organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1030

Pyridine-2,6-dicarboxaldehyde bis­[(di­phenylmethyl­idene)hydrazone]

aFaculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Polizu 1, RO-011061 Bucharest, Romania, and bInstitut für Anorganische Chemie, RWTH Aachen, Landoltweg 1, 52074 Aachen, Germany
*Correspondence e-mail: ullrich.englert@ac.rwth-aachen.de

(Received 23 March 2011; accepted 25 March 2011; online 7 April 2011)

The title compound, C33H25N5, belongs to the family of pyridine-2,6-dicarboxaldehyde Schiff bases which possess a terdentate coordinating site (–N=C–C=N–C–C=N–) similar to terpyridine derivatives. The dihedral angles between pairs of terminal rings are 69.67 (9) and 66.23 (9)°. The shortest distance between the centroids of aromatic rings in neighbouring mol­ecules is 3.8080 (14) Å.

Related literature

For compounds containing the (–N=C–C=N–C–C=N–) moiety in acyclic ligands, see: Vance et al. (1998[Vance, A. L., Alcock, N. W., Heppert, J. A. & Busch, D. H. (1998). Inorg. Chem. 37, 6912-6920.]); Albrecht et al. (2007[Albrecht, M., Mirtschin, S., Osetska, O., Dehn, S., Enders, D., Fröhlich, R., Pape, T. & Hahn, F. E. (2007). Eur. J. Inorg. Chem. 20, 3276-3287.]) and in macrocyclic ligands, see: Haussmann et al. (2007[Haussmann, P. C., Khan, S. I. & Stoddart, J. F. (2007). J. Org. Chem. 72, 6708-6713.]); Plattner et al. (2002[Plattner, D. A., Beck, A. K. & Neuburger, M. (2002). Helv. Chim. Acta, 85, 4000-4011.]). For electrostatic inter­actions between the nitro­gen lone pairs, which determine the all-trans transoid solid-state configuration of the archetypal terpyridine ligand, see: Fallahpour (2003[Fallahpour, R.-A. (2003). Synthesis, 2, 155-184.]); Constable (2007[Constable, E. C. (2007). Chem. Soc. Rev. 36, 246-253.]).

[Scheme 1]

Experimental

Crystal data
  • C33H25N5

  • Mr = 491.58

  • Monoclinic, C 2/c

  • a = 23.702 (5) Å

  • b = 12.344 (3) Å

  • c = 18.758 (4) Å

  • β = 106.742 (4)°

  • V = 5255.3 (19) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.40 × 0.17 × 0.08 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.971, Tmax = 0.994

  • 30994 measured reflections

  • 5391 independent reflections

  • 3723 reflections with I > 2σ(I)

  • Rint = 0.090

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.117

  • S = 1.04

  • 5391 reflections

  • 343 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1999[Bruker (1999). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound is structurally related to terpyridyl (unsaturated nitrogen donor group incorporated into a tridentate frame) and offers a terpyridine-like coordination environment through a highly efficient and simple ligand synthesis. Analogously to terpyridine-ligands which exhibit all-trans transoid configurations about the interannular carbon-carbon bonds in order to minimize electrostatic interactions between the nitrogen lone pairs (Fallahpour, 2003; Constable, 2007), pyridine-2,6-dicarboxaldehydebis(benzophenone hydrazone) presents a transoid conformation for the (–NC–CN–C–CN–) moiety wherein the lone-pair electrons of adjacent N atoms are directed away from each other. The dihedral angle formed by the phenyl rings attached to C7 is 69.67 (9)° and the dihedral angle formed by the phenyl rings attached to C21 is 66.23 (9)°. The shortest distance between the centroids of aromatic rings in neighbouring molecules amounts to 3.8080 (14) Å [Cg(1)-Cg(3)i; ring (1): N1-C3-C2-C1-C4-C5; ring (3): C14-C15-C16-C17-C18-C19; symmetry operator (i): 1-x, 1-y, 1-z].

Related literature top

For compounds containing the (–NC–CN–C–CN–) moiety in acyclic ligands, see: Vance et al. (1998); Albrecht et al. (2007) and in macrocyclic ligands, see: Haussmann et al. (2007); Plattner et al. (2002). For electrostatic interactions between the nitrogen lone pairs, which determine the all-trans transoid solid-state configuration of the archetypal terpyridine ligand, see: Fallahpour (2003); Constable (2007).

Experimental top

pyridine-2,6-dicarboxaldehyde has been prepared according to the procedure of Vance et al. (1998) by oxidation of 2,6-pyridinemethanol with activated manganese(IV) dioxide. pyridine-2,6-dicarboxaldehydebis(benzophenone hydrazone) has been synthesized by condensation of one equivalent of pyridine-2,6-dicarboxaldehyde (0.135 g, 1 mmol) with two equivalents of benzophenone hydrazone (0.392 g, 2 mmol) in MeOH (40 ml) with stirring under reflux for 2 h. After solvent evaporation, the resulting crude material was recrystallized from acetonitrile to give the title compound as yellow crystals. 1H-NMR (400 Hz, CD3CN, p.p.m.): δ 8.413 (s, 2H, CHN), 7.717 (br, 3H, Hpy), 7.692 (m, 2H, Har), 7.674–7.671 (d, 2H, Har), 7.511–7.498 (t, 1H, Har), 7.489–7.482 (t, 1H, Har), 7.460–7.454 (d, 5H, Har), 7.446–7.442 (d, 5H, Har), 7.325–7.320 (d, 2H, Har), 7.312–7.301 (d, 2H, Har).

Refinement top

H atoms were introduced in their idealized positions with C—H 0.95 Å, Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : PLATON (Spek, 2009) plot with displacement ellipsoids at 50% probability; H atoms are represented by spheres of arbitrary radius.
2,6-bis({[2-(diphenylmethylidene)hydrazin-1-ylidene]methyl})pyridine top
Crystal data top
C33H25N5F(000) = 2064
Mr = 491.58Dx = 1.243 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1380 reflections
a = 23.702 (5) Åθ = 2.3–20.1°
b = 12.344 (3) ŵ = 0.08 mm1
c = 18.758 (4) ÅT = 100 K
β = 106.742 (4)°Fragment, yellow
V = 5255.3 (19) Å30.40 × 0.17 × 0.08 mm
Z = 8
Data collection top
Bruker SMART APEX CCD
diffractometer
5391 independent reflections
Radiation source: fine-focus sealed tube3723 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.090
ω scansθmax = 26.4°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 2929
Tmin = 0.971, Tmax = 0.994k = 1515
30994 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0352P)2 + 2.9488P]
where P = (Fo2 + 2Fc2)/3
5391 reflections(Δ/σ)max = 0.001
343 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C33H25N5V = 5255.3 (19) Å3
Mr = 491.58Z = 8
Monoclinic, C2/cMo Kα radiation
a = 23.702 (5) ŵ = 0.08 mm1
b = 12.344 (3) ÅT = 100 K
c = 18.758 (4) Å0.40 × 0.17 × 0.08 mm
β = 106.742 (4)°
Data collection top
Bruker SMART APEX CCD
diffractometer
5391 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
3723 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.994Rint = 0.090
30994 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 1.04Δρmax = 0.21 e Å3
5391 reflectionsΔρmin = 0.21 e Å3
343 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.61026 (7)0.42994 (12)0.40175 (8)0.0224 (4)
N20.48535 (6)0.36138 (12)0.46057 (8)0.0234 (4)
N30.42988 (6)0.41191 (12)0.44402 (8)0.0230 (4)
N40.75138 (7)0.44728 (13)0.37188 (9)0.0250 (4)
N50.77596 (7)0.53493 (13)0.34311 (9)0.0253 (4)
C10.65304 (8)0.23302 (16)0.46965 (11)0.0276 (5)
H10.66770.16640.49310.033*
C20.68692 (8)0.29596 (15)0.43668 (10)0.0260 (4)
H20.72490.27230.43580.031*
C30.66450 (8)0.39407 (15)0.40490 (10)0.0218 (4)
C40.59769 (8)0.26889 (15)0.46784 (10)0.0246 (4)
H40.57350.22730.49000.029*
C50.57755 (8)0.36729 (15)0.43294 (10)0.0214 (4)
C60.51856 (8)0.40877 (15)0.42733 (10)0.0219 (4)
H60.50480.47180.39860.026*
C70.39333 (8)0.36647 (14)0.47450 (10)0.0207 (4)
C80.40803 (7)0.26922 (14)0.52396 (10)0.0204 (4)
C90.40873 (8)0.27596 (16)0.59825 (10)0.0254 (4)
H90.39900.34230.61740.031*
C100.42363 (8)0.18627 (17)0.64447 (11)0.0307 (5)
H100.42450.19180.69530.037*
C110.43716 (9)0.08927 (16)0.61696 (11)0.0303 (5)
H110.44740.02800.64870.036*
C120.43578 (8)0.08137 (16)0.54286 (11)0.0279 (5)
H120.44450.01420.52360.033*
C130.42185 (8)0.17068 (15)0.49684 (11)0.0249 (4)
H130.42170.16490.44630.030*
C140.33326 (8)0.41441 (14)0.45463 (10)0.0209 (4)
C150.32071 (8)0.50628 (15)0.40943 (10)0.0256 (4)
H150.35120.53990.39390.031*
C160.26442 (9)0.54899 (16)0.38698 (11)0.0287 (5)
H160.25640.61110.35580.034*
C170.21974 (9)0.50112 (16)0.40998 (11)0.0289 (5)
H170.18100.53010.39420.035*
C180.23155 (8)0.41164 (16)0.45561 (12)0.0299 (5)
H180.20100.37960.47200.036*
C190.28792 (8)0.36812 (15)0.47775 (11)0.0265 (4)
H190.29570.30610.50900.032*
C200.69872 (8)0.46825 (15)0.37254 (10)0.0239 (4)
H200.68110.53430.35130.029*
C210.82136 (8)0.51081 (15)0.32125 (9)0.0209 (4)
C220.84387 (8)0.39924 (15)0.31789 (10)0.0211 (4)
C230.90133 (8)0.37120 (16)0.35746 (10)0.0267 (4)
H230.92650.42410.38730.032*
C240.92223 (9)0.26719 (16)0.35387 (11)0.0313 (5)
H240.96110.24840.38200.038*
C250.88609 (9)0.19091 (17)0.30904 (12)0.0339 (5)
H250.90040.11970.30590.041*
C260.82924 (9)0.21799 (16)0.26881 (12)0.0340 (5)
H260.80460.16550.23780.041*
C270.80817 (8)0.32135 (16)0.27363 (11)0.0277 (5)
H270.76890.33920.24640.033*
C280.85117 (8)0.60294 (15)0.29616 (10)0.0220 (4)
C290.83879 (8)0.71002 (15)0.31126 (10)0.0246 (4)
H290.81040.72400.33700.030*
C300.86733 (9)0.79540 (16)0.28925 (10)0.0282 (5)
H300.85830.86760.29970.034*
C310.90906 (9)0.77644 (17)0.25204 (10)0.0309 (5)
H310.92940.83530.23800.037*
C320.92088 (9)0.67150 (17)0.23551 (11)0.0318 (5)
H320.94880.65830.20890.038*
C330.89241 (8)0.58532 (16)0.25738 (10)0.0273 (4)
H330.90110.51340.24580.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0201 (8)0.0261 (9)0.0225 (8)0.0002 (7)0.0088 (7)0.0003 (7)
N20.0173 (8)0.0262 (9)0.0276 (9)0.0014 (7)0.0079 (7)0.0006 (7)
N30.0173 (8)0.0247 (9)0.0277 (9)0.0011 (7)0.0075 (7)0.0011 (7)
N40.0230 (9)0.0262 (9)0.0297 (9)0.0000 (7)0.0136 (7)0.0020 (7)
N50.0226 (9)0.0271 (9)0.0296 (9)0.0010 (7)0.0128 (7)0.0028 (7)
C10.0253 (11)0.0254 (11)0.0325 (11)0.0033 (9)0.0090 (9)0.0058 (9)
C20.0201 (10)0.0312 (11)0.0286 (10)0.0038 (8)0.0102 (8)0.0016 (8)
C30.0182 (10)0.0273 (11)0.0213 (9)0.0016 (8)0.0078 (8)0.0014 (8)
C40.0223 (10)0.0266 (11)0.0275 (10)0.0002 (8)0.0114 (8)0.0030 (8)
C50.0194 (10)0.0257 (10)0.0201 (9)0.0015 (8)0.0070 (8)0.0018 (8)
C60.0204 (10)0.0234 (10)0.0227 (10)0.0007 (8)0.0076 (8)0.0010 (8)
C70.0190 (9)0.0208 (10)0.0231 (10)0.0029 (8)0.0072 (8)0.0041 (8)
C80.0128 (9)0.0237 (10)0.0255 (10)0.0016 (7)0.0069 (8)0.0000 (8)
C90.0220 (10)0.0277 (11)0.0297 (11)0.0039 (8)0.0124 (8)0.0004 (8)
C100.0286 (11)0.0417 (13)0.0264 (11)0.0061 (10)0.0153 (9)0.0065 (9)
C110.0279 (11)0.0315 (12)0.0351 (12)0.0041 (9)0.0148 (9)0.0103 (9)
C120.0249 (11)0.0228 (11)0.0381 (12)0.0023 (8)0.0127 (9)0.0003 (9)
C130.0215 (10)0.0278 (11)0.0258 (10)0.0007 (8)0.0073 (8)0.0014 (8)
C140.0210 (10)0.0197 (10)0.0227 (10)0.0008 (8)0.0073 (8)0.0038 (8)
C150.0224 (10)0.0270 (11)0.0295 (10)0.0004 (8)0.0107 (8)0.0021 (8)
C160.0284 (11)0.0256 (11)0.0318 (11)0.0052 (9)0.0083 (9)0.0050 (9)
C170.0185 (10)0.0296 (11)0.0370 (12)0.0050 (8)0.0054 (9)0.0023 (9)
C180.0182 (10)0.0277 (11)0.0462 (13)0.0004 (8)0.0130 (9)0.0020 (9)
C190.0197 (10)0.0235 (10)0.0366 (11)0.0006 (8)0.0085 (9)0.0037 (9)
C200.0216 (10)0.0265 (10)0.0261 (10)0.0032 (8)0.0110 (8)0.0015 (8)
C210.0168 (9)0.0275 (10)0.0188 (9)0.0010 (8)0.0059 (7)0.0007 (8)
C220.0199 (10)0.0249 (10)0.0218 (9)0.0005 (8)0.0115 (8)0.0008 (8)
C230.0241 (10)0.0328 (11)0.0249 (10)0.0009 (9)0.0096 (8)0.0005 (8)
C240.0269 (11)0.0374 (12)0.0326 (11)0.0109 (9)0.0135 (9)0.0087 (9)
C250.0422 (13)0.0255 (11)0.0448 (13)0.0059 (10)0.0297 (11)0.0063 (10)
C260.0335 (12)0.0293 (12)0.0456 (13)0.0081 (9)0.0218 (10)0.0095 (10)
C270.0199 (10)0.0310 (11)0.0344 (11)0.0040 (9)0.0113 (9)0.0047 (9)
C280.0167 (9)0.0285 (11)0.0202 (9)0.0028 (8)0.0043 (8)0.0005 (8)
C290.0220 (10)0.0293 (11)0.0221 (10)0.0007 (8)0.0057 (8)0.0007 (8)
C300.0311 (11)0.0255 (11)0.0245 (10)0.0009 (9)0.0026 (9)0.0023 (8)
C310.0303 (11)0.0359 (12)0.0248 (10)0.0098 (9)0.0050 (9)0.0050 (9)
C320.0283 (11)0.0408 (13)0.0300 (11)0.0060 (9)0.0140 (9)0.0004 (9)
C330.0248 (11)0.0303 (11)0.0289 (11)0.0018 (9)0.0111 (9)0.0022 (9)
Geometric parameters (Å, º) top
N1—C51.343 (2)C15—H150.95
N1—C31.345 (2)C16—C171.385 (3)
N2—C61.278 (2)C16—H160.95
N2—N31.407 (2)C17—C181.376 (3)
N3—C71.295 (2)C17—H170.95
N4—C201.278 (2)C18—C191.388 (3)
N4—N51.408 (2)C18—H180.95
N5—C211.292 (2)C19—H190.95
C1—C41.376 (3)C20—H200.95
C1—C21.385 (3)C21—C221.485 (3)
C1—H10.95C21—C281.485 (3)
C2—C31.386 (3)C22—C271.387 (3)
C2—H20.95C22—C231.394 (3)
C3—C201.466 (3)C23—C241.385 (3)
C4—C51.397 (3)C23—H230.95
C4—H40.95C24—C251.383 (3)
C5—C61.464 (2)C24—H240.95
C6—H60.95C25—C261.383 (3)
C7—C141.487 (2)C25—H250.95
C7—C81.496 (2)C26—C271.383 (3)
C8—C91.391 (3)C26—H260.95
C8—C131.393 (3)C27—H270.95
C9—C101.388 (3)C28—C331.393 (3)
C9—H90.95C28—C291.400 (3)
C10—C111.378 (3)C29—C301.378 (3)
C10—H100.95C29—H290.95
C11—C121.384 (3)C30—C311.385 (3)
C11—H110.95C30—H300.95
C12—C131.380 (3)C31—C321.379 (3)
C12—H120.95C31—H310.95
C13—H130.95C32—C331.384 (3)
C14—C191.392 (3)C32—H320.95
C14—C151.396 (3)C33—H330.95
C15—C161.383 (3)
C5—N1—C3117.13 (16)C17—C16—H16120.0
C6—N2—N3110.94 (15)C18—C17—C16119.95 (18)
C7—N3—N2114.33 (15)C18—C17—H17120.0
C20—N4—N5111.17 (15)C16—C17—H17120.0
C21—N5—N4114.78 (15)C17—C18—C19120.17 (19)
C4—C1—C2118.69 (18)C17—C18—H18119.9
C4—C1—H1120.7C19—C18—H18119.9
C2—C1—H1120.7C18—C19—C14120.72 (18)
C1—C2—C3118.84 (18)C18—C19—H19119.6
C1—C2—H2120.6C14—C19—H19119.6
C3—C2—H2120.6N4—C20—C3122.41 (17)
N1—C3—C2123.35 (17)N4—C20—H20118.8
N1—C3—C20114.35 (16)C3—C20—H20118.8
C2—C3—C20122.30 (17)N5—C21—C22124.72 (17)
C1—C4—C5119.08 (18)N5—C21—C28116.10 (16)
C1—C4—H4120.5C22—C21—C28119.16 (16)
C5—C4—H4120.5C27—C22—C23118.72 (18)
N1—C5—C4122.86 (17)C27—C22—C21120.22 (17)
N1—C5—C6115.26 (16)C23—C22—C21121.04 (17)
C4—C5—C6121.88 (17)C24—C23—C22120.84 (19)
N2—C6—C5120.97 (17)C24—C23—H23119.6
N2—C6—H6119.5C22—C23—H23119.6
C5—C6—H6119.5C25—C24—C23119.56 (19)
N3—C7—C14115.53 (16)C25—C24—H24120.2
N3—C7—C8123.75 (16)C23—C24—H24120.2
C14—C7—C8120.66 (15)C26—C25—C24120.19 (19)
C9—C8—C13118.80 (17)C26—C25—H25119.9
C9—C8—C7120.45 (16)C24—C25—H25119.9
C13—C8—C7120.75 (16)C25—C26—C27120.07 (19)
C10—C9—C8120.36 (18)C25—C26—H26120.0
C10—C9—H9119.8C27—C26—H26120.0
C8—C9—H9119.8C26—C27—C22120.60 (19)
C11—C10—C9120.28 (18)C26—C27—H27119.7
C11—C10—H10119.9C22—C27—H27119.7
C9—C10—H10119.9C33—C28—C29118.18 (17)
C10—C11—C12119.77 (18)C33—C28—C21121.01 (17)
C10—C11—H11120.1C29—C28—C21120.81 (17)
C12—C11—H11120.1C30—C29—C28120.78 (18)
C13—C12—C11120.26 (18)C30—C29—H29119.6
C13—C12—H12119.9C28—C29—H29119.6
C11—C12—H12119.9C29—C30—C31120.34 (19)
C12—C13—C8120.52 (18)C29—C30—H30119.8
C12—C13—H13119.7C31—C30—H30119.8
C8—C13—H13119.7C32—C31—C30119.52 (19)
C19—C14—C15118.32 (17)C32—C31—H31120.2
C19—C14—C7121.87 (16)C30—C31—H31120.2
C15—C14—C7119.78 (17)C31—C32—C33120.49 (19)
C16—C15—C14120.84 (18)C31—C32—H32119.8
C16—C15—H15119.6C33—C32—H32119.8
C14—C15—H15119.6C32—C33—C28120.67 (19)
C15—C16—C17119.98 (18)C32—C33—H33119.7
C15—C16—H16120.0C28—C33—H33119.7

Experimental details

Crystal data
Chemical formulaC33H25N5
Mr491.58
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)23.702 (5), 12.344 (3), 18.758 (4)
β (°) 106.742 (4)
V3)5255.3 (19)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.40 × 0.17 × 0.08
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.971, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
30994, 5391, 3723
Rint0.090
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.117, 1.04
No. of reflections5391
No. of parameters343
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.21

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

 

Acknowledgements

The authors recognize financial support from the European Social Fund through POSDRU/89/1.5/S/54785 project: `Postdoctoral Program for Advanced Research in the field of nanomaterials'.

References

First citationAlbrecht, M., Mirtschin, S., Osetska, O., Dehn, S., Enders, D., Fröhlich, R., Pape, T. & Hahn, F. E. (2007). Eur. J. Inorg. Chem. 20, 3276–3287.  CrossRef Google Scholar
First citationBruker (1999). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationConstable, E. C. (2007). Chem. Soc. Rev. 36, 246–253.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFallahpour, R.-A. (2003). Synthesis, 2, 155–184.  CrossRef Google Scholar
First citationHaussmann, P. C., Khan, S. I. & Stoddart, J. F. (2007). J. Org. Chem. 72, 6708–6713.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPlattner, D. A., Beck, A. K. & Neuburger, M. (2002). Helv. Chim. Acta, 85, 4000–4011.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVance, A. L., Alcock, N. W., Heppert, J. A. & Busch, D. H. (1998). Inorg. Chem. 37, 6912–6920.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1030
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds