organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1243

5-Methyl­phenanthro[2,3-b]thio­phene

aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: a_sp59@yahoo.in

(Received 30 March 2011; accepted 20 April 2011; online 29 April 2011)

The title compound, C17H12S, which crystallises with two molecules in the asymmetric unit, features four fused rings forming an essentially planar mol­ecule, with maximum deviations from the mean plane of 0.078 (2) and 0.080 (2) Å for C atoms of the thio­phene and phenanthrene groups in both the mol­ecules. The crystal packing features weak C—H⋯π inter­actions.

Related literature

For a related structure, see: Gunasekaran et al. (2010[Gunasekaran, B., Dhayalan, V., Mohanakrishnan, A. K., Chakkaravarthi, G. & Manivannan, V. (2010). Acta Cryst. E66, o1449.]).

[Scheme 1]

Experimental

Crystal data
  • C17H12S

  • Mr = 248.33

  • Monoclinic, P 21 /n

  • a = 18.7011 (10) Å

  • b = 5.8199 (3) Å

  • c = 23.4546 (14) Å

  • β = 105.158 (2)°

  • V = 2463.9 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 293 K

  • 0.25 × 0.22 × 0.19 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.981, Tmax = 0.985

  • 31917 measured reflections

  • 6983 independent reflections

  • 4446 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.195

  • S = 1.06

  • 6983 reflections

  • 327 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯Cg4i 0.93 2.84 3.612 (3) 141
C2′—H2′⋯Cg14ii 0.93 2.85 3.619 (3) 141
C11—H11⋯Cg1i 0.93 2.72 3.515 (3) 144
C11′—H11′⋯Cg11ii 0.93 2.82 3.610 (3) 143
C17′—H17BCg14iii 0.96 2.98 3.581 (3) 121
C17—H17FCg4iii 0.96 2.92 3.565 (3) 125
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x, y-1, z. Cg1, Cg4, Cg11 and Cg14 are the centroids of the S1/C1–C4, C9–C14, S1′/C1′–C4′ and C9′–C14′ rings, respectively.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

X-Ray analysis confirms the molecular structure and atom connectivity as illustrated in Fig. 1. The bond lengths and angles in (Fig. 1) agree with those observed in other benzothiophene derivative (Gunasekaran et al., 2010). Both molecules are essentially planar, with maximum deviation of 0.078 (2) and 0.080 (2)Å for atoms C2 and C10'. The molecules lack hydrogen bonding functionality and pack in layers parallel to the (010) planes.In addition to van der Waals interaction, the crystal packing is stabilized by C–H···π hydrogen bonds (Table. 1).

Related literature top

For related structures, see: Gunasekaran et al. (2010).

Experimental top

To a solution of diethyl-2-((3-(bromomethyl)thiophen-2-yl)methylene) malonate (1 g, 2.88 mmol) in dry 1,2-dichloroethane (10ml), 1-methylnaphthalene (0.49 g, 3.44 mmol) and anhydrous ZnBr2 (0.64 g, 2.84 mmol) were added. sIt was then stirred at room temperature for 8 h and then refluxed for 1 h under N2 atmosphere. The solvent was removed and the residue was quenched with ice-water (50 ml) containing 1 ml of conc. HCl, extracted with chloroform (3 x 10 ml) and dried (Na2SO4). Removal of the solvent followed by flash column chromatography purification (n-hexane/ethyl acetate 99:1) led to the isolation of 5-methyl phenanthro[2,3-b]thiophene as a colorless crystals. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution of the title compound in methanol at room temperature.

Refinement top

All H atoms were fixed geometrically and allowed to ride on their parent C atoms, with C—H distances fixed in the range 0.93–0.97 Å with Uiso(H) = 1.5Ueq(C) for methyl H 1.2Ueq(C) for other H atoms. The displacement ellipsoids of C1' and C2' were restrained to be equal within an effective e.s.d. of 0.005.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The structure of showing the atom-numbering scheme and intramolecular hydrogen bond. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. C—H···π interactions (dotted lines) in the title compound. Cg denotes ring centeroid. [Symmetry code:(i) 3/2-X,1/2+Y,1/2-Z; (ii) X,-1+Y,Z; (iii) X,-1+Y,Z; (iv) 1/2-X,1/2+Y,1/2-Z]
5-Methylphenanthro[2,3-b]thiophene top
Crystal data top
C17H12SF(000) = 1040
Mr = 248.33Dx = 1.339 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6983 reflections
a = 18.7011 (10) Åθ = 1.3–29.7°
b = 5.8199 (3) ŵ = 0.24 mm1
c = 23.4546 (14) ÅT = 293 K
β = 105.158 (2)°Block, colourless
V = 2463.9 (2) Å30.25 × 0.22 × 0.19 mm
Z = 8
Data collection top
Bruker APEXII CCD area-detector
diffractometer
6983 independent reflections
Radiation source: fine-focus sealed tube4446 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω and ϕ scansθmax = 29.7°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2526
Tmin = 0.981, Tmax = 0.985k = 88
31917 measured reflectionsl = 3232
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.195H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.1022P)2 + 0.5162P]
where P = (Fo2 + 2Fc2)/3
6983 reflections(Δ/σ)max = 0.001
327 parametersΔρmax = 0.47 e Å3
2 restraintsΔρmin = 0.30 e Å3
Crystal data top
C17H12SV = 2463.9 (2) Å3
Mr = 248.33Z = 8
Monoclinic, P21/nMo Kα radiation
a = 18.7011 (10) ŵ = 0.24 mm1
b = 5.8199 (3) ÅT = 293 K
c = 23.4546 (14) Å0.25 × 0.22 × 0.19 mm
β = 105.158 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
6983 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4446 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.985Rint = 0.032
31917 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0552 restraints
wR(F2) = 0.195H-atom parameters constrained
S = 1.06Δρmax = 0.47 e Å3
6983 reflectionsΔρmin = 0.30 e Å3
327 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C1'0.33522 (15)0.2874 (5)0.07093 (11)0.0702 (7)
H1'0.32270.35510.03370.084*
C10.55737 (13)0.7887 (4)0.06335 (10)0.0601 (6)
H10.54900.85460.02610.072*
C20.60214 (13)0.8818 (4)0.11144 (10)0.0516 (5)
H20.62741.01930.11140.062*
C2'0.31625 (12)0.3776 (4)0.11600 (10)0.0538 (5)
H2'0.28970.51360.11440.065*
C30.60700 (11)0.7451 (3)0.16387 (9)0.0431 (4)
C3'0.34245 (11)0.2359 (3)0.16957 (9)0.0449 (4)
C40.56138 (11)0.5470 (3)0.15084 (9)0.0457 (4)
C4'0.38181 (11)0.0412 (3)0.15862 (9)0.0451 (4)
C50.55612 (11)0.3950 (3)0.19459 (10)0.0487 (5)
H50.52550.26690.18560.058*
C5'0.41350 (11)0.1131 (4)0.20223 (10)0.0496 (5)
H5'0.43940.23970.19390.059*
C6'0.40615 (10)0.0763 (3)0.25924 (9)0.0438 (4)
C60.59727 (11)0.4349 (3)0.25262 (9)0.0446 (4)
C70.64532 (10)0.6288 (3)0.26671 (9)0.0411 (4)
C7'0.36605 (10)0.1153 (3)0.27204 (8)0.0406 (4)
C8'0.33449 (11)0.2692 (3)0.22664 (9)0.0461 (4)
H8'0.30790.39510.23450.055*
C80.64871 (11)0.7820 (3)0.22128 (9)0.0437 (4)
H80.67940.91010.22980.052*
C9'0.35973 (10)0.1459 (3)0.33238 (9)0.0431 (4)
C90.68848 (11)0.6597 (3)0.32765 (8)0.0416 (4)
C10'0.31838 (11)0.3236 (4)0.34787 (10)0.0517 (5)
H10'0.29270.42360.31870.062*
C100.74001 (12)0.8395 (4)0.34412 (9)0.0489 (5)
H100.74750.93950.31530.059*
C11'0.31458 (12)0.3548 (5)0.40558 (11)0.0601 (6)
H11'0.28700.47540.41490.072*
C110.77956 (13)0.8707 (4)0.40190 (10)0.0567 (5)
H110.81280.99210.41190.068*
C12'0.35180 (13)0.2064 (5)0.44909 (10)0.0620 (6)
H12'0.34920.22690.48780.074*
C120.76975 (13)0.7205 (4)0.44519 (10)0.0597 (6)
H120.79650.74140.48430.072*
C13'0.39265 (13)0.0289 (4)0.43557 (10)0.0573 (6)
H13'0.41760.06970.46530.069*
C130.72101 (13)0.5424 (4)0.43057 (10)0.0561 (6)
H130.71530.44240.46000.067*
C14'0.39736 (10)0.0063 (3)0.37744 (9)0.0444 (4)
C140.67910 (12)0.5061 (3)0.37200 (9)0.0459 (5)
C15'0.44026 (11)0.1964 (4)0.36283 (10)0.0502 (5)
C150.62704 (12)0.3163 (4)0.35639 (10)0.0503 (5)
C160.59013 (12)0.2845 (4)0.29960 (10)0.0516 (5)
H160.55840.15910.29010.062*
C16'0.44238 (12)0.2279 (4)0.30675 (10)0.0517 (5)
H16'0.46840.35340.29800.062*
C17'0.48297 (13)0.3532 (4)0.41088 (11)0.0644 (6)
H17A0.50350.47790.39350.097*
H17B0.45030.41310.43280.097*
H17C0.52230.26860.43690.097*
C170.61402 (14)0.1585 (4)0.40359 (12)0.0658 (7)
H17D0.58010.03920.38560.099*
H17E0.59350.24450.43040.099*
H17F0.66020.09110.42480.099*
S10.51607 (4)0.53496 (12)0.07611 (3)0.0620 (2)
S1'0.38490 (4)0.03471 (13)0.08505 (3)0.0655 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1'0.0742 (16)0.0787 (17)0.0525 (13)0.0132 (14)0.0075 (12)0.0174 (12)
C10.0656 (14)0.0640 (14)0.0512 (12)0.0067 (11)0.0162 (10)0.0135 (11)
C20.0656 (13)0.0447 (11)0.0494 (12)0.0016 (10)0.0235 (10)0.0059 (9)
C2'0.0551 (12)0.0461 (11)0.0569 (13)0.0003 (9)0.0087 (10)0.0039 (10)
C30.0492 (10)0.0382 (9)0.0471 (10)0.0007 (8)0.0218 (8)0.0017 (8)
C3'0.0431 (10)0.0442 (10)0.0451 (10)0.0050 (8)0.0073 (8)0.0005 (8)
C40.0462 (10)0.0438 (10)0.0495 (11)0.0004 (8)0.0171 (9)0.0004 (9)
C4'0.0434 (10)0.0489 (11)0.0426 (10)0.0073 (8)0.0103 (8)0.0040 (9)
C50.0506 (11)0.0390 (10)0.0594 (13)0.0073 (8)0.0193 (10)0.0007 (9)
C5'0.0480 (11)0.0456 (11)0.0548 (12)0.0030 (9)0.0130 (9)0.0045 (9)
C6'0.0407 (10)0.0410 (10)0.0475 (11)0.0008 (8)0.0077 (8)0.0011 (8)
C60.0484 (10)0.0378 (10)0.0541 (12)0.0000 (8)0.0248 (9)0.0038 (8)
C70.0473 (10)0.0356 (9)0.0466 (10)0.0028 (8)0.0232 (8)0.0019 (8)
C7'0.0368 (9)0.0419 (10)0.0416 (10)0.0029 (7)0.0075 (7)0.0029 (8)
C8'0.0467 (10)0.0422 (10)0.0483 (11)0.0028 (8)0.0105 (8)0.0032 (9)
C80.0555 (11)0.0358 (9)0.0447 (10)0.0065 (8)0.0219 (9)0.0012 (8)
C9'0.0379 (9)0.0459 (10)0.0449 (10)0.0017 (8)0.0098 (8)0.0009 (8)
C90.0482 (10)0.0391 (10)0.0434 (10)0.0057 (8)0.0225 (8)0.0021 (8)
C10'0.0453 (10)0.0554 (12)0.0540 (12)0.0048 (9)0.0124 (9)0.0041 (10)
C100.0553 (11)0.0482 (11)0.0473 (11)0.0019 (9)0.0208 (9)0.0000 (9)
C11'0.0498 (12)0.0714 (15)0.0624 (14)0.0064 (11)0.0205 (10)0.0104 (12)
C110.0562 (12)0.0620 (13)0.0537 (13)0.0018 (11)0.0178 (10)0.0061 (11)
C12'0.0543 (12)0.0867 (18)0.0479 (12)0.0021 (12)0.0187 (10)0.0068 (12)
C120.0649 (14)0.0696 (15)0.0446 (12)0.0140 (12)0.0145 (10)0.0021 (11)
C13'0.0513 (12)0.0740 (15)0.0457 (12)0.0044 (11)0.0113 (9)0.0064 (11)
C130.0670 (14)0.0600 (13)0.0466 (12)0.0194 (11)0.0244 (10)0.0099 (10)
C14'0.0374 (9)0.0502 (11)0.0436 (10)0.0045 (8)0.0072 (8)0.0029 (9)
C140.0542 (11)0.0428 (10)0.0483 (11)0.0135 (8)0.0272 (9)0.0082 (8)
C15'0.0454 (10)0.0468 (11)0.0546 (12)0.0005 (9)0.0060 (9)0.0073 (9)
C150.0589 (12)0.0428 (11)0.0599 (13)0.0107 (9)0.0346 (10)0.0149 (9)
C160.0565 (12)0.0402 (10)0.0648 (14)0.0026 (9)0.0280 (10)0.0101 (9)
C16'0.0501 (11)0.0443 (11)0.0591 (13)0.0091 (9)0.0113 (9)0.0001 (10)
C17'0.0607 (14)0.0607 (14)0.0667 (15)0.0089 (11)0.0077 (11)0.0168 (12)
C170.0743 (15)0.0596 (14)0.0740 (16)0.0110 (12)0.0380 (13)0.0299 (12)
S10.0603 (4)0.0672 (4)0.0536 (4)0.0073 (3)0.0061 (3)0.0019 (3)
S1'0.0684 (4)0.0788 (4)0.0530 (4)0.0042 (3)0.0223 (3)0.0040 (3)
Geometric parameters (Å, º) top
C1'—C2'1.310 (3)C9'—C14'1.417 (3)
C1'—S1'1.725 (3)C9—C101.407 (3)
C1'—H1'0.9300C9—C141.417 (3)
C1—C21.331 (3)C10'—C11'1.386 (3)
C1—S11.729 (3)C10'—H10'0.9300
C1—H10.9300C10—C111.376 (3)
C2—C31.447 (3)C10—H100.9300
C2—H20.9300C11'—C12'1.379 (3)
C2'—C3'1.476 (3)C11'—H11'0.9300
C2'—H2'0.9300C11—C121.387 (3)
C3—C81.385 (3)C11—H110.9300
C3—C41.419 (3)C12'—C13'1.371 (3)
C3'—C8'1.398 (3)C12'—H12'0.9300
C3'—C4'1.411 (3)C12—C131.364 (4)
C4—C51.378 (3)C12—H120.9300
C4—S11.737 (2)C13'—C14'1.404 (3)
C4'—C5'1.373 (3)C13'—H13'0.9300
C4'—S1'1.742 (2)C13—C141.408 (3)
C5—C61.397 (3)C13—H130.9300
C5—H50.9300C14'—C15'1.459 (3)
C5'—C6'1.396 (3)C14—C151.455 (3)
C5'—H5'0.9300C15'—C16'1.339 (3)
C6'—C7'1.419 (3)C15'—C17'1.507 (3)
C6'—C16'1.444 (3)C15—C161.343 (3)
C6—C71.426 (3)C15—C171.507 (3)
C6—C161.441 (3)C16—H160.9300
C7—C81.404 (3)C16'—H16'0.9300
C7—C91.457 (3)C17'—H17A0.9600
C7'—C8'1.399 (3)C17'—H17B0.9600
C7'—C9'1.461 (3)C17'—H17C0.9600
C8'—H8'0.9300C17—H17D0.9600
C8—H80.9300C17—H17E0.9600
C9'—C10'1.395 (3)C17—H17F0.9600
C2'—C1'—S1'115.65 (19)C11'—C10'—H10'119.2
C2'—C1'—H1'122.2C9'—C10'—H10'119.2
S1'—C1'—H1'122.2C11—C10—C9121.5 (2)
C2—C1—S1114.30 (17)C11—C10—H10119.3
C2—C1—H1122.9C9—C10—H10119.3
S1—C1—H1122.9C12'—C11'—C10'119.7 (2)
C1—C2—C3112.4 (2)C12'—C11'—H11'120.1
C1—C2—H2123.8C10'—C11'—H11'120.1
C3—C2—H2123.8C10—C11—C12119.9 (2)
C1'—C2'—C3'111.3 (2)C10—C11—H11120.1
C1'—C2'—H2'124.3C12—C11—H11120.1
C3'—C2'—H2'124.3C13'—C12'—C11'120.3 (2)
C8—C3—C4119.30 (18)C13'—C12'—H12'119.8
C8—C3—C2129.41 (19)C11'—C12'—H12'119.8
C4—C3—C2111.29 (19)C13—C12—C11120.2 (2)
C8'—C3'—C4'118.48 (18)C13—C12—H12119.9
C8'—C3'—C2'130.0 (2)C11—C12—H12119.9
C4'—C3'—C2'111.52 (19)C12'—C13'—C14'121.0 (2)
C5—C4—C3121.2 (2)C12'—C13'—H13'119.5
C5—C4—S1127.90 (17)C14'—C13'—H13'119.5
C3—C4—S1110.93 (15)C12—C13—C14121.6 (2)
C5'—C4'—C3'122.2 (2)C12—C13—H13119.2
C5'—C4'—S1'127.17 (17)C14—C13—H13119.2
C3'—C4'—S1'110.59 (15)C13'—C14'—C9'119.2 (2)
C4—C5—C6119.36 (19)C13'—C14'—C15'121.09 (19)
C4—C5—H5120.3C9'—C14'—C15'119.68 (19)
C6—C5—H5120.3C13—C14—C9118.5 (2)
C4'—C5'—C6'118.82 (19)C13—C14—C15121.65 (19)
C4'—C5'—H5'120.6C9—C14—C15119.8 (2)
C6'—C5'—H5'120.6C16'—C15'—C14'119.61 (19)
C5'—C6'—C7'120.86 (18)C16'—C15'—C17'120.4 (2)
C5'—C6'—C16'120.13 (18)C14'—C15'—C17'120.0 (2)
C7'—C6'—C16'118.95 (18)C16—C15—C14119.40 (18)
C5—C6—C7120.71 (18)C16—C15—C17120.3 (2)
C5—C6—C16120.42 (19)C14—C15—C17120.3 (2)
C7—C6—C16118.84 (19)C15—C16—C6123.3 (2)
C8—C7—C6118.51 (19)C15—C16—H16118.4
C8—C7—C9122.88 (18)C6—C16—H16118.4
C6—C7—C9118.61 (17)C15'—C16'—C6'123.1 (2)
C8'—C7'—C6'118.90 (18)C15'—C16'—H16'118.5
C8'—C7'—C9'122.30 (18)C6'—C16'—H16'118.5
C6'—C7'—C9'118.80 (17)C15'—C17'—H17A109.5
C3'—C8'—C7'120.70 (19)C15'—C17'—H17B109.5
C3'—C8'—H8'119.7H17A—C17'—H17B109.5
C7'—C8'—H8'119.7C15'—C17'—H17C109.5
C3—C8—C7120.92 (18)H17A—C17'—H17C109.5
C3—C8—H8119.5H17B—C17'—H17C109.5
C7—C8—H8119.5C15—C17—H17D109.5
C10'—C9'—C14'118.04 (19)C15—C17—H17E109.5
C10'—C9'—C7'122.22 (18)H17D—C17—H17E109.5
C14'—C9'—C7'119.73 (18)C15—C17—H17F109.5
C10—C9—C14118.38 (19)H17D—C17—H17F109.5
C10—C9—C7121.69 (17)H17E—C17—H17F109.5
C14—C9—C7119.93 (18)C1—S1—C491.03 (11)
C11'—C10'—C9'121.7 (2)C1'—S1'—C4'90.93 (12)
S1—C1—C2—C31.1 (3)C6—C7—C9—C143.5 (3)
S1'—C1'—C2'—C3'0.4 (3)C14'—C9'—C10'—C11'1.0 (3)
C1—C2—C3—C8178.3 (2)C7'—C9'—C10'—C11'178.1 (2)
C1—C2—C3—C41.1 (3)C14—C9—C10—C111.4 (3)
C1'—C2'—C3'—C8'179.8 (2)C7—C9—C10—C11178.70 (19)
C1'—C2'—C3'—C4'0.6 (3)C9'—C10'—C11'—C12'0.6 (4)
C8—C3—C4—C52.0 (3)C9—C10—C11—C121.0 (3)
C2—C3—C4—C5178.43 (19)C10'—C11'—C12'—C13'0.2 (4)
C8—C3—C4—S1178.83 (15)C10—C11—C12—C130.0 (3)
C2—C3—C4—S10.7 (2)C11'—C12'—C13'—C14'0.2 (4)
C8'—C3'—C4'—C5'1.2 (3)C11—C12—C13—C140.5 (3)
C2'—C3'—C4'—C5'178.05 (19)C12'—C13'—C14'—C9'0.6 (3)
C8'—C3'—C4'—S1'179.91 (15)C12'—C13'—C14'—C15'179.4 (2)
C2'—C3'—C4'—S1'0.6 (2)C10'—C9'—C14'—C13'0.9 (3)
C3—C4—C5—C60.9 (3)C7'—C9'—C14'—C13'178.15 (18)
S1—C4—C5—C6179.89 (16)C10'—C9'—C14'—C15'179.06 (18)
C3'—C4'—C5'—C6'0.3 (3)C7'—C9'—C14'—C15'1.9 (3)
S1'—C4'—C5'—C6'178.75 (16)C12—C13—C14—C90.1 (3)
C4'—C5'—C6'—C7'0.7 (3)C12—C13—C14—C15179.93 (19)
C4'—C5'—C6'—C16'176.45 (19)C10—C9—C14—C130.9 (3)
C4—C5—C6—C71.0 (3)C7—C9—C14—C13179.26 (17)
C4—C5—C6—C16177.11 (19)C10—C9—C14—C15179.12 (17)
C5—C6—C7—C81.8 (3)C7—C9—C14—C150.8 (3)
C16—C6—C7—C8176.34 (18)C13'—C14'—C15'—C16'178.6 (2)
C5—C6—C7—C9178.46 (17)C9'—C14'—C15'—C16'1.4 (3)
C16—C6—C7—C93.4 (3)C13'—C14'—C15'—C17'2.5 (3)
C5'—C6'—C7'—C8'0.7 (3)C9'—C14'—C15'—C17'177.52 (19)
C16'—C6'—C7'—C8'176.44 (18)C13—C14—C15—C16177.8 (2)
C5'—C6'—C7'—C9'179.81 (18)C9—C14—C15—C162.2 (3)
C16'—C6'—C7'—C9'3.0 (3)C13—C14—C15—C172.9 (3)
C4'—C3'—C8'—C7'1.2 (3)C9—C14—C15—C17177.15 (18)
C2'—C3'—C8'—C7'177.96 (19)C14—C15—C16—C62.3 (3)
C6'—C7'—C8'—C3'0.2 (3)C17—C15—C16—C6177.00 (19)
C9'—C7'—C8'—C3'179.21 (17)C5—C6—C16—C15178.7 (2)
C4—C3—C8—C71.2 (3)C7—C6—C16—C150.5 (3)
C2—C3—C8—C7179.37 (19)C14'—C15'—C16'—C6'2.4 (3)
C6—C7—C8—C30.7 (3)C17'—C15'—C16'—C6'176.44 (19)
C9—C7—C8—C3179.61 (17)C5'—C6'—C16'—C15'177.0 (2)
C8'—C7'—C9'—C10'3.6 (3)C7'—C6'—C16'—C15'0.2 (3)
C6'—C7'—C9'—C10'176.94 (18)C2—C1—S1—C40.56 (19)
C8'—C7'—C9'—C14'175.43 (18)C5—C4—S1—C1178.9 (2)
C6'—C7'—C9'—C14'4.0 (3)C3—C4—S1—C10.11 (16)
C8—C7—C9—C103.9 (3)C2'—C1'—S1'—C4'0.0 (2)
C6—C7—C9—C10176.38 (17)C5'—C4'—S1'—C1'178.2 (2)
C8—C7—C9—C14176.23 (17)C3'—C4'—S1'—C1'0.36 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···Cg4i0.932.843.612 (3)141
C2—H2···Cg14ii0.932.853.619 (3)141
C11—H11···Cg1i0.932.723.515 (3)144
C11—H11···Cg11ii0.932.823.610 (3)143
C17—H17B···Cg14iii0.962.983.581 (3)121
C17—H17F···Cg4iii0.962.923.565 (3)125
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC17H12S
Mr248.33
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)18.7011 (10), 5.8199 (3), 23.4546 (14)
β (°) 105.158 (2)
V3)2463.9 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.25 × 0.22 × 0.19
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.981, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
31917, 6983, 4446
Rint0.032
(sin θ/λ)max1)0.697
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.195, 1.06
No. of reflections6983
No. of parameters327
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.30

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···Cg4i0.932.843.612 (3)141
C2'—H2'···Cg14ii0.932.853.619 (3)141
C11—H11···Cg1i0.932.723.515 (3)144
C11'—H11'···Cg11ii0.932.823.610 (3)143
C17'—H17B···Cg14iii0.962.983.581 (3)121
C17—H17F···Cg4iii0.962.923.565 (3)125
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x, y1, z.
 

Acknowledgements

SR and ASP thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the data collection.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGunasekaran, B., Dhayalan, V., Mohanakrishnan, A. K., Chakkaravarthi, G. & Manivannan, V. (2010). Acta Cryst. E66, o1449.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1243
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds