organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages o1056-o1057

3β,5α,6β-Trihy­dr­oxy­androstan-17-one

aCEMDRX, Department of Physics, University of Coimbra, P-3004-516 Coimbra, Portugal, bCentre for Neuroscience and Cell Biology, University of Coimbra, P-3004-517 Coimbra, Portugal, and cFaculty of Pharmacy, University of Coimbra, P-3000-548 Coimbra, Portugal
*Correspondence e-mail: jap@pollux.fis.uc.pt

(Received 24 March 2011; accepted 29 March 2011; online 7 April 2011)

The title compound, C19H30O4, is an androstan-17-one derivative synthesized from the dehydro­epiandrosterone through a sequential addition of an oxidant, followed by a trans-diaxial opening of the epoxide generated, with Bi(OTf)3 (OTf is trifluoro­methane­sulfonate). The six-membered rings have a slightly flattened chair conformation, while the five-membered ring adopts a 14-α envelope conformation. All rings are trans fused. In the crystal, the mol­ecules are connected by O—H⋯O hydrogen bonds involving the hydroxyl and carbonyl groups, forming a three-dimensional network. A quantum mechanical ab initio Roothan Hartree–Fock calculation of the free mol­ecule gives bond lengths, valency angles and ring torsion angles of the free molecule at equilibrium geometry (energy minimum) close to the experimental values.

Related literature

For the synthesis of the title compound, see: Carvalho et al. (2010b[Carvalho, J. F. S., Silva, M. M. C. & Sá e Melo, M. L. (2010b). Tetrahedron, 66, 2455-2462.]). For 3β,5α,6β-hy­droxy­lation pattern occurance in several natural products, see: Mizushina et al. (1999[Mizushina, Y., Takahashi, N., Hanashima, L., Koshino, H., Esumi, Y., Uzawa, J., Sugawara, F. & Sakaguchi, K. (1999). Bioorg. Med. Chem. 7, 2047-2052.]); Hata et al. (2002[Hata, K., Sugawara, F., Ohisa, N., Takahashi, S. & Hori, K. (2002). Biol. Pharm. Bull. 25, 1040-1044.]); Tanaka et al. (2002[Tanaka, J., Trianto, A., Musman, M., Issa, H. H., Ohtani, I. I., Ichiba, T., Higa, T., Yoshida, W. Y. & Scheuer, P. J. (2002). Tetrahedron, 58, 6259-6266.]); Sun et al. (2006[Sun, Y., Tian, L., Huang, J., Li, W. & Pei, Y.-H. (2006). Nat. Prod. Res. 20, 381-384.]). For natural products as scaffolds for drug discovery, see: Li & Vederas (2009[Li, J. W. H. & Vederas, J. C. (2009). Science, 325, 161-165.]); Rosén et al. (2009[Rosén, J., Gottfries, J., Muresan, S., Backlund, A. & Oprea, T. I. (2009). J. Med. Chem. 52, 1953-1962.]). For angiotoxicity of 3β,5α,6β-trihy­droxy steroids, see: Imai et al. (1980[Imai, H., Werthessen, N. T., Subramanyam, V., LeQuesne, P. W., Soloway, A. H. & Kanisawa, M. (1980). Science, 207, 651-653.]); Peng et al. (1985[Peng, S. K., Taylor, C. B., Hill, J. C. & Morin, R. J. (1985). Atherosclerosis, 54, 121-133.]). For the in vivo genesis of osteoporosis and atherosclerosis, see: Hongmei et al. (2005[Hongmei, L., Lan, Y., Shanjin, X., Kui, W. & Tianlan, Z. (2005). J. Cell. Biochem. 96, 198-208.]); Imai et al. (1980[Imai, H., Werthessen, N. T., Subramanyam, V., LeQuesne, P. W., Soloway, A. H. & Kanisawa, M. (1980). Science, 207, 651-653.]); Peng et al. (1985[Peng, S. K., Taylor, C. B., Hill, J. C. & Morin, R. J. (1985). Atherosclerosis, 54, 121-133.]). For the cytotoxicity of steroids with a 3β,5α,6β-hy­droxy­lation motif against cancer cells, see: Aiello et al. (1995[Aiello, A., Fattorusso, E., Menna, M., Carnuccio, R. & Iuvone, T. (1995). Steroids, 60, 666-673.]); Carvalho et al. (2010a[Carvalho, J. F. S., Silva, M. M. C., Moreira, J. N., Simões, S. & Sá e Melo, M. L. (2010a). J. Med. Chem 53, 7632-7638.]); El-Gamal et al. (2004[El-Gamal, A. A. H., Wang, S.-K., Dai, C.-F. & Duh, C.-Y. (2004). J. Nat. Prod. 67, 1455-1458.]). For the use of 3β,5α,6β-trihy­droxy steroids in the synthesis of Δ4-3,6-dione steroids. see: Tischler et al. (1988[Tischler, M., Ayer, S. W., Andersen, R. J., Mitchell, J. F. & Clardy, J. (1988). Can. J. Chem. 66, 1173-1178.]); Aiello et al. (1991[Aiello, A., Fattorusso, E., Magno, S., Menna, M. & Pansini, M. (1991). J. Nat. Prod. 54, 281-285.]); Pardo et al. (2000[Pardo, F., Perich, F., Torres, R. & Delle Monache, F. (2000). Biochem. Syst. Ecol. 28, 911-913.]). For their use as mol­ecular probes for the study of aromatase inhibition, see: Numazawa & Tachibana (1994[Numazawa, M. & Tachibana, M. (1994). Steroids, 59, 579-585.]); Pérez-Ornelas et al. (2005[Pérez-Ornelas, V., Cabeza, M., Bratoeff, E., Heuze, I., Sánchez, M., Ramírez, E. & Naranjo-Rodríguez, E. (2005). Steroids, 70, 217-224.]); Nagaoka & Numazawa (2004[Nagaoka, M. & Numazawa, M. (2004). Chem. Pharm. Bull. 52, 983-985.]). For the use of the title compound as an inter­mediate in the synthesis of the aromatase inhibitor androst-4-ene-3,6,17-trione, see: Ehrenstein (1939[Ehrenstein, M. (1939). J. Org. Chem. 4, 506-518.]); Numazawa et al. (1987[Numazawa, M., Tsuji, M. & Mutsumi, A. (1987). J. Steroid Biochem. 28, 337-344.]); Anthony et al. (1999[Anthony, A., Jaskólski, M. & Nangia, A. (1999). Acta Cryst. C55, 787-789.]). For related structures, see Anthony et al. (1999[Anthony, A., Jaskólski, M. & Nangia, A. (1999). Acta Cryst. C55, 787-789.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) and for asymmetry parameters, see: Duax & Norton (1975[Duax, W. L. & Norton, D. A. (1975). Atlas of Steroid Structure. New York: Plenum Press.]); Altona et al. (1968[Altona, C., Geise, H. J. & Romers, C. (1968). Tetrahedron, 24, 13-32.]). For reference bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, S1-19.]). For the program GAMESS used to perform the quantum chemical calculations, see: Schmidt et al. (1993[Schmidt, M. W., Baldrige, K. K., Boatz, J. A., Elbert, S. T., Gordon, M. S., Jensen, J. J., Koseki, S., Matsunaga, N., Nguyen, K. A., Sue, S., Windus, T. L., Dupuis, M. & Montgomery, J. A. (1993). J. Comput. Chem. 14, 1347-1363.]).

[Scheme 1]

Experimental

Crystal data
  • C19H30O4

  • Mr = 322.43

  • Orthorhombic, P 21 21 21

  • a = 5.8132 (1) Å

  • b = 13.3880 (3) Å

  • c = 21.3298 (5) Å

  • V = 1660.04 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.23 × 0.13 × 0.13 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000[Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.]) Tmin = 0.937, Tmax = 1.00

  • 40718 measured reflections

  • 2276 independent reflections

  • 1874 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.098

  • S = 1.04

  • 2276 reflections

  • 213 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O17i 0.82 2.11 2.931 (2) 175
O5—H5⋯O3ii 0.82 1.99 2.8063 (19) 171
O6—H6A⋯O5iii 0.82 2.39 3.120 (2) 148
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y+1, z-{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (iii) x-1, y, z.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Recently, the importance of natural products as scaffolds for drug discovery and design has been a subject of renewed interest (Li & Vederas, 2009; Rosén et al., 2009). The 3β,5α,6β-hydroxylation pattern is found in several natural products (Mizushina et al., 1999; Hata et al., 2002; Tanaka et al., 2002; Sun et al., 2006) and also in human tissues, mainly in an oxidation product of cholesterol. The same hydroxylation motif is present in several natural steroids with interesting biological properties, namely cytotoxicity against cancer cells (Aiello et al., 1995; El-Gamal et al., 2004). On the other hand, cholestane-3β,5α,6β-triol has been extensively studied, proving to display cytotoxicity (Carvalho et al., 2010a) and angiotoxicity (Imai et al., 1980; Peng et al., 1985) and has been suggested to participate in the in vivo genesis of pathological situations such as osteoporosis (Hongmei et al., 2005) and atherosclerosis (Imai et al., 1980; Peng et al., 1985). Such findings validate the 3β,5α,6β-hydroxylation pattern as biologically important, and in this context a recently new protocol for the straightforward synthesis of 5α,6β-dihydroxy-steroids from a broad diversity of 3β-hydroxy-Δ5-steroids was accomplished by our group (Carvalho et al., 2010b).

In addition, 3β,5α,6β-trihydroxy steroids are valuable intermediates for the synthesis of Δ4-3,6-dione-steroids, widely present in natural products (Tischler et al., 1988; Aiello et al., 1991; Pardo et al., 2000) and with proved utility as molecular probes for the study of aromatase inhibition (Numazawa & Tachibana, 1994; Pérez-Ornelas et al., 2005; Nagaoka & Numazawa, 2004). In fact, compound (I) is a synthetically valuable intermediate (Ehrenstein, 1939) of the biologically active androst-4-ene-3,6,17-trione compound, (Anthony et al., 1999) which is a well known aromatase inhibitor (Numazawa et al., 1987). Due to the interest of our group in the cytotoxic potential of steroids, a series of oxygenated steroids were further prepared and evaluated on HT-29 cancer cells (Carvalho et al., 2010a). Compound (I) showed no relevant cytotoxicity (IC50 > 50µM), in contrast to cholestane-3β,5α,6β-triol and other cholestane derivatives. Such result points to the importance of a C-17 cholesteryl type side chain for cytotoxicity thus the importance of X-ray difraction structural studies on such compounds.

Bond lengths and valency angles are within the range of expected values for this type of compounds (Allen et al.,1987) with the exception of bonds C2–C3 and C3–C4 [1.510 (3); 1.518 (3) Å)] which are significantely smaller than the Csp3–Csp3 average value [1.535 Å].

Rings A to C have slightly flattened chair conformations, as shown by the Cremer & Pople (1975) parameters [ring A: Q = 0.570 (2) Å, θ = 5.6 (2)° and ϕ = 299 (2)°; B: Q = 0.5705 (19) Å, θ = 3.4 (2)° and ϕ = 255 (3)°; C: Q = 0.5727 (19) Å, θ = 7.04 (19)° and ϕ = 271.3 (16)°].

Ring D has a 14-α envelope conformation [Cremer & Pople (1975) parameters q2 = 0.415 (2) Å and ϕ2 = 213.5 (3)° and asymmetry parameters (Duax & Norton, 1975; Altona et al., 1968) ΔCs(14) =2.4 (2)°; ΔC2(13,14)=17.8 (2)°; ϕm=42.6 (1)°; Δ=30.6 (4)°]. All rings are fused trans.

In order to gain some insight on how the crystal packing of (I) might affect the molecular geometry we have performed quantum chemical calculations on the equilibrium geometry of the free molecule. The calculations were performed with the computer program GAMESS (Schmidt et al., 1993).

The ab-initio calculations reproduce well the observed experimental bond lengths and valency angles of the molecule. Also, the calculated conformation of the rings are very close to the experimental values.

The molecules are hydrogen-bonded via the hydroxyl and carbonyl groups forming a three-dimension hydrogen bond pattern. Each hydroxyl group acts as both donnor and acceptor, thus full potential for hydrogen bonding is achieved in the crystal struture. In addition to these bonds, three weak intramolecular interactions can be spotted involving atoms O5 and O6 and CH, CH2 and CH3 groups.

Related literature top

For the synthesis of the title compound, see: Carvalho et al. (2010b). For 3β,5α,6β-hydroxylation pattern occurance in several natural products, see: Mizushina et al. (1999); Hata et al. (2002); Tanaka et al. (2002); Sun et al. (2006). For natural products as scaffolds for drug discovery, see: Li & Vederas (2009); Rosén et al. (2009). For angiotoxicity of 3β,5α,6β-trihydroxy steroids, see: Imai et al. (1980); Peng et al. (1985). For the in vivo genesis of osteoporosis and atherosclerosis, see: Hongmei et al. (2005); Imai et al. (1980); Peng et al. (1985). For the cytotoxicity of steroids with a 3β,5α,6β-hydroxylation motif against cancer cells, see: Aiello et al. (1995); Carvalho et al. (2010a); El-Gamal et al. (2004). For the use of 3β,5α,6β-trihydroxy steroids in the synthesis of Δ4-3,6-dione steroids. see: Tischler et al. (1988); Aiello et al. (1991); Pardo et al. (2000). For their use as molecular probes for the study of aromatase inhibition, see: Numazawa & Tachibana (1994); Pérez-Ornelas et al. (2005); Nagaoka & Numazawa (2004). For the use of the title compound as an intermediate in the synthesis of the aromatase inhibitor androst-4-ene-3,6,17-trione, see: Ehrenstein (1939); Numazawa et al. (1987); Anthony et al. (1999). For related structures, see Anthony et al. (1999). For puckering parameters, see: Cremer & Pople (1975) and for asymmetry parameters, see: Duax & Norton (1975); Altona et al. (1968). For reference bond-length data, see: Allen et al. (1987). For the program GAMESS used to perform the quantum chemical calculations, see: Schmidt et al. (1993).

Experimental top

Synthesis of (I) was performed using a new and recently reported (Carvalho et al., 2010b) fast and high yielding sequential chemical approach for the straightforward preparation of 5α,6β-dihydroxy-steroids using 3β-hydroxy-Δ5-steroids as raw materials. The protocol involves two steps: (i) formation of the epoxide from Δ5-steroids, using MMPP as oxidative agent; and (ii) trans-diaxial epoxide opening with Bi(OTf)3 in commercial acetone. Crystallization from ethanol at room temperature afforded colorless crystals suitable for X-ray analysis. Analytical data of compound (I) is in accordance with the literature (Carvalho et al., 2010b).

Refinement top

All hydrogen atoms were refined as riding on their parent atoms using SHELXL97 defaults. The absolute configuration was not determined from the X-ray data, as the molecule lacks any strong anomalous scatterer atom at the Mo Kα wavelength, but was known from the synthetic route. Friedel pairs were merged before refinement.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEPII plot of the title compound. Displacement ellipsoids are drawn at the 50% level.
3β,5α,6β-Trihydroxyandrostan-17-one top
Crystal data top
C19H30O4Dx = 1.290 Mg m3
Mr = 322.43Melting point: 574 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 6253 reflections
a = 5.8132 (1) Åθ = 3.1–30.3°
b = 13.3880 (3) ŵ = 0.09 mm1
c = 21.3298 (5) ÅT = 293 K
V = 1660.04 (6) Å3Prism, colourless
Z = 40.23 × 0.13 × 0.13 mm
F(000) = 704
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2276 independent reflections
Radiation source: fine-focus sealed tube1874 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 27.9°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
h = 76
Tmin = 0.937, Tmax = 1.00k = 1717
40718 measured reflectionsl = 2725
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0563P)2 + 0.2093P]
where P = (Fo2 + 2Fc2)/3
2276 reflections(Δ/σ)max < 0.001
213 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C19H30O4V = 1660.04 (6) Å3
Mr = 322.43Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.8132 (1) ŵ = 0.09 mm1
b = 13.3880 (3) ÅT = 293 K
c = 21.3298 (5) Å0.23 × 0.13 × 0.13 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2276 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
1874 reflections with I > 2σ(I)
Tmin = 0.937, Tmax = 1.00Rint = 0.031
40718 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.04Δρmax = 0.20 e Å3
2276 reflectionsΔρmin = 0.20 e Å3
213 parameters
Special details top

Experimental. IR (film) 3442, 3348, 2942, 2861, 1723, 1471, 1373, 1077, 1047, 1030, 1001, 960, 874 cm-1; 1H NMR (300 MHz, DMSO-d6) δ p.p.m. 0.77 (3H, s, 18-CH3), 1.04 (3H, s, 19-CH3), 2.36 (1H, dd, J=19.0, 8.2 Hz), 3.35 (1H, m, 6α-H), 3.74 (1H, s, OH), 3.78 (1H, m, 3α-H), 4.22 (1H, d, J=5.8 Hz, OH), 4.51 (1H, d, J=4.3 Hz, OH); 13C NMR (75 MHz, DMSO-d6) δ p.p.m. 13.4, 16.2, 20.0, 21.4 (CH2), 29.6, 31.0 (CH2), 31.5 (CH2), 32.0 (CH2), 33.3 (CH2), 35.3 (CH2), 37.9 (C-10), 40.8 (CH2), 44.8, 47.2 (C-13), 50.5, 65.6, 73.8, 74.3 (C-5), 220.0 (C-17); MS m/z (%): 321.3 (9) [M—H]+, 293.2 (20), 280.4 (23), 265.5 (100), 250.2 (13), 90.3 (54).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.4447 (4)0.39692 (11)0.03066 (6)0.0551 (5)
H30.41760.45620.03710.083*
O50.8749 (2)0.26939 (10)0.10844 (6)0.0344 (3)
H50.87880.21980.08600.052*
O60.3172 (3)0.20863 (13)0.18197 (7)0.0490 (4)
H6A0.23720.21820.15090.074*
O171.1224 (3)0.38845 (11)0.44942 (6)0.0396 (4)
C10.7513 (4)0.47124 (14)0.11921 (8)0.0304 (4)
H1A0.75550.53450.14140.036*
H1B0.90850.45270.10930.036*
C20.6166 (4)0.48453 (14)0.05810 (8)0.0358 (5)
H2A0.46420.50980.06760.043*
H2B0.69400.53340.03200.043*
C30.5956 (4)0.38742 (14)0.02260 (8)0.0334 (5)
H3A0.74850.36830.00750.040*
C40.5032 (4)0.30359 (13)0.06337 (8)0.0298 (4)
H4A0.50940.24140.04000.036*
H4B0.34330.31700.07330.036*
C50.6392 (3)0.29152 (13)0.12470 (8)0.0245 (4)
C60.5535 (4)0.20277 (14)0.16369 (9)0.0326 (5)
H60.57430.14190.13880.039*
C70.6922 (4)0.19194 (13)0.22384 (8)0.0333 (5)
H7A0.84780.17180.21330.040*
H7B0.62470.13950.24920.040*
C80.7015 (3)0.28834 (13)0.26229 (8)0.0248 (4)
H80.54540.30490.27620.030*
C90.7942 (3)0.37543 (13)0.22212 (7)0.0226 (4)
H90.94690.35490.20760.027*
C100.6459 (3)0.39125 (12)0.16226 (7)0.0219 (4)
C110.8298 (4)0.47172 (13)0.26035 (8)0.0332 (5)
H11A0.90740.52050.23420.040*
H11B0.68050.49890.27140.040*
C120.9702 (4)0.45672 (14)0.32058 (8)0.0329 (5)
H12A1.12800.44020.31000.039*
H12B0.97120.51810.34480.039*
C130.8657 (3)0.37305 (14)0.35939 (8)0.0267 (4)
C140.8548 (3)0.27739 (13)0.31973 (8)0.0267 (4)
H141.01090.26650.30380.032*
C150.8117 (4)0.19464 (15)0.36767 (9)0.0418 (5)
H15A0.85610.12990.35120.050*
H15B0.65130.19250.38010.050*
C160.9667 (5)0.22585 (15)0.42264 (10)0.0460 (6)
H16A0.89300.21100.46230.055*
H16B1.11260.19080.42090.055*
C171.0028 (4)0.33729 (15)0.41549 (8)0.0307 (4)
C180.6314 (4)0.40438 (18)0.38719 (9)0.0436 (5)
H18A0.65030.46410.41150.065*
H18B0.57390.35190.41350.065*
H18C0.52440.41660.35380.065*
C190.4042 (3)0.42658 (15)0.18101 (9)0.0331 (5)
H19A0.41180.49440.19550.050*
H19B0.34600.38470.21390.050*
H19C0.30380.42270.14540.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0995 (15)0.0344 (8)0.0314 (8)0.0083 (10)0.0306 (9)0.0014 (6)
O50.0335 (7)0.0368 (8)0.0328 (7)0.0077 (6)0.0005 (6)0.0113 (6)
O60.0397 (8)0.0592 (10)0.0482 (8)0.0219 (9)0.0106 (7)0.0154 (8)
O170.0437 (8)0.0463 (8)0.0289 (7)0.0028 (8)0.0082 (7)0.0058 (6)
C10.0425 (11)0.0251 (9)0.0235 (9)0.0085 (9)0.0074 (8)0.0012 (7)
C20.0548 (13)0.0278 (9)0.0247 (9)0.0095 (10)0.0092 (10)0.0023 (8)
C30.0461 (12)0.0328 (10)0.0213 (9)0.0015 (10)0.0054 (9)0.0025 (8)
C40.0398 (10)0.0236 (9)0.0260 (9)0.0050 (9)0.0069 (8)0.0041 (7)
C50.0256 (9)0.0230 (9)0.0250 (8)0.0013 (8)0.0021 (7)0.0039 (7)
C60.0417 (11)0.0227 (9)0.0335 (10)0.0083 (9)0.0086 (9)0.0010 (8)
C70.0468 (12)0.0202 (9)0.0330 (10)0.0055 (9)0.0082 (9)0.0033 (7)
C80.0257 (9)0.0237 (8)0.0251 (8)0.0010 (8)0.0020 (7)0.0016 (7)
C90.0249 (9)0.0215 (8)0.0213 (8)0.0010 (7)0.0017 (7)0.0010 (7)
C100.0249 (9)0.0193 (8)0.0216 (8)0.0004 (7)0.0009 (7)0.0018 (7)
C110.0504 (13)0.0231 (9)0.0262 (9)0.0037 (9)0.0092 (9)0.0002 (7)
C120.0458 (12)0.0289 (9)0.0240 (9)0.0060 (9)0.0066 (9)0.0018 (7)
C130.0293 (9)0.0294 (9)0.0215 (8)0.0035 (8)0.0006 (8)0.0011 (7)
C140.0287 (10)0.0256 (9)0.0258 (8)0.0003 (8)0.0008 (8)0.0008 (7)
C150.0570 (14)0.0325 (11)0.0359 (10)0.0053 (11)0.0098 (10)0.0095 (9)
C160.0661 (16)0.0387 (11)0.0332 (10)0.0014 (12)0.0136 (11)0.0086 (9)
C170.0310 (10)0.0391 (11)0.0220 (9)0.0048 (9)0.0027 (8)0.0005 (8)
C180.0364 (11)0.0598 (14)0.0346 (10)0.0160 (11)0.0025 (10)0.0060 (10)
C190.0303 (11)0.0382 (11)0.0306 (9)0.0076 (9)0.0034 (9)0.0043 (8)
Geometric parameters (Å, º) top
O3—C31.441 (2)C8—H80.9800
O3—H30.8200C9—C111.539 (2)
O5—C51.444 (2)C9—C101.555 (2)
O5—H50.8200C9—H90.9800
O6—C61.430 (3)C10—C191.535 (3)
O6—H6A0.8200C11—C121.535 (2)
O17—C171.215 (2)C11—H11A0.9700
C1—C21.531 (2)C11—H11B0.9700
C1—C101.538 (2)C12—C131.520 (3)
C1—H1A0.9700C12—H12A0.9700
C1—H1B0.9700C12—H12B0.9700
C2—C31.510 (3)C13—C171.515 (3)
C2—H2A0.9700C13—C141.536 (2)
C2—H2B0.9700C13—C181.543 (3)
C3—C41.518 (3)C14—C151.528 (2)
C3—H3A0.9800C14—H140.9800
C4—C51.537 (2)C15—C161.537 (3)
C4—H4A0.9700C15—H15A0.9700
C4—H4B0.9700C15—H15B0.9700
C5—C61.533 (3)C16—C171.514 (3)
C5—C101.558 (2)C16—H16A0.9700
C6—C71.522 (3)C16—H16B0.9700
C6—H60.9800C18—H18A0.9600
C7—C81.530 (2)C18—H18B0.9600
C7—H7A0.9700C18—H18C0.9600
C7—H7B0.9700C19—H19A0.9600
C8—C141.522 (2)C19—H19B0.9600
C8—C91.544 (2)C19—H19C0.9600
C3—O3—H3109.5C19—C10—C1107.80 (16)
C5—O5—H5109.5C19—C10—C9109.59 (14)
C6—O6—H6A109.5C1—C10—C9111.35 (14)
C2—C1—C10112.67 (15)C19—C10—C5112.05 (14)
C2—C1—H1A109.1C1—C10—C5107.44 (13)
C10—C1—H1A109.1C9—C10—C5108.61 (13)
C2—C1—H1B109.1C12—C11—C9113.91 (15)
C10—C1—H1B109.1C12—C11—H11A108.8
H1A—C1—H1B107.8C9—C11—H11A108.8
C3—C2—C1111.62 (15)C12—C11—H11B108.8
C3—C2—H2A109.3C9—C11—H11B108.8
C1—C2—H2A109.3H11A—C11—H11B107.7
C3—C2—H2B109.3C13—C12—C11109.85 (16)
C1—C2—H2B109.3C13—C12—H12A109.7
H2A—C2—H2B108.0C11—C12—H12A109.7
O3—C3—C2111.65 (16)C13—C12—H12B109.7
O3—C3—C4107.56 (16)C11—C12—H12B109.7
C2—C3—C4112.23 (14)H12A—C12—H12B108.2
O3—C3—H3A108.4C17—C13—C12116.91 (17)
C2—C3—H3A108.4C17—C13—C14101.13 (14)
C4—C3—H3A108.4C12—C13—C14109.33 (14)
C3—C4—C5112.54 (15)C17—C13—C18104.28 (15)
C3—C4—H4A109.1C12—C13—C18111.22 (17)
C5—C4—H4A109.1C14—C13—C18113.69 (16)
C3—C4—H4B109.1C8—C14—C15120.83 (16)
C5—C4—H4B109.1C8—C14—C13112.78 (14)
H4A—C4—H4B107.8C15—C14—C13104.05 (14)
O5—C5—C6106.23 (15)C8—C14—H14106.1
O5—C5—C4107.77 (14)C15—C14—H14106.1
C6—C5—C4112.08 (14)C13—C14—H14106.1
O5—C5—C10106.01 (13)C14—C15—C16102.55 (16)
C6—C5—C10113.17 (13)C14—C15—H15A111.3
C4—C5—C10111.12 (14)C16—C15—H15A111.3
O6—C6—C7106.51 (16)C14—C15—H15B111.3
O6—C6—C5114.67 (17)C16—C15—H15B111.3
C7—C6—C5111.02 (15)H15A—C15—H15B109.2
O6—C6—H6108.1C17—C16—C15105.81 (17)
C7—C6—H6108.1C17—C16—H16A110.6
C5—C6—H6108.1C15—C16—H16A110.6
C6—C7—C8112.96 (15)C17—C16—H16B110.6
C6—C7—H7A109.0C15—C16—H16B110.6
C8—C7—H7A109.0H16A—C16—H16B108.7
C6—C7—H7B109.0O17—C17—C16125.09 (19)
C8—C7—H7B109.0O17—C17—C13126.38 (17)
H7A—C7—H7B107.8C16—C17—C13108.53 (17)
C14—C8—C7111.77 (14)C13—C18—H18A109.5
C14—C8—C9108.37 (14)C13—C18—H18B109.5
C7—C8—C9110.60 (14)H18A—C18—H18B109.5
C14—C8—H8108.7C13—C18—H18C109.5
C7—C8—H8108.7H18A—C18—H18C109.5
C9—C8—H8108.7H18B—C18—H18C109.5
C11—C9—C8112.67 (13)C10—C19—H19A109.5
C11—C9—C10113.30 (14)C10—C19—H19B109.5
C8—C9—C10111.41 (14)H19A—C19—H19B109.5
C11—C9—H9106.3C10—C19—H19C109.5
C8—C9—H9106.3H19A—C19—H19C109.5
C10—C9—H9106.3H19B—C19—H19C109.5
C10—C1—C2—C356.4 (2)O5—C5—C10—C159.79 (17)
C1—C2—C3—O3172.65 (17)C6—C5—C10—C1175.84 (15)
C1—C2—C3—C451.8 (2)C4—C5—C10—C157.03 (19)
O3—C3—C4—C5175.47 (15)O5—C5—C10—C960.77 (17)
C2—C3—C4—C552.3 (2)C6—C5—C10—C955.28 (19)
C3—C4—C5—O560.09 (19)C4—C5—C10—C9177.60 (14)
C3—C4—C5—C6176.63 (16)C8—C9—C11—C1250.7 (2)
C3—C4—C5—C1055.7 (2)C10—C9—C11—C12178.37 (16)
O5—C5—C6—O6177.18 (15)C9—C11—C12—C1352.8 (2)
C4—C5—C6—O659.7 (2)C11—C12—C13—C17170.85 (16)
C10—C5—C6—O666.9 (2)C11—C12—C13—C1456.8 (2)
O5—C5—C6—C762.06 (18)C11—C12—C13—C1869.57 (19)
C4—C5—C6—C7179.52 (15)C7—C8—C14—C1555.8 (2)
C10—C5—C6—C753.9 (2)C9—C8—C14—C15177.90 (16)
O6—C6—C7—C872.2 (2)C7—C8—C14—C13179.62 (16)
C5—C6—C7—C853.2 (2)C9—C8—C14—C1358.24 (19)
C6—C7—C8—C14176.03 (16)C17—C13—C14—C8173.72 (15)
C6—C7—C8—C955.2 (2)C12—C13—C14—C862.4 (2)
C14—C8—C9—C1151.4 (2)C18—C13—C14—C862.6 (2)
C7—C8—C9—C11174.26 (16)C17—C13—C14—C1541.03 (18)
C14—C8—C9—C10179.96 (14)C12—C13—C14—C15164.95 (17)
C7—C8—C9—C1057.1 (2)C18—C13—C14—C1570.1 (2)
C2—C1—C10—C1962.94 (19)C8—C14—C15—C16168.04 (17)
C2—C1—C10—C9176.82 (15)C13—C14—C15—C1640.2 (2)
C2—C1—C10—C558.0 (2)C14—C15—C16—C1723.2 (2)
C11—C9—C10—C1962.1 (2)C15—C16—C17—O17177.7 (2)
C8—C9—C10—C1966.23 (18)C15—C16—C17—C132.2 (2)
C11—C9—C10—C157.1 (2)C12—C13—C17—O1734.9 (3)
C8—C9—C10—C1174.59 (14)C14—C13—C17—O17153.5 (2)
C11—C9—C10—C5175.23 (15)C18—C13—C17—O1788.3 (2)
C8—C9—C10—C556.48 (18)C12—C13—C17—C16145.00 (19)
O5—C5—C10—C19178.02 (15)C14—C13—C17—C1626.4 (2)
C6—C5—C10—C1965.9 (2)C18—C13—C17—C1691.8 (2)
C4—C5—C10—C1961.19 (19)C19—C10—C13—C181.68 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O17i0.822.112.931 (2)175
O5—H5···O3ii0.821.992.8063 (19)171
O6—H6A···O5iii0.822.393.120 (2)148
Symmetry codes: (i) x+3/2, y+1, z1/2; (ii) x+1/2, y+1/2, z; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC19H30O4
Mr322.43
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)5.8132 (1), 13.3880 (3), 21.3298 (5)
V3)1660.04 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.23 × 0.13 × 0.13
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.937, 1.00
No. of measured, independent and
observed [I > 2σ(I)] reflections
40718, 2276, 1874
Rint0.031
(sin θ/λ)max1)0.659
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.098, 1.04
No. of reflections2276
No. of parameters213
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.20

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O17i0.822.112.931 (2)174.9
O5—H5···O3ii0.821.992.8063 (19)170.5
O6—H6A···O5iii0.822.393.120 (2)148.2
Symmetry codes: (i) x+3/2, y+1, z1/2; (ii) x+1/2, y+1/2, z; (iii) x1, y, z.
 

Acknowledgements

This work was supported by the Fundação para a Ciência e Tecnologia. We gratefully acknowledge the LCA–UC for a grant of computer time in the Milipeia cluster and Mr Carlos Pereira for help with the analysis of the output of the GAMESS code.

References

First citationAiello, A., Fattorusso, E., Magno, S., Menna, M. & Pansini, M. (1991). J. Nat. Prod. 54, 281–285.  CrossRef CAS Google Scholar
First citationAiello, A., Fattorusso, E., Menna, M., Carnuccio, R. & Iuvone, T. (1995). Steroids, 60, 666–673.  CrossRef CAS PubMed Web of Science Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, S1–19.  CrossRef Google Scholar
First citationAltona, C., Geise, H. J. & Romers, C. (1968). Tetrahedron, 24, 13–32.  CrossRef CAS Web of Science Google Scholar
First citationAnthony, A., Jaskólski, M. & Nangia, A. (1999). Acta Cryst. C55, 787–789.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarvalho, J. F. S., Silva, M. M. C., Moreira, J. N., Simões, S. & Sá e Melo, M. L. (2010a). J. Med. Chem 53, 7632–7638.  Web of Science CrossRef CAS PubMed Google Scholar
First citationCarvalho, J. F. S., Silva, M. M. C. & Sá e Melo, M. L. (2010b). Tetrahedron, 66, 2455–2462.  Web of Science CrossRef CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDuax, W. L. & Norton, D. A. (1975). Atlas of Steroid Structure. New York: Plenum Press.  Google Scholar
First citationEhrenstein, M. (1939). J. Org. Chem. 4, 506–518.  CrossRef CAS Google Scholar
First citationEl-Gamal, A. A. H., Wang, S.-K., Dai, C.-F. & Duh, C.-Y. (2004). J. Nat. Prod. 67, 1455–1458.  Web of Science PubMed CAS Google Scholar
First citationHata, K., Sugawara, F., Ohisa, N., Takahashi, S. & Hori, K. (2002). Biol. Pharm. Bull. 25, 1040–1044.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHongmei, L., Lan, Y., Shanjin, X., Kui, W. & Tianlan, Z. (2005). J. Cell. Biochem. 96, 198–208.  Web of Science PubMed Google Scholar
First citationImai, H., Werthessen, N. T., Subramanyam, V., LeQuesne, P. W., Soloway, A. H. & Kanisawa, M. (1980). Science, 207, 651–653.  CrossRef CAS PubMed Web of Science Google Scholar
First citationLi, J. W. H. & Vederas, J. C. (2009). Science, 325, 161–165.  Web of Science CrossRef PubMed Google Scholar
First citationMizushina, Y., Takahashi, N., Hanashima, L., Koshino, H., Esumi, Y., Uzawa, J., Sugawara, F. & Sakaguchi, K. (1999). Bioorg. Med. Chem. 7, 2047–2052.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNagaoka, M. & Numazawa, M. (2004). Chem. Pharm. Bull. 52, 983–985.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNumazawa, M. & Tachibana, M. (1994). Steroids, 59, 579–585.  CrossRef CAS PubMed Web of Science Google Scholar
First citationNumazawa, M., Tsuji, M. & Mutsumi, A. (1987). J. Steroid Biochem. 28, 337–344.  CrossRef CAS PubMed Web of Science Google Scholar
First citationPardo, F., Perich, F., Torres, R. & Delle Monache, F. (2000). Biochem. Syst. Ecol. 28, 911–913.  CrossRef PubMed CAS Google Scholar
First citationPeng, S. K., Taylor, C. B., Hill, J. C. & Morin, R. J. (1985). Atherosclerosis, 54, 121–133.  CrossRef CAS PubMed Web of Science Google Scholar
First citationPérez-Ornelas, V., Cabeza, M., Bratoeff, E., Heuze, I., Sánchez, M., Ramírez, E. & Naranjo-Rodríguez, E. (2005). Steroids, 70, 217–224.  Web of Science PubMed Google Scholar
First citationRosén, J., Gottfries, J., Muresan, S., Backlund, A. & Oprea, T. I. (2009). J. Med. Chem. 52, 1953–1962.  Web of Science PubMed Google Scholar
First citationSchmidt, M. W., Baldrige, K. K., Boatz, J. A., Elbert, S. T., Gordon, M. S., Jensen, J. J., Koseki, S., Matsunaga, N., Nguyen, K. A., Sue, S., Windus, T. L., Dupuis, M. & Montgomery, J. A. (1993). J. Comput. Chem. 14, 1347–1363.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, Y., Tian, L., Huang, J., Li, W. & Pei, Y.-H. (2006). Nat. Prod. Res. 20, 381–384.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTanaka, J., Trianto, A., Musman, M., Issa, H. H., Ohtani, I. I., Ichiba, T., Higa, T., Yoshida, W. Y. & Scheuer, P. J. (2002). Tetrahedron, 58, 6259–6266.  CrossRef CAS Google Scholar
First citationTischler, M., Ayer, S. W., Andersen, R. J., Mitchell, J. F. & Clardy, J. (1988). Can. J. Chem. 66, 1173–1178.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages o1056-o1057
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds