organic compounds
3β,5α,6β-Trihydroxyandrostan-17-one
aCEMDRX, Department of Physics, University of Coimbra, P-3004-516 Coimbra, Portugal, bCentre for Neuroscience and Cell Biology, University of Coimbra, P-3004-517 Coimbra, Portugal, and cFaculty of Pharmacy, University of Coimbra, P-3000-548 Coimbra, Portugal
*Correspondence e-mail: jap@pollux.fis.uc.pt
The title compound, C19H30O4, is an androstan-17-one derivative synthesized from the dehydroepiandrosterone through a sequential addition of an oxidant, followed by a trans-diaxial opening of the epoxide generated, with Bi(OTf)3 (OTf is trifluoromethanesulfonate). The six-membered rings have a slightly flattened chair conformation, while the five-membered ring adopts a 14-α All rings are trans fused. In the crystal, the molecules are connected by O—H⋯O hydrogen bonds involving the hydroxyl and carbonyl groups, forming a three-dimensional network. A quantum mechanical ab initio Roothan Hartree–Fock calculation of the free molecule gives bond lengths, valency angles and ring torsion angles of the free molecule at equilibrium geometry (energy minimum) close to the experimental values.
Related literature
For the synthesis of the title compound, see: Carvalho et al. (2010b). For 3β,5α,6β-hydroxylation pattern occurance in several natural products, see: Mizushina et al. (1999); Hata et al. (2002); Tanaka et al. (2002); Sun et al. (2006). For natural products as scaffolds for drug discovery, see: Li & Vederas (2009); Rosén et al. (2009). For angiotoxicity of 3β,5α,6β-trihydroxy see: Imai et al. (1980); Peng et al. (1985). For the in vivo genesis of osteoporosis and atherosclerosis, see: Hongmei et al. (2005); Imai et al. (1980); Peng et al. (1985). For the cytotoxicity of with a 3β,5α,6β-hydroxylation motif against cancer cells, see: Aiello et al. (1995); Carvalho et al. (2010a); El-Gamal et al. (2004). For the use of 3β,5α,6β-trihydroxy in the synthesis of Δ4-3,6-dione see: Tischler et al. (1988); Aiello et al. (1991); Pardo et al. (2000). For their use as molecular probes for the study of aromatase inhibition, see: Numazawa & Tachibana (1994); Pérez-Ornelas et al. (2005); Nagaoka & Numazawa (2004). For the use of the title compound as an intermediate in the synthesis of the aromatase inhibitor androst-4-ene-3,6,17-trione, see: Ehrenstein (1939); Numazawa et al. (1987); Anthony et al. (1999). For related structures, see Anthony et al. (1999). For puckering parameters, see: Cremer & Pople (1975) and for asymmetry parameters, see: Duax & Norton (1975); Altona et al. (1968). For reference bond-length data, see: Allen et al. (1987). For the program GAMESS used to perform the quantum chemical calculations, see: Schmidt et al. (1993).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2006); cell SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536811011706/bt5502sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811011706/bt5502Isup2.hkl
Synthesis of (I) was performed using a new and recently reported (Carvalho et al., 2010b) fast and high yielding sequential chemical approach for the straightforward preparation of 5α,6β-dihydroxy-steroids using 3β-hydroxy-Δ5-steroids as raw materials. The protocol involves two steps: (i) formation of the epoxide from Δ5-steroids, using MMPP as oxidative agent; and (ii) trans-diaxial epoxide opening with Bi(OTf)3 in commercial acetone. Crystallization from ethanol at room temperature afforded colorless crystals suitable for X-ray analysis. Analytical data of compound (I) is in accordance with the literature (Carvalho et al., 2010b).
All hydrogen atoms were refined as riding on their parent atoms using SHELXL97 defaults. The α wavelength, but was known from the synthetic route. Friedel pairs were merged before refinement.
was not determined from the X-ray data, as the molecule lacks any strong anomalous scatterer atom at the Mo KData collection: APEX2 (Bruker, 2006); cell
SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. ORTEPII plot of the title compound. Displacement ellipsoids are drawn at the 50% level. |
C19H30O4 | Dx = 1.290 Mg m−3 |
Mr = 322.43 | Melting point: 574 K |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 6253 reflections |
a = 5.8132 (1) Å | θ = 3.1–30.3° |
b = 13.3880 (3) Å | µ = 0.09 mm−1 |
c = 21.3298 (5) Å | T = 293 K |
V = 1660.04 (6) Å3 | Prism, colourless |
Z = 4 | 0.23 × 0.13 × 0.13 mm |
F(000) = 704 |
Bruker APEXII CCD area-detector diffractometer | 2276 independent reflections |
Radiation source: fine-focus sealed tube | 1874 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.031 |
ϕ and ω scans | θmax = 27.9°, θmin = 1.8° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2000) | h = −7→6 |
Tmin = 0.937, Tmax = 1.00 | k = −17→17 |
40718 measured reflections | l = −27→25 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.037 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.098 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0563P)2 + 0.2093P] where P = (Fo2 + 2Fc2)/3 |
2276 reflections | (Δ/σ)max < 0.001 |
213 parameters | Δρmax = 0.20 e Å−3 |
0 restraints | Δρmin = −0.20 e Å−3 |
C19H30O4 | V = 1660.04 (6) Å3 |
Mr = 322.43 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 5.8132 (1) Å | µ = 0.09 mm−1 |
b = 13.3880 (3) Å | T = 293 K |
c = 21.3298 (5) Å | 0.23 × 0.13 × 0.13 mm |
Bruker APEXII CCD area-detector diffractometer | 2276 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2000) | 1874 reflections with I > 2σ(I) |
Tmin = 0.937, Tmax = 1.00 | Rint = 0.031 |
40718 measured reflections |
R[F2 > 2σ(F2)] = 0.037 | 0 restraints |
wR(F2) = 0.098 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.20 e Å−3 |
2276 reflections | Δρmin = −0.20 e Å−3 |
213 parameters |
Experimental. IR (film) 3442, 3348, 2942, 2861, 1723, 1471, 1373, 1077, 1047, 1030, 1001, 960, 874 cm-1; 1H NMR (300 MHz, DMSO-d6) δ p.p.m. 0.77 (3H, s, 18-CH3), 1.04 (3H, s, 19-CH3), 2.36 (1H, dd, J=19.0, 8.2 Hz), 3.35 (1H, m, 6α-H), 3.74 (1H, s, OH), 3.78 (1H, m, 3α-H), 4.22 (1H, d, J=5.8 Hz, OH), 4.51 (1H, d, J=4.3 Hz, OH); 13C NMR (75 MHz, DMSO-d6) δ p.p.m. 13.4, 16.2, 20.0, 21.4 (CH2), 29.6, 31.0 (CH2), 31.5 (CH2), 32.0 (CH2), 33.3 (CH2), 35.3 (CH2), 37.9 (C-10), 40.8 (CH2), 44.8, 47.2 (C-13), 50.5, 65.6, 73.8, 74.3 (C-5), 220.0 (C-17); MS m/z (%): 321.3 (9) [M—H]+, 293.2 (20), 280.4 (23), 265.5 (100), 250.2 (13), 90.3 (54). |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O3 | 0.4447 (4) | 0.39692 (11) | −0.03066 (6) | 0.0551 (5) | |
H3 | 0.4176 | 0.4562 | −0.0371 | 0.083* | |
O5 | 0.8749 (2) | 0.26939 (10) | 0.10844 (6) | 0.0344 (3) | |
H5 | 0.8788 | 0.2198 | 0.0860 | 0.052* | |
O6 | 0.3172 (3) | 0.20863 (13) | 0.18197 (7) | 0.0490 (4) | |
H6A | 0.2372 | 0.2182 | 0.1509 | 0.074* | |
O17 | 1.1224 (3) | 0.38845 (11) | 0.44942 (6) | 0.0396 (4) | |
C1 | 0.7513 (4) | 0.47124 (14) | 0.11921 (8) | 0.0304 (4) | |
H1A | 0.7555 | 0.5345 | 0.1414 | 0.036* | |
H1B | 0.9085 | 0.4527 | 0.1093 | 0.036* | |
C2 | 0.6166 (4) | 0.48453 (14) | 0.05810 (8) | 0.0358 (5) | |
H2A | 0.4642 | 0.5098 | 0.0676 | 0.043* | |
H2B | 0.6940 | 0.5334 | 0.0320 | 0.043* | |
C3 | 0.5956 (4) | 0.38742 (14) | 0.02260 (8) | 0.0334 (5) | |
H3A | 0.7485 | 0.3683 | 0.0075 | 0.040* | |
C4 | 0.5032 (4) | 0.30359 (13) | 0.06337 (8) | 0.0298 (4) | |
H4A | 0.5094 | 0.2414 | 0.0400 | 0.036* | |
H4B | 0.3433 | 0.3170 | 0.0733 | 0.036* | |
C5 | 0.6392 (3) | 0.29152 (13) | 0.12470 (8) | 0.0245 (4) | |
C6 | 0.5535 (4) | 0.20277 (14) | 0.16369 (9) | 0.0326 (5) | |
H6 | 0.5743 | 0.1419 | 0.1388 | 0.039* | |
C7 | 0.6922 (4) | 0.19194 (13) | 0.22384 (8) | 0.0333 (5) | |
H7A | 0.8478 | 0.1718 | 0.2133 | 0.040* | |
H7B | 0.6247 | 0.1395 | 0.2492 | 0.040* | |
C8 | 0.7015 (3) | 0.28834 (13) | 0.26229 (8) | 0.0248 (4) | |
H8 | 0.5454 | 0.3049 | 0.2762 | 0.030* | |
C9 | 0.7942 (3) | 0.37543 (13) | 0.22212 (7) | 0.0226 (4) | |
H9 | 0.9469 | 0.3549 | 0.2076 | 0.027* | |
C10 | 0.6459 (3) | 0.39125 (12) | 0.16226 (7) | 0.0219 (4) | |
C11 | 0.8298 (4) | 0.47172 (13) | 0.26035 (8) | 0.0332 (5) | |
H11A | 0.9074 | 0.5205 | 0.2342 | 0.040* | |
H11B | 0.6805 | 0.4989 | 0.2714 | 0.040* | |
C12 | 0.9702 (4) | 0.45672 (14) | 0.32058 (8) | 0.0329 (5) | |
H12A | 1.1280 | 0.4402 | 0.3100 | 0.039* | |
H12B | 0.9712 | 0.5181 | 0.3448 | 0.039* | |
C13 | 0.8657 (3) | 0.37305 (14) | 0.35939 (8) | 0.0267 (4) | |
C14 | 0.8548 (3) | 0.27739 (13) | 0.31973 (8) | 0.0267 (4) | |
H14 | 1.0109 | 0.2665 | 0.3038 | 0.032* | |
C15 | 0.8117 (4) | 0.19464 (15) | 0.36767 (9) | 0.0418 (5) | |
H15A | 0.8561 | 0.1299 | 0.3512 | 0.050* | |
H15B | 0.6513 | 0.1925 | 0.3801 | 0.050* | |
C16 | 0.9667 (5) | 0.22585 (15) | 0.42264 (10) | 0.0460 (6) | |
H16A | 0.8930 | 0.2110 | 0.4623 | 0.055* | |
H16B | 1.1126 | 0.1908 | 0.4209 | 0.055* | |
C17 | 1.0028 (4) | 0.33729 (15) | 0.41549 (8) | 0.0307 (4) | |
C18 | 0.6314 (4) | 0.40438 (18) | 0.38719 (9) | 0.0436 (5) | |
H18A | 0.6503 | 0.4641 | 0.4115 | 0.065* | |
H18B | 0.5739 | 0.3519 | 0.4135 | 0.065* | |
H18C | 0.5244 | 0.4166 | 0.3538 | 0.065* | |
C19 | 0.4042 (3) | 0.42658 (15) | 0.18101 (9) | 0.0331 (5) | |
H19A | 0.4118 | 0.4944 | 0.1955 | 0.050* | |
H19B | 0.3460 | 0.3847 | 0.2139 | 0.050* | |
H19C | 0.3038 | 0.4227 | 0.1454 | 0.050* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O3 | 0.0995 (15) | 0.0344 (8) | 0.0314 (8) | −0.0083 (10) | −0.0306 (9) | −0.0014 (6) |
O5 | 0.0335 (7) | 0.0368 (8) | 0.0328 (7) | 0.0077 (6) | 0.0005 (6) | −0.0113 (6) |
O6 | 0.0397 (8) | 0.0592 (10) | 0.0482 (8) | −0.0219 (9) | −0.0106 (7) | 0.0154 (8) |
O17 | 0.0437 (8) | 0.0463 (8) | 0.0289 (7) | 0.0028 (8) | −0.0082 (7) | −0.0058 (6) |
C1 | 0.0425 (11) | 0.0251 (9) | 0.0235 (9) | −0.0085 (9) | −0.0074 (8) | 0.0012 (7) |
C2 | 0.0548 (13) | 0.0278 (9) | 0.0247 (9) | −0.0095 (10) | −0.0092 (10) | 0.0023 (8) |
C3 | 0.0461 (12) | 0.0328 (10) | 0.0213 (9) | −0.0015 (10) | −0.0054 (9) | −0.0025 (8) |
C4 | 0.0398 (10) | 0.0236 (9) | 0.0260 (9) | −0.0050 (9) | −0.0069 (8) | −0.0041 (7) |
C5 | 0.0256 (9) | 0.0230 (9) | 0.0250 (8) | −0.0013 (8) | −0.0021 (7) | −0.0039 (7) |
C6 | 0.0417 (11) | 0.0227 (9) | 0.0335 (10) | −0.0083 (9) | −0.0086 (9) | −0.0010 (8) |
C7 | 0.0468 (12) | 0.0202 (9) | 0.0330 (10) | −0.0055 (9) | −0.0082 (9) | 0.0033 (7) |
C8 | 0.0257 (9) | 0.0237 (8) | 0.0251 (8) | −0.0010 (8) | −0.0020 (7) | 0.0016 (7) |
C9 | 0.0249 (9) | 0.0215 (8) | 0.0213 (8) | −0.0010 (7) | −0.0017 (7) | −0.0010 (7) |
C10 | 0.0249 (9) | 0.0193 (8) | 0.0216 (8) | −0.0004 (7) | −0.0009 (7) | −0.0018 (7) |
C11 | 0.0504 (13) | 0.0231 (9) | 0.0262 (9) | −0.0037 (9) | −0.0092 (9) | −0.0002 (7) |
C12 | 0.0458 (12) | 0.0289 (9) | 0.0240 (9) | −0.0060 (9) | −0.0066 (9) | −0.0018 (7) |
C13 | 0.0293 (9) | 0.0294 (9) | 0.0215 (8) | 0.0035 (8) | −0.0006 (8) | −0.0011 (7) |
C14 | 0.0287 (10) | 0.0256 (9) | 0.0258 (8) | 0.0003 (8) | −0.0008 (8) | 0.0008 (7) |
C15 | 0.0570 (14) | 0.0325 (11) | 0.0359 (10) | −0.0053 (11) | −0.0098 (10) | 0.0095 (9) |
C16 | 0.0661 (16) | 0.0387 (11) | 0.0332 (10) | 0.0014 (12) | −0.0136 (11) | 0.0086 (9) |
C17 | 0.0310 (10) | 0.0391 (11) | 0.0220 (9) | 0.0048 (9) | 0.0027 (8) | −0.0005 (8) |
C18 | 0.0364 (11) | 0.0598 (14) | 0.0346 (10) | 0.0160 (11) | 0.0025 (10) | −0.0060 (10) |
C19 | 0.0303 (11) | 0.0382 (11) | 0.0306 (9) | 0.0076 (9) | −0.0034 (9) | −0.0043 (8) |
O3—C3 | 1.441 (2) | C8—H8 | 0.9800 |
O3—H3 | 0.8200 | C9—C11 | 1.539 (2) |
O5—C5 | 1.444 (2) | C9—C10 | 1.555 (2) |
O5—H5 | 0.8200 | C9—H9 | 0.9800 |
O6—C6 | 1.430 (3) | C10—C19 | 1.535 (3) |
O6—H6A | 0.8200 | C11—C12 | 1.535 (2) |
O17—C17 | 1.215 (2) | C11—H11A | 0.9700 |
C1—C2 | 1.531 (2) | C11—H11B | 0.9700 |
C1—C10 | 1.538 (2) | C12—C13 | 1.520 (3) |
C1—H1A | 0.9700 | C12—H12A | 0.9700 |
C1—H1B | 0.9700 | C12—H12B | 0.9700 |
C2—C3 | 1.510 (3) | C13—C17 | 1.515 (3) |
C2—H2A | 0.9700 | C13—C14 | 1.536 (2) |
C2—H2B | 0.9700 | C13—C18 | 1.543 (3) |
C3—C4 | 1.518 (3) | C14—C15 | 1.528 (2) |
C3—H3A | 0.9800 | C14—H14 | 0.9800 |
C4—C5 | 1.537 (2) | C15—C16 | 1.537 (3) |
C4—H4A | 0.9700 | C15—H15A | 0.9700 |
C4—H4B | 0.9700 | C15—H15B | 0.9700 |
C5—C6 | 1.533 (3) | C16—C17 | 1.514 (3) |
C5—C10 | 1.558 (2) | C16—H16A | 0.9700 |
C6—C7 | 1.522 (3) | C16—H16B | 0.9700 |
C6—H6 | 0.9800 | C18—H18A | 0.9600 |
C7—C8 | 1.530 (2) | C18—H18B | 0.9600 |
C7—H7A | 0.9700 | C18—H18C | 0.9600 |
C7—H7B | 0.9700 | C19—H19A | 0.9600 |
C8—C14 | 1.522 (2) | C19—H19B | 0.9600 |
C8—C9 | 1.544 (2) | C19—H19C | 0.9600 |
C3—O3—H3 | 109.5 | C19—C10—C1 | 107.80 (16) |
C5—O5—H5 | 109.5 | C19—C10—C9 | 109.59 (14) |
C6—O6—H6A | 109.5 | C1—C10—C9 | 111.35 (14) |
C2—C1—C10 | 112.67 (15) | C19—C10—C5 | 112.05 (14) |
C2—C1—H1A | 109.1 | C1—C10—C5 | 107.44 (13) |
C10—C1—H1A | 109.1 | C9—C10—C5 | 108.61 (13) |
C2—C1—H1B | 109.1 | C12—C11—C9 | 113.91 (15) |
C10—C1—H1B | 109.1 | C12—C11—H11A | 108.8 |
H1A—C1—H1B | 107.8 | C9—C11—H11A | 108.8 |
C3—C2—C1 | 111.62 (15) | C12—C11—H11B | 108.8 |
C3—C2—H2A | 109.3 | C9—C11—H11B | 108.8 |
C1—C2—H2A | 109.3 | H11A—C11—H11B | 107.7 |
C3—C2—H2B | 109.3 | C13—C12—C11 | 109.85 (16) |
C1—C2—H2B | 109.3 | C13—C12—H12A | 109.7 |
H2A—C2—H2B | 108.0 | C11—C12—H12A | 109.7 |
O3—C3—C2 | 111.65 (16) | C13—C12—H12B | 109.7 |
O3—C3—C4 | 107.56 (16) | C11—C12—H12B | 109.7 |
C2—C3—C4 | 112.23 (14) | H12A—C12—H12B | 108.2 |
O3—C3—H3A | 108.4 | C17—C13—C12 | 116.91 (17) |
C2—C3—H3A | 108.4 | C17—C13—C14 | 101.13 (14) |
C4—C3—H3A | 108.4 | C12—C13—C14 | 109.33 (14) |
C3—C4—C5 | 112.54 (15) | C17—C13—C18 | 104.28 (15) |
C3—C4—H4A | 109.1 | C12—C13—C18 | 111.22 (17) |
C5—C4—H4A | 109.1 | C14—C13—C18 | 113.69 (16) |
C3—C4—H4B | 109.1 | C8—C14—C15 | 120.83 (16) |
C5—C4—H4B | 109.1 | C8—C14—C13 | 112.78 (14) |
H4A—C4—H4B | 107.8 | C15—C14—C13 | 104.05 (14) |
O5—C5—C6 | 106.23 (15) | C8—C14—H14 | 106.1 |
O5—C5—C4 | 107.77 (14) | C15—C14—H14 | 106.1 |
C6—C5—C4 | 112.08 (14) | C13—C14—H14 | 106.1 |
O5—C5—C10 | 106.01 (13) | C14—C15—C16 | 102.55 (16) |
C6—C5—C10 | 113.17 (13) | C14—C15—H15A | 111.3 |
C4—C5—C10 | 111.12 (14) | C16—C15—H15A | 111.3 |
O6—C6—C7 | 106.51 (16) | C14—C15—H15B | 111.3 |
O6—C6—C5 | 114.67 (17) | C16—C15—H15B | 111.3 |
C7—C6—C5 | 111.02 (15) | H15A—C15—H15B | 109.2 |
O6—C6—H6 | 108.1 | C17—C16—C15 | 105.81 (17) |
C7—C6—H6 | 108.1 | C17—C16—H16A | 110.6 |
C5—C6—H6 | 108.1 | C15—C16—H16A | 110.6 |
C6—C7—C8 | 112.96 (15) | C17—C16—H16B | 110.6 |
C6—C7—H7A | 109.0 | C15—C16—H16B | 110.6 |
C8—C7—H7A | 109.0 | H16A—C16—H16B | 108.7 |
C6—C7—H7B | 109.0 | O17—C17—C16 | 125.09 (19) |
C8—C7—H7B | 109.0 | O17—C17—C13 | 126.38 (17) |
H7A—C7—H7B | 107.8 | C16—C17—C13 | 108.53 (17) |
C14—C8—C7 | 111.77 (14) | C13—C18—H18A | 109.5 |
C14—C8—C9 | 108.37 (14) | C13—C18—H18B | 109.5 |
C7—C8—C9 | 110.60 (14) | H18A—C18—H18B | 109.5 |
C14—C8—H8 | 108.7 | C13—C18—H18C | 109.5 |
C7—C8—H8 | 108.7 | H18A—C18—H18C | 109.5 |
C9—C8—H8 | 108.7 | H18B—C18—H18C | 109.5 |
C11—C9—C8 | 112.67 (13) | C10—C19—H19A | 109.5 |
C11—C9—C10 | 113.30 (14) | C10—C19—H19B | 109.5 |
C8—C9—C10 | 111.41 (14) | H19A—C19—H19B | 109.5 |
C11—C9—H9 | 106.3 | C10—C19—H19C | 109.5 |
C8—C9—H9 | 106.3 | H19A—C19—H19C | 109.5 |
C10—C9—H9 | 106.3 | H19B—C19—H19C | 109.5 |
C10—C1—C2—C3 | −56.4 (2) | O5—C5—C10—C1 | 59.79 (17) |
C1—C2—C3—O3 | 172.65 (17) | C6—C5—C10—C1 | 175.84 (15) |
C1—C2—C3—C4 | 51.8 (2) | C4—C5—C10—C1 | −57.03 (19) |
O3—C3—C4—C5 | −175.47 (15) | O5—C5—C10—C9 | −60.77 (17) |
C2—C3—C4—C5 | −52.3 (2) | C6—C5—C10—C9 | 55.28 (19) |
C3—C4—C5—O5 | −60.09 (19) | C4—C5—C10—C9 | −177.60 (14) |
C3—C4—C5—C6 | −176.63 (16) | C8—C9—C11—C12 | 50.7 (2) |
C3—C4—C5—C10 | 55.7 (2) | C10—C9—C11—C12 | 178.37 (16) |
O5—C5—C6—O6 | −177.18 (15) | C9—C11—C12—C13 | −52.8 (2) |
C4—C5—C6—O6 | −59.7 (2) | C11—C12—C13—C17 | 170.85 (16) |
C10—C5—C6—O6 | 66.9 (2) | C11—C12—C13—C14 | 56.8 (2) |
O5—C5—C6—C7 | 62.06 (18) | C11—C12—C13—C18 | −69.57 (19) |
C4—C5—C6—C7 | 179.52 (15) | C7—C8—C14—C15 | −55.8 (2) |
C10—C5—C6—C7 | −53.9 (2) | C9—C8—C14—C15 | −177.90 (16) |
O6—C6—C7—C8 | −72.2 (2) | C7—C8—C14—C13 | −179.62 (16) |
C5—C6—C7—C8 | 53.2 (2) | C9—C8—C14—C13 | 58.24 (19) |
C6—C7—C8—C14 | −176.03 (16) | C17—C13—C14—C8 | 173.72 (15) |
C6—C7—C8—C9 | −55.2 (2) | C12—C13—C14—C8 | −62.4 (2) |
C14—C8—C9—C11 | −51.4 (2) | C18—C13—C14—C8 | 62.6 (2) |
C7—C8—C9—C11 | −174.26 (16) | C17—C13—C14—C15 | 41.03 (18) |
C14—C8—C9—C10 | 179.96 (14) | C12—C13—C14—C15 | 164.95 (17) |
C7—C8—C9—C10 | 57.1 (2) | C18—C13—C14—C15 | −70.1 (2) |
C2—C1—C10—C19 | −62.94 (19) | C8—C14—C15—C16 | −168.04 (17) |
C2—C1—C10—C9 | 176.82 (15) | C13—C14—C15—C16 | −40.2 (2) |
C2—C1—C10—C5 | 58.0 (2) | C14—C15—C16—C17 | 23.2 (2) |
C11—C9—C10—C19 | −62.1 (2) | C15—C16—C17—O17 | −177.7 (2) |
C8—C9—C10—C19 | 66.23 (18) | C15—C16—C17—C13 | 2.2 (2) |
C11—C9—C10—C1 | 57.1 (2) | C12—C13—C17—O17 | 34.9 (3) |
C8—C9—C10—C1 | −174.59 (14) | C14—C13—C17—O17 | 153.5 (2) |
C11—C9—C10—C5 | 175.23 (15) | C18—C13—C17—O17 | −88.3 (2) |
C8—C9—C10—C5 | −56.48 (18) | C12—C13—C17—C16 | −145.00 (19) |
O5—C5—C10—C19 | 178.02 (15) | C14—C13—C17—C16 | −26.4 (2) |
C6—C5—C10—C19 | −65.9 (2) | C18—C13—C17—C16 | 91.8 (2) |
C4—C5—C10—C19 | 61.19 (19) | C19—C10—C13—C18 | 1.68 (16) |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3···O17i | 0.82 | 2.11 | 2.931 (2) | 175 |
O5—H5···O3ii | 0.82 | 1.99 | 2.8063 (19) | 171 |
O6—H6A···O5iii | 0.82 | 2.39 | 3.120 (2) | 148 |
Symmetry codes: (i) −x+3/2, −y+1, z−1/2; (ii) x+1/2, −y+1/2, −z; (iii) x−1, y, z. |
Experimental details
Crystal data | |
Chemical formula | C19H30O4 |
Mr | 322.43 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 293 |
a, b, c (Å) | 5.8132 (1), 13.3880 (3), 21.3298 (5) |
V (Å3) | 1660.04 (6) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.23 × 0.13 × 0.13 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2000) |
Tmin, Tmax | 0.937, 1.00 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 40718, 2276, 1874 |
Rint | 0.031 |
(sin θ/λ)max (Å−1) | 0.659 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.037, 0.098, 1.04 |
No. of reflections | 2276 |
No. of parameters | 213 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.20, −0.20 |
Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3···O17i | 0.82 | 2.11 | 2.931 (2) | 174.9 |
O5—H5···O3ii | 0.82 | 1.99 | 2.8063 (19) | 170.5 |
O6—H6A···O5iii | 0.82 | 2.39 | 3.120 (2) | 148.2 |
Symmetry codes: (i) −x+3/2, −y+1, z−1/2; (ii) x+1/2, −y+1/2, −z; (iii) x−1, y, z. |
Acknowledgements
This work was supported by the Fundação para a Ciência e Tecnologia. We gratefully acknowledge the LCA–UC for a grant of computer time in the Milipeia cluster and Mr Carlos Pereira for help with the analysis of the output of the GAMESS code.
References
Aiello, A., Fattorusso, E., Magno, S., Menna, M. & Pansini, M. (1991). J. Nat. Prod. 54, 281–285. CrossRef CAS Google Scholar
Aiello, A., Fattorusso, E., Menna, M., Carnuccio, R. & Iuvone, T. (1995). Steroids, 60, 666–673. CrossRef CAS PubMed Web of Science Google Scholar
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, S1–19. CrossRef Google Scholar
Altona, C., Geise, H. J. & Romers, C. (1968). Tetrahedron, 24, 13–32. CrossRef CAS Web of Science Google Scholar
Anthony, A., Jaskólski, M. & Nangia, A. (1999). Acta Cryst. C55, 787–789. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Carvalho, J. F. S., Silva, M. M. C., Moreira, J. N., Simões, S. & Sá e Melo, M. L. (2010a). J. Med. Chem 53, 7632–7638. Web of Science CrossRef CAS PubMed Google Scholar
Carvalho, J. F. S., Silva, M. M. C. & Sá e Melo, M. L. (2010b). Tetrahedron, 66, 2455–2462. Web of Science CrossRef CAS Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Duax, W. L. & Norton, D. A. (1975). Atlas of Steroid Structure. New York: Plenum Press. Google Scholar
Ehrenstein, M. (1939). J. Org. Chem. 4, 506–518. CrossRef CAS Google Scholar
El-Gamal, A. A. H., Wang, S.-K., Dai, C.-F. & Duh, C.-Y. (2004). J. Nat. Prod. 67, 1455–1458. Web of Science PubMed CAS Google Scholar
Hata, K., Sugawara, F., Ohisa, N., Takahashi, S. & Hori, K. (2002). Biol. Pharm. Bull. 25, 1040–1044. Web of Science CrossRef PubMed CAS Google Scholar
Hongmei, L., Lan, Y., Shanjin, X., Kui, W. & Tianlan, Z. (2005). J. Cell. Biochem. 96, 198–208. Web of Science PubMed Google Scholar
Imai, H., Werthessen, N. T., Subramanyam, V., LeQuesne, P. W., Soloway, A. H. & Kanisawa, M. (1980). Science, 207, 651–653. CrossRef CAS PubMed Web of Science Google Scholar
Li, J. W. H. & Vederas, J. C. (2009). Science, 325, 161–165. Web of Science CrossRef PubMed Google Scholar
Mizushina, Y., Takahashi, N., Hanashima, L., Koshino, H., Esumi, Y., Uzawa, J., Sugawara, F. & Sakaguchi, K. (1999). Bioorg. Med. Chem. 7, 2047–2052. Web of Science CrossRef PubMed CAS Google Scholar
Nagaoka, M. & Numazawa, M. (2004). Chem. Pharm. Bull. 52, 983–985. Web of Science CrossRef PubMed CAS Google Scholar
Numazawa, M. & Tachibana, M. (1994). Steroids, 59, 579–585. CrossRef CAS PubMed Web of Science Google Scholar
Numazawa, M., Tsuji, M. & Mutsumi, A. (1987). J. Steroid Biochem. 28, 337–344. CrossRef CAS PubMed Web of Science Google Scholar
Pardo, F., Perich, F., Torres, R. & Delle Monache, F. (2000). Biochem. Syst. Ecol. 28, 911–913. CrossRef PubMed CAS Google Scholar
Peng, S. K., Taylor, C. B., Hill, J. C. & Morin, R. J. (1985). Atherosclerosis, 54, 121–133. CrossRef CAS PubMed Web of Science Google Scholar
Pérez-Ornelas, V., Cabeza, M., Bratoeff, E., Heuze, I., Sánchez, M., Ramírez, E. & Naranjo-Rodríguez, E. (2005). Steroids, 70, 217–224. Web of Science PubMed Google Scholar
Rosén, J., Gottfries, J., Muresan, S., Backlund, A. & Oprea, T. I. (2009). J. Med. Chem. 52, 1953–1962. Web of Science PubMed Google Scholar
Schmidt, M. W., Baldrige, K. K., Boatz, J. A., Elbert, S. T., Gordon, M. S., Jensen, J. J., Koseki, S., Matsunaga, N., Nguyen, K. A., Sue, S., Windus, T. L., Dupuis, M. & Montgomery, J. A. (1993). J. Comput. Chem. 14, 1347–1363. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sun, Y., Tian, L., Huang, J., Li, W. & Pei, Y.-H. (2006). Nat. Prod. Res. 20, 381–384. Web of Science CrossRef PubMed CAS Google Scholar
Tanaka, J., Trianto, A., Musman, M., Issa, H. H., Ohtani, I. I., Ichiba, T., Higa, T., Yoshida, W. Y. & Scheuer, P. J. (2002). Tetrahedron, 58, 6259–6266. CrossRef CAS Google Scholar
Tischler, M., Ayer, S. W., Andersen, R. J., Mitchell, J. F. & Clardy, J. (1988). Can. J. Chem. 66, 1173–1178. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Recently, the importance of natural products as scaffolds for drug discovery and design has been a subject of renewed interest (Li & Vederas, 2009; Rosén et al., 2009). The 3β,5α,6β-hydroxylation pattern is found in several natural products (Mizushina et al., 1999; Hata et al., 2002; Tanaka et al., 2002; Sun et al., 2006) and also in human tissues, mainly in an oxidation product of cholesterol. The same hydroxylation motif is present in several natural steroids with interesting biological properties, namely cytotoxicity against cancer cells (Aiello et al., 1995; El-Gamal et al., 2004). On the other hand, cholestane-3β,5α,6β-triol has been extensively studied, proving to display cytotoxicity (Carvalho et al., 2010a) and angiotoxicity (Imai et al., 1980; Peng et al., 1985) and has been suggested to participate in the in vivo genesis of pathological situations such as osteoporosis (Hongmei et al., 2005) and atherosclerosis (Imai et al., 1980; Peng et al., 1985). Such findings validate the 3β,5α,6β-hydroxylation pattern as biologically important, and in this context a recently new protocol for the straightforward synthesis of 5α,6β-dihydroxy-steroids from a broad diversity of 3β-hydroxy-Δ5-steroids was accomplished by our group (Carvalho et al., 2010b).
In addition, 3β,5α,6β-trihydroxy steroids are valuable intermediates for the synthesis of Δ4-3,6-dione-steroids, widely present in natural products (Tischler et al., 1988; Aiello et al., 1991; Pardo et al., 2000) and with proved utility as molecular probes for the study of aromatase inhibition (Numazawa & Tachibana, 1994; Pérez-Ornelas et al., 2005; Nagaoka & Numazawa, 2004). In fact, compound (I) is a synthetically valuable intermediate (Ehrenstein, 1939) of the biologically active androst-4-ene-3,6,17-trione compound, (Anthony et al., 1999) which is a well known aromatase inhibitor (Numazawa et al., 1987). Due to the interest of our group in the cytotoxic potential of steroids, a series of oxygenated steroids were further prepared and evaluated on HT-29 cancer cells (Carvalho et al., 2010a). Compound (I) showed no relevant cytotoxicity (IC50 > 50µM), in contrast to cholestane-3β,5α,6β-triol and other cholestane derivatives. Such result points to the importance of a C-17 cholesteryl type side chain for cytotoxicity thus the importance of X-ray difraction structural studies on such compounds.
Bond lengths and valency angles are within the range of expected values for this type of compounds (Allen et al.,1987) with the exception of bonds C2–C3 and C3–C4 [1.510 (3); 1.518 (3) Å)] which are significantely smaller than the Csp3–Csp3 average value [1.535 Å].
Rings A to C have slightly flattened chair conformations, as shown by the Cremer & Pople (1975) parameters [ring A: Q = 0.570 (2) Å, θ = 5.6 (2)° and ϕ = 299 (2)°; B: Q = 0.5705 (19) Å, θ = 3.4 (2)° and ϕ = 255 (3)°; C: Q = 0.5727 (19) Å, θ = 7.04 (19)° and ϕ = 271.3 (16)°].
Ring D has a 14-α envelope conformation [Cremer & Pople (1975) parameters q2 = 0.415 (2) Å and ϕ2 = 213.5 (3)° and asymmetry parameters (Duax & Norton, 1975; Altona et al., 1968) ΔCs(14) =2.4 (2)°; ΔC2(13,14)=17.8 (2)°; ϕm=42.6 (1)°; Δ=30.6 (4)°]. All rings are fused trans.
In order to gain some insight on how the crystal packing of (I) might affect the molecular geometry we have performed quantum chemical calculations on the equilibrium geometry of the free molecule. The calculations were performed with the computer program GAMESS (Schmidt et al., 1993).
The ab-initio calculations reproduce well the observed experimental bond lengths and valency angles of the molecule. Also, the calculated conformation of the rings are very close to the experimental values.
The molecules are hydrogen-bonded via the hydroxyl and carbonyl groups forming a three-dimension hydrogen bond pattern. Each hydroxyl group acts as both donnor and acceptor, thus full potential for hydrogen bonding is achieved in the crystal struture. In addition to these bonds, three weak intramolecular interactions can be spotted involving atoms O5 and O6 and CH, CH2 and CH3 groups.