metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[aqua­bis­­(μ-formato-κ2O:O′)(μ-pyrazine-κ2N:N′)nickel(II)]

aInstitut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Max-Eyth-Str. 2, 24118 Kiel, Germany, and bDepartement of Chemistry, Texas A&M University, College Station, Texas 77843, USA
*Correspondence e-mail: swoehlert@ac.uni-kiel.de

(Received 23 March 2011; accepted 30 March 2011; online 7 April 2011)

In the title compound, [Ni(CHO2)2(C4H4N2)(H2O)], the nickel(II) cations are coordinated by three O-bonded-formato anions, two N-bonded-pyrazine ligands and one water mol­ecule in an octa­hedral coordination mode. The nickel(II) cations are connected by μ-1,3-bridging formato anions and N,N′-bridging pyrazine ligands into a three dimensional coordination network. The asymmetric unit consists of one nickel(II) cation, one water mol­ecule and two crystallograph­ically independent formato anions in general positions as well as two crystallographically independent pyrazine ligands, which are located on centers of inversion.

Related literature

For background of this work, see: Boeckmann & Näther (2010[Boeckmann, J. & Näther, C. (2010). Dalton Trans. 39, 1119-1126.]), Wriedt et al. (2009)[Wriedt, M., Jess, I. & Näther, C. (2009). Eur. J. Inorg. Chem. pp. 1406-1413.]; Boeckmann et al. (2010[Boeckmann, J., Wriedt, M. & Näther, C. (2010). Eur. J. Inorg. Chem. pp. 1820-1828.]). For a related structure, see: Manson et al. (2003[Manson, J. L., Lecher, J. G., Gu, J., Geiser, U., Schlueter, J. A., Henning, R., Wang, X., Schultz, A. J., Koo, H.-J. & Whangbo, M.-H. (2003). Dalton Trans. pp. 2905-2911.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(CHO2)2(C4H4N2)(H2O)]

  • Mr = 246.85

  • Monoclinic, P 21 /c

  • a = 7.8169 (4) Å

  • b = 7.0077 (3) Å

  • c = 15.6586 (7) Å

  • β = 98.971 (4)°

  • V = 847.26 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.29 mm−1

  • T = 293 K

  • 0.19 × 0.15 × 0.12 mm

Data collection
  • Stoe IPDS-2 diffractometer

  • Absorption correction: numerical (X-SHAPE and X-RED32; Stoe, 2008[Stoe (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.658, Tmax = 0.770

  • 15596 measured reflections

  • 2291 independent reflections

  • 2091 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.059

  • S = 1.10

  • 2291 reflections

  • 128 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: X-AREA (Stoe, 2008[Stoe (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: XP in SHELXTL and DIAMOND (Brandenburg, 2011[Brandenburg, K. (2011). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

Supporting information


Comment top

In our recent work on the synthesis, structures and properties of new coordination polymers based on paramagnetic transition metal, small-sized anions and N-donor ligands, we have shown that new ligand-deficient coordination polymers based on transition metal thiocyanates and selenocyanates can be prepared by thermal decomposition reactions (Wriedt, Jess & Näther, 2009 and Boeckmann & Näther, 2010). Later we have shown that also metal formates can be prepared by this route (Boeckmann, Wriedt & Näther, 2010). Within this project we tried to prepare new ligand-rich precursor compounds based on nickel(II) formate and pyrazine which resulted in the formation of the title compound that were identified by single crystal X-ray diffraction.

In the crystal structure of the title compound, each nickel(II) cation is coordinated by three bridging formato anions, two bridging pyrazine ligands and one water molecule (Fig. 1). The NiO4N2 octahedron is slightly distorted with Ni—OCHO distances between 2.0378 (11) Å and 2.0643 (12) Å and one Ni—OH2 distance of 2.0420 (11) Å as well as two long Ni—N distances of 2.1066 (13) Å and 2.1171 (12) Å. The angles around the metal atoms range from 84.14 (5)° to 95.94 (5)° and from 173.18 (5)° to 179.19 (5)°. The nickel(II) cations are connected via µ-1,3 bridging formato anions into two dimensional Ni(O2CHO)2 layers that are further linked by the pyrazine ligands into a 3D coordination network (Fig. 2). The Ni—Ni distances between next neighboured Ni atoms ranges from 6.9770 (4) Å to 7.0689 (4) Å.

It must be noted that according to a search in the CCDC database (ConQuest Ver.1.12.) (Allen, 2002) compounds based on nickel(II) formate and pyrazine are unknown but with copper(II) formate one strcuture is reported (Manson et al., 2003).

Related literature top

For background of this work, see: Boeckmann & Näther (2010), Wriedt et al. (2009); Boeckmann et al. (2010). For a related structure, see Manson et al. (2003). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

Nickel formate dihydrate [Ni(CHO2)2.H2O] and pyrazine were obtained from Alfa Aesar. All chemicals were used without further purification. 0.25 mmol (46 mg) Ni(CHO2)2.H2O and 0.5 mmol (40 mg) pyrazine were reacted in 2 ml water. Light blue block-shaped single crystals of the title compound were obtained after a few days at room temperature.

Refinement top

The C-H H atoms were positioned with idealized geometry and were refined isotropic with Uiso(H) = 1.2Ueq(C) and C—H distances of 0.93 Å using a riding model. The O-H H atoms were located in difference map, their bond lengths were set to 0.82 Å and afterwards they were refined isotropic with Uiso(H) = 1.5Ueq(O) using a riding model.

Computing details top

Data collection: X-AREA (Stoe, 2008); cell refinement: X-AREA (Stoe, 2008); data reduction: X-AREA (Stoe, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2011).

Figures top
[Figure 1] Fig. 1. : Crystal structure of the title compound with labelling and displacement ellipsoids drawn at the 50 % probability level. Symmetry codes: i = -x+1, y+1/2 i = -x+1,y+1/2,-z+3/2; ii = -x+1,-y,-z+1; iii = -x,-y+1,-z+1.
[Figure 2] Fig. 2. : Crystal structure of the title compound with view along the crystallographic a-axis.
Poly[aquabis(µ-formato-κ2O:O')(µ- pyrazine-κ2N:N')nickel(II)] top
Crystal data top
[Ni(CHO2)2(C4H4N2)(H2O)]F(000) = 504
Mr = 246.85Dx = 1.935 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 15596 reflections
a = 7.8169 (4) Åθ = 2.6–29.3°
b = 7.0077 (3) ŵ = 2.29 mm1
c = 15.6586 (7) ÅT = 293 K
β = 98.971 (4)°Block, light blue
V = 847.26 (7) Å30.19 × 0.15 × 0.12 mm
Z = 4
Data collection top
Stoe IPDS-2
diffractometer
2291 independent reflections
Radiation source: fine-focus sealed tube2091 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ω scanθmax = 29.3°, θmin = 2.6°
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe, 2008)
h = 1010
Tmin = 0.658, Tmax = 0.770k = 99
15596 measured reflectionsl = 2121
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.059 w = 1/[σ2(Fo2) + (0.025P)2 + 0.4622P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
2291 reflectionsΔρmax = 0.47 e Å3
128 parametersΔρmin = 0.30 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0158 (13)
Crystal data top
[Ni(CHO2)2(C4H4N2)(H2O)]V = 847.26 (7) Å3
Mr = 246.85Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.8169 (4) ŵ = 2.29 mm1
b = 7.0077 (3) ÅT = 293 K
c = 15.6586 (7) Å0.19 × 0.15 × 0.12 mm
β = 98.971 (4)°
Data collection top
Stoe IPDS-2
diffractometer
2291 independent reflections
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe, 2008)
2091 reflections with I > 2σ(I)
Tmin = 0.658, Tmax = 0.770Rint = 0.036
15596 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.059H-atom parameters constrained
S = 1.10Δρmax = 0.47 e Å3
2291 reflectionsΔρmin = 0.30 e Å3
128 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.30005 (2)0.25657 (3)0.649349 (11)0.01731 (8)
N10.41659 (17)0.10169 (18)0.55756 (8)0.0205 (2)
C10.3337 (2)0.0453 (2)0.48084 (10)0.0250 (3)
H10.21690.07470.46540.030*
C20.5831 (2)0.0558 (2)0.57642 (10)0.0257 (3)
H20.64520.09250.62940.031*
N110.12229 (17)0.39364 (18)0.55394 (8)0.0209 (2)
C110.0463 (2)0.3831 (2)0.55924 (11)0.0241 (3)
H110.08270.30270.60010.029*
C120.1684 (2)0.5112 (2)0.49450 (10)0.0234 (3)
H120.28470.52240.48910.028*
O210.11734 (15)0.04433 (16)0.65066 (8)0.0275 (3)
O220.0548 (2)0.25397 (17)0.67969 (12)0.0434 (4)
C210.1545 (2)0.1280 (2)0.66185 (12)0.0279 (3)
H210.26930.16040.66020.042*
O310.46637 (15)0.11818 (18)0.74213 (8)0.0282 (3)
O320.51992 (15)0.03704 (17)0.86756 (7)0.0260 (2)
C310.4364 (2)0.0746 (2)0.81445 (11)0.0258 (3)
H310.34790.13470.83750.039*
O410.18980 (15)0.40396 (16)0.73925 (7)0.0241 (2)
H1O0.11260.35470.76170.036*
H2O0.15000.50930.72460.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01857 (11)0.01683 (11)0.01653 (11)0.00177 (7)0.00272 (7)0.00092 (7)
N10.0220 (6)0.0203 (6)0.0198 (6)0.0012 (5)0.0049 (5)0.0023 (5)
C10.0200 (7)0.0306 (8)0.0238 (7)0.0045 (6)0.0020 (6)0.0043 (6)
C20.0230 (7)0.0321 (8)0.0212 (7)0.0019 (6)0.0007 (6)0.0070 (6)
N110.0214 (6)0.0199 (6)0.0206 (6)0.0019 (5)0.0007 (5)0.0018 (5)
C110.0233 (7)0.0245 (7)0.0243 (7)0.0000 (6)0.0030 (6)0.0059 (6)
C120.0194 (7)0.0258 (7)0.0248 (7)0.0013 (6)0.0029 (6)0.0035 (6)
O210.0261 (6)0.0184 (5)0.0390 (7)0.0001 (4)0.0077 (5)0.0045 (5)
O220.0477 (8)0.0184 (6)0.0720 (11)0.0009 (5)0.0340 (8)0.0041 (6)
C210.0283 (8)0.0206 (7)0.0372 (9)0.0027 (6)0.0128 (7)0.0011 (6)
O310.0273 (6)0.0356 (6)0.0218 (5)0.0097 (5)0.0043 (5)0.0080 (5)
O320.0296 (6)0.0276 (6)0.0208 (5)0.0089 (5)0.0039 (4)0.0040 (4)
C310.0286 (8)0.0266 (8)0.0227 (7)0.0087 (6)0.0054 (6)0.0020 (6)
O410.0264 (6)0.0208 (5)0.0271 (6)0.0015 (4)0.0101 (4)0.0002 (4)
Geometric parameters (Å, º) top
Ni1—O312.0378 (11)C11—C12iii1.385 (2)
Ni1—O412.0420 (11)C11—H110.9300
Ni1—O32i2.0636 (11)C12—C11iii1.385 (2)
Ni1—O212.0643 (12)C12—H120.9300
Ni1—N112.1066 (13)O21—C211.2479 (19)
Ni1—N12.1171 (12)O22—C211.238 (2)
N1—C21.328 (2)C21—H210.9300
N1—C11.333 (2)O31—C311.230 (2)
C1—C2ii1.382 (2)O32—C311.2492 (19)
C1—H10.9300O32—Ni1iv2.0636 (11)
C2—C1ii1.382 (2)C31—H310.9299
C2—H20.9300O41—H1O0.8200
N11—C121.334 (2)O41—H2O0.8200
N11—C111.335 (2)
O31—Ni1—O4192.30 (5)C1ii—C2—H2119.2
O31—Ni1—O32i93.04 (5)C12—N11—C11117.00 (13)
O41—Ni1—O32i95.94 (5)C12—N11—Ni1123.80 (11)
O31—Ni1—O2190.89 (5)C11—N11—Ni1118.62 (10)
O41—Ni1—O2189.46 (5)N11—C11—C12iii121.75 (14)
O32i—Ni1—O21173.18 (5)N11—C11—H11119.1
O31—Ni1—N11178.28 (5)C12iii—C11—H11119.1
O41—Ni1—N1187.46 (5)N11—C12—C11iii121.25 (14)
O32i—Ni1—N1188.68 (5)N11—C12—H12119.4
O21—Ni1—N1187.40 (5)C11iii—C12—H12119.4
O31—Ni1—N186.89 (5)C21—O21—Ni1123.54 (11)
O41—Ni1—N1179.19 (5)O22—C21—O21125.53 (16)
O32i—Ni1—N184.14 (5)O22—C21—H21118.4
O21—Ni1—N190.52 (5)O21—C21—H21115.9
N11—Ni1—N193.35 (5)C31—O31—Ni1125.64 (11)
C2—N1—C1116.76 (13)C31—O32—Ni1iv130.50 (10)
C2—N1—Ni1118.93 (11)O31—C31—O32127.86 (15)
C1—N1—Ni1124.31 (10)O31—C31—H31120.4
N1—C1—C2ii121.65 (14)O32—C31—H31111.6
N1—C1—H1119.2Ni1—O41—H1O120.0
C2ii—C1—H1119.2Ni1—O41—H2O116.4
N1—C2—C1ii121.59 (15)H1O—O41—H2O103.1
N1—C2—H2119.2
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+1, y, z+1; (iii) x, y+1, z+1; (iv) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Ni(CHO2)2(C4H4N2)(H2O)]
Mr246.85
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.8169 (4), 7.0077 (3), 15.6586 (7)
β (°) 98.971 (4)
V3)847.26 (7)
Z4
Radiation typeMo Kα
µ (mm1)2.29
Crystal size (mm)0.19 × 0.15 × 0.12
Data collection
DiffractometerStoe IPDS2
diffractometer
Absorption correctionNumerical
(X-SHAPE and X-RED32; Stoe, 2008)
Tmin, Tmax0.658, 0.770
No. of measured, independent and
observed [I > 2σ(I)] reflections
15596, 2291, 2091
Rint0.036
(sin θ/λ)max1)0.687
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.059, 1.10
No. of reflections2291
No. of parameters128
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.30

Computer programs: X-AREA (Stoe, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2011).

 

Acknowledgements

We gratefully acknowledge financial support by the DFG (project number NA 720/3-1) and the State of Schleswig-Holstein. We thank Professor Dr Bensch for access to his experimental facilities.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBoeckmann, J. & Näther, C. (2010). Dalton Trans. 39, 1119-1126.  Web of Science CSD CrossRef Google Scholar
First citationBoeckmann, J., Wriedt, M. & Näther, C. (2010). Eur. J. Inorg. Chem. pp. 1820-1828.  Web of Science CSD CrossRef Google Scholar
First citationBrandenburg, K. (2011). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationManson, J. L., Lecher, J. G., Gu, J., Geiser, U., Schlueter, J. A., Henning, R., Wang, X., Schultz, A. J., Koo, H.-J. & Whangbo, M.-H. (2003). Dalton Trans. pp. 2905–2911.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWriedt, M., Jess, I. & Näther, C. (2009). Eur. J. Inorg. Chem. pp. 1406–1413.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds