

  • c = 16.9097 (8) Å

  • V = 1484.52 (11) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.14 mm−1

  • T = 298 K

  • 0.10 × 0.08 × 0.06 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.815, Tmax = 0.880

  • 8018 measured reflections

  • 2487 independent reflections

  • 2159 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.084

  • S = 1.06

  • 2487 reflections

  • 192 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.15 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]),

  • Flack parameter: 0.06 (2)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O4i 0.98 2.50 3.389 (2) 151
C12—H12⋯O3ii 0.93 2.51 3.270 (4) 139
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y, z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y-{\script{1\over 2}}, -z+1].

Data collection: APEX2 (Bruker 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Recently there has been an enormous interest in organocatalysis (Berkessel & Groger et al. 2005 and Macmillan, 2008). Among the many known organocatalysts L-proline is perhaps the one which has been most studied. This fact has led to the appearance of many analogues (Andrey et al., 2004; Wang et al., 2005; Cobb et al., 2004; Tanaka et al., 2004). In our research group we have developed new organocatalyst using nitrones as starting material (Flores et al., 2010). This catalyst was obtained from chiral hydroxylamine (I) (Fig. 1). Here we communicate the oxidation of this compound into nitrone II and the crystal structure determination.

The crystal contains an unique molecule in the asymmetric unit (Fig. 2). The title molecule consists of a pyrroline-N-oxide ring with a phenylsulfonylmethylgroup and an isopropylidenedioxy group as susbtituents. All the bond lengths and angles are within the normal ranges. Statistically no diference is observed between the S1—O4 = 1.4310 (19) Å and S1—O5 = 1.4334 (18) Å distances suggesting that the two oxygen are very similar. The S1—C8 and S1—C9 bond lengths are 1.784 (2) Å and 1.755 (3) Å, respectively. The C—S—C and O—S—O angles are 104.02 (12)° and 119.46 (14)°, respectively. The large O—S—O angle and this deviation from the optimal 109.5° angle can be explained by the repulsion of the lone pairs of the oxygen placing the oxygen atoms as far away from each other as possible and thus minimizing the C—S—C angle. The molecule is twisted at the C—S bond being the C2—C8—S1—C9 torsion angle of -59.4 (7)°. The carbonyl group at atom N1 is desviated from the planar conformation with the pyrroline ring being the O3—N1—C3—C4 torsion angle of 165.9 (5)°.

Crystal packing (Fig. 3) is stabilized by two intermolecular C-H···O interactions. One occurs between the carbon atom (C4) of the isopropylidenedioxypyrroline group and the oxygen atom (O4) of the phenylsufonylmethyl group of the neighboring molecule oriented in the opposite direction along c axis with d(C4-H4···O4) = 3.389 (2) Å and <C4-H4···O4> = 151°. This leads to infinite molecular chains running along the [001] direction, which are joined each other along the b axis by another intermolecular interaction between the oxygen atom (O3) of the pyrroline group and the carbon atom (C12) of the phenyl group of the next molecule with d(C12-H3···O3) = 3.270 (1) Å and <C12-H3···O3> = 139°.

Related literature top

For the preparation, see: Flores et al. (2010). For the standard oxidation of hydroxylamines to nitrones with manganese dioxide, see: Cicchi et al. (2001). For background to organocatalysts, see: Berkessel & Groger (2005); Macmillan (2008). For analogues of the organocatalyst L-proline, see: Andrey et al. (2004); Cobb et al. (2004); Tanaka et al. (2004); Wang et al. (2005).

Experimental top

The title N-oxide, (II), was obtained by spontaneous oxidation of (2R,3S,4R)-2-Phenylsulfonylmethyl-1-hydroxy-3,4-isopropylidenedioxypyrrolidine (I) (Flores et al. 2010) in a 30% of yield. Our attention was then turned to the synthesis of this nitrone because of the important role nitrones play in organic syntheses, particularly in the field of alkaloids, nitrogen containing natural products or bioactive analogues. Taking this into account we tried the standard oxidation of hydroxylamines to nitrones with manganese dioxide according to the methodology described by Cicchi et al. (2001). MnO2 (107.2 mg, 1.11 mmol) was added to a solution of hydroxylamine I (234 mg, 0.74 mmol) in DCM (1.5 ml) at 0° C. The resulting mixture was stirred for 2 h, then it was filtered through celite; and concentrated. The resulting crude residue was purified by flash chromatography (silica gel, hexane/ EtAcO 1:1) to obtain the nitrone II (229 mg, 98%) (Flores et al., 2010). Well shaped colourless single crystals were obtained by crystallization from EtOAc/Et2O. [α]D20 = +110.7 (c = 1.17, CHCl3). IR (film): 3376 (broad), 3058, 2995, 2967, 1580 cm-1. 1H NMR (200 MHz, CDCl3, δ p.p.m.): 7.94 (2H, m, Horto), 7.69–7.58 (3H, m, Hmeta Hpara), 5.58 (1H, d, J = 6.2 Hz, H-4), 4.87 (1H, t, J = 6.2 and 12 Hz H-3), 4.04 (2H, d, J = 4.4 Hz, H-2), 3.96 (2H, s, 2H-1) 1.38 (3H, s, Me-acetonide), 1.37 (3H, s, Me-acetonide). 13C NMR (50 MHz, CDCl3, δ p.p.m.): 139.7 (C—Ar), 134.62 (CH-para), 134.0 (C-5), 129.6 (2CH-meta), 128.1 (2CH-orto), 112.6 (C-acetonide), 80.8 (CH-4), 71.7 (CH-3), 68.1 (CH2–2), 52.1 (CH2–1), 27.2 (Me-acetonide), 25.8 (Me-acetonide). HRMS (EI): C14H17NO5S requires (M+Na)+, 334.0725, found 334.0703.

Refinement top

The hydrogen atoms were positioned geometrically with C—H distances constrained to 0.93 Å (aromatic CH), 0.96 Å (methyl groups), 0.97 Å (methylene groups) and refined using a riding mode with Uiso(H) = xUeq(C), where x = 1.5 for methyl H atoms and x = 1.2 for all other atoms.

Computing details top

Data collection: APEX2 (Bruker 2006); cell refinement: SAINT (Bruker 2006); data reduction: SAINT (Bruker 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Reaction scheme.
[Figure 2] Fig. 2. Molecular structure of C14H17NO5S. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are shown as spheres of arbitrary radius.
[Figure 3] Fig. 3. Crystal packing of C14H17NO5S view along a axis, showing intermolecular hydrogen bonding.
(3R,4S)-3,4-Isopropylidenedioxy-5-phenylsulfonylmethyl- 3,4-dihydro-2H-pyrrole 1-oxide top
Crystal data top
C14H17NO5SF(000) = 656
Mr = 311.35Dx = 1.393 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2ac 2abCell parameters from 1922 reflections
a = 5.6424 (2) Åθ = 3.9–55.3°
b = 15.5592 (7) ŵ = 2.14 mm1
c = 16.9097 (8) ÅT = 298 K
V = 1484.52 (11) Å3Prismatic, colourless
Z = 40.10 × 0.08 × 0.06 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2487 independent reflections
Radiation source: fine-focus sealed tube2159 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
phi and ω scansθmax = 67.5°, θmin = 3.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
h = 65
Tmin = 0.815, Tmax = 0.880k = 1815
8018 measured reflectionsl = 1819
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.084 w = 1/[σ2(Fo2) + (0.0335P)2 + 0.1514P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2487 reflectionsΔρmax = 0.14 e Å3
192 parametersΔρmin = 0.15 e Å3
0 restraintsAbsolute structure: Flack (1983), 907 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.06 (2)
Crystal data top
C14H17NO5SV = 1484.52 (11) Å3
Mr = 311.35Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 5.6424 (2) ŵ = 2.14 mm1
b = 15.5592 (7) ÅT = 298 K
c = 16.9097 (8) Å0.10 × 0.08 × 0.06 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2487 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
2159 reflections with I > 2σ(I)
Tmin = 0.815, Tmax = 0.880Rint = 0.030
8018 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.084Δρmax = 0.14 e Å3
S = 1.06Δρmin = 0.15 e Å3
2487 reflectionsAbsolute structure: Flack (1983), 907 Friedel pairs
192 parametersAbsolute structure parameter: 0.06 (2)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.89076 (11)0.02630 (4)0.36234 (4)0.05643 (18)
O10.8060 (3)0.16596 (13)0.57625 (11)0.0614 (5)
O20.9722 (5)0.10911 (14)0.68680 (13)0.0894 (7)
O31.3072 (4)0.05736 (13)0.53437 (13)0.0813 (6)
O40.9927 (4)0.05353 (13)0.28901 (11)0.0739 (6)
O50.6496 (3)0.04808 (13)0.37996 (14)0.0738 (6)
N11.1197 (4)0.01709 (14)0.55737 (13)0.0619 (6)
C10.8010 (4)0.07555 (18)0.56728 (16)0.0587 (7)
H10.64700.05570.54770.070*
C20.9998 (4)0.04067 (16)0.51895 (15)0.0521 (6)
C31.0217 (6)0.03387 (19)0.63738 (19)0.0805 (8)
H3A1.14600.03410.67700.097*
H3B0.93840.08840.63900.097*
C40.8538 (5)0.0402 (2)0.64986 (17)0.0729 (8)
H40.70990.02310.67820.088*
C50.9533 (4)0.18574 (16)0.64286 (17)0.0549 (6)
C61.1963 (5)0.2119 (3)0.6143 (2)0.0922 (11)
H6A1.29180.22890.65860.138*
H6B1.18190.25920.57820.138*
H6C1.26980.16420.58780.138*
C70.8367 (6)0.2541 (2)0.6910 (2)0.0864 (10)
H7A0.68570.23380.70940.130*
H7B0.81430.30450.65910.130*
H7C0.93510.26800.73550.130*
C81.0714 (4)0.06909 (17)0.43949 (14)0.0520 (6)
H8A1.23450.05200.43040.062*
H8B1.06480.13130.43740.062*
C90.9226 (4)0.08537 (16)0.37208 (15)0.0523 (6)
C101.1198 (5)0.12509 (19)0.33956 (16)0.0653 (7)
H101.23380.09330.31270.078*
C111.1429 (5)0.2125 (2)0.3480 (2)0.0754 (9)
H111.27320.24000.32570.090*
C120.9786 (6)0.26022 (19)0.38851 (18)0.0705 (8)
H120.99810.31930.39410.085*
C130.7836 (5)0.21963 (19)0.42093 (19)0.0703 (8)
H130.67070.25160.44810.084*
C140.7551 (4)0.13237 (18)0.41327 (17)0.0609 (7)
H140.62450.10510.43560.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0530 (3)0.0692 (4)0.0471 (3)0.0058 (3)0.0062 (3)0.0034 (3)
O10.0476 (9)0.0863 (13)0.0503 (11)0.0057 (8)0.0094 (9)0.0002 (9)
O20.1365 (19)0.0753 (12)0.0565 (12)0.0047 (13)0.0356 (13)0.0064 (10)
O30.0906 (14)0.0759 (13)0.0774 (15)0.0194 (11)0.0000 (12)0.0008 (11)
O40.0948 (13)0.0849 (13)0.0421 (11)0.0213 (11)0.0065 (11)0.0110 (9)
O50.0455 (9)0.0819 (13)0.0939 (16)0.0066 (8)0.0109 (10)0.0017 (11)
N10.0731 (13)0.0599 (12)0.0528 (13)0.0067 (12)0.0011 (13)0.0040 (11)
C10.0440 (13)0.0819 (18)0.0503 (16)0.0131 (12)0.0022 (12)0.0013 (14)
C20.0494 (12)0.0638 (15)0.0431 (13)0.0127 (12)0.0020 (12)0.0028 (12)
C30.116 (2)0.0678 (17)0.0573 (17)0.0182 (17)0.0092 (19)0.0161 (16)
C40.0835 (18)0.087 (2)0.0485 (15)0.0228 (16)0.0111 (16)0.0062 (15)
C50.0470 (12)0.0704 (15)0.0471 (14)0.0057 (11)0.0093 (13)0.0006 (13)
C60.0543 (16)0.135 (3)0.087 (3)0.0178 (17)0.0027 (17)0.017 (2)
C70.077 (2)0.117 (3)0.065 (2)0.0361 (18)0.0159 (17)0.0214 (19)
C80.0454 (13)0.0655 (14)0.0451 (14)0.0080 (11)0.0019 (12)0.0038 (11)
C90.0469 (13)0.0682 (14)0.0418 (14)0.0061 (11)0.0018 (12)0.0013 (11)
C100.0524 (14)0.0823 (18)0.0612 (17)0.0056 (14)0.0119 (15)0.0050 (14)
C110.0662 (17)0.0833 (19)0.077 (2)0.0129 (15)0.0121 (18)0.0042 (16)
C120.0748 (18)0.0687 (16)0.068 (2)0.0018 (14)0.0025 (17)0.0036 (15)
C130.0686 (17)0.080 (2)0.062 (2)0.0203 (15)0.0052 (17)0.0047 (15)
C140.0471 (13)0.0774 (18)0.0581 (18)0.0093 (13)0.0092 (14)0.0027 (14)
Geometric parameters (Å, º) top
S1—O41.4310 (19)C5—C61.510 (4)
S1—O51.4334 (18)C6—H6A0.9600
S1—C91.755 (3)C6—H6B0.9600
S1—C81.784 (2)C6—H6C0.9600
O1—C11.415 (3)C7—H7A0.9600
O1—C51.433 (3)C7—H7B0.9600
O2—C51.409 (3)C7—H7C0.9600
O2—C41.409 (4)C8—H8A0.9700
O3—N11.290 (3)C8—H8B0.9700
N1—C21.299 (3)C9—C141.383 (3)
N1—C31.485 (4)C9—C101.387 (3)
C1—C21.490 (4)C10—C111.374 (4)
C1—C41.530 (4)C10—H100.9300
C1—H10.9800C11—C121.371 (4)
C2—C81.471 (3)C11—H110.9300
C3—C41.506 (5)C12—C131.382 (4)
C3—H3A0.9700C12—H120.9300
C3—H3B0.9700C13—C141.373 (4)
C4—H40.9800C13—H130.9300
C5—C71.492 (4)C14—H140.9300
O4—S1—O5119.46 (14)C7—C5—C6112.5 (3)
O4—S1—C9109.47 (13)C5—C6—H6A109.5
O5—S1—C9108.16 (12)C5—C6—H6B109.5
O4—S1—C8107.06 (11)H6A—C6—H6B109.5
O5—S1—C8107.58 (13)C5—C6—H6C109.5
C9—S1—C8104.02 (12)H6A—C6—H6C109.5
C1—O1—C5108.01 (19)H6B—C6—H6C109.5
C5—O2—C4112.0 (2)C5—C7—H7A109.5
O3—N1—C2127.8 (2)C5—C7—H7B109.5
O3—N1—C3119.7 (2)H7A—C7—H7B109.5
C2—N1—C3112.5 (2)C5—C7—H7C109.5
O1—C1—C2113.9 (2)H7A—C7—H7C109.5
O1—C1—C4104.8 (2)H7B—C7—H7C109.5
C2—C1—C4102.9 (2)C2—C8—S1113.50 (17)
O1—C1—H1111.6C2—C8—H8A108.9
C2—C1—H1111.6S1—C8—H8A108.9
C4—C1—H1111.6C2—C8—H8B108.9
N1—C2—C8121.4 (2)S1—C8—H8B108.9
N1—C2—C1111.7 (2)H8A—C8—H8B107.7
C8—C2—C1126.8 (2)C14—C9—C10120.8 (3)
N1—C3—C4103.1 (2)C14—C9—S1120.1 (2)
N1—C3—H3A111.1C10—C9—S1119.10 (19)
C4—C3—H3A111.1C11—C10—C9118.4 (3)
N1—C3—H3B111.1C11—C10—H10120.8
C4—C3—H3B111.1C9—C10—H10120.8
H3A—C3—H3B109.1C12—C11—C10121.6 (3)
O2—C4—C3110.3 (3)C12—C11—H11119.2
O2—C4—C1102.9 (2)C10—C11—H11119.2
C3—C4—C1105.6 (2)C11—C12—C13119.3 (3)
O2—C4—H4112.5C11—C12—H12120.4
C3—C4—H4112.5C13—C12—H12120.4
C1—C4—H4112.5C14—C13—C12120.5 (3)
O2—C5—O1106.07 (19)C14—C13—H13119.8
O2—C5—C7110.4 (3)C12—C13—H13119.8
O1—C5—C7109.1 (2)C13—C14—C9119.4 (3)
O2—C5—C6109.1 (2)C13—C14—H14120.3
O1—C5—C6109.4 (2)C9—C14—H14120.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O4i0.982.503.389 (2)151
C12—H12···O3ii0.932.513.270 (4)139
Symmetry codes: (i) x+3/2, y, z+1/2; (ii) x1/2, y1/2, z+1.

Experimental details

Crystal data
Chemical formulaC14H17NO5S
Mr311.35
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)5.6424 (2), 15.5592 (7), 16.9097 (8)
V3)1484.52 (11)
Z4
Radiation typeCu Kα
µ (mm1)2.14
Crystal size (mm)0.10 × 0.08 × 0.06
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2006)
Tmin, Tmax0.815, 0.880
No. of measured, independent and
observed [I > 2σ(I)] reflections
8018, 2487, 2159
Rint0.030
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.084, 1.06
No. of reflections2487
No. of parameters192
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.15
Absolute structureFlack (1983), 907 Friedel pairs
Absolute structure parameter0.06 (2)

Computer programs: APEX2 (Bruker 2006), SAINT (Bruker 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O4i0.982.503.389 (2)151
C12—H12···O3ii0.932.513.270 (4)139
Symmetry codes: (i) x+3/2, y, z+1/2; (ii) x1/2, y1/2, z+1.
 

Acknowledgements

The authors are grateful to the MICINN (CTQ2009–1172), Junta de Castilla y Leon for financial support (GR178 and SA001A09) and for the doctoral fellowships awarded to MFF.

References

First citationAndrey, O., Alexakis, A., Tomassini, A. & Bernardinelli, G. (2004). Adv. Synth. Catal. 346, 1147–1168.  Web of Science CrossRef CAS Google Scholar
First citationBerkessel, A. & Groger, H. (2005). Asymmetric Organocatalysis. From Biomimetic Concepts to Applications in Asymmetric Synthesis. Weinheim: Wiley-VCH.  Google Scholar
First citationBruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCicchi, S., Marradi, M., Goti, A. & Brandi, A. (2001). Tetrahedron Lett. 42, 6503–6505.  Web of Science CrossRef CAS Google Scholar
First citationCobb, A. J. A., Longbottom, D. A., Shaw, D. M. & Ley, S. V. (2004). J. Chem. Soc. Chem. Commun. pp. 1808–1809.  CrossRef Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlores, M. F., Nunez, M. G., Moro, R. F., Garrido, N. M., Marcos, I. S., Iglesias, E. F., Garcia, P. & Diez, D. (2010). Molecules, 15, 1473–1484  Web of Science CrossRef PubMed Google Scholar
First citationMacmillan, D. W. C. (2008). Nature (London), 455, 304–308.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTanaka, F., Mase, N. & Barbas, C. F. (2004). J. Am. Chem. Soc. 126, 3692–3693.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWang, W., Wang, J. & Li, H. (2005). Angew. Chem. Int. Ed. Engl. 44, 1369–1371.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1115
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds