organic compounds
(3R,4S)-3,4-Isopropylidenedioxy-3,4-dihydro-2H-pyrrole 1-oxide
aDepartamento de Quimica Organica, Universidad de Salamanca, Plaza de los Caidos, 37008-Salamanca, Spain, and bServicio General de Rayos X, Universidad de Salamanca, Plaza de los Caidos, 37008-Salamanca, Spain
*Correspondence e-mail: ddm@usal.es
The title compound C7H11NO3 was prepared by intramolecular nucleophilic displacement of 2,3-O-iso-propylidene-D-erythronolactol. There are two molecules in the which are related by a pseudo-inversion centre. The determination confirms unequivocally the configuration of the chiral centres as 3S,4R. In the intermolecular C—H⋯O interactions link the molecules (into infinite zigzag chains along the a axis.
Related literature
Nitrones play a useful role in the synthesis of complex molecular frameworks, undergoing several synthetically useful reactions such as 1,3-dipolar cycloadditions (Tufariello, 1984) and nucleophilic addition (Merino et al., 2000; Lombardo & Trombini, 2002). They also allow direct access to nitrones by simple reactions, see: Döpp & Döpp (1990); Hamer & Macaluso (1964). For the use of the title compound as a starting material in the sythesis of potential therapeutic (antibiotic, antiviral, antitumoral) agents, see: Hall et al. (1997); Closa & Wightman (1998); McCaig et al. (1998); Cicchi et al. (2002); Revuelta et al. (2007). For a related structure, see: Keleşoğlu et al. (2010). For the preparation of the title compound, see: Flores et al. (2010); Cicchi et al. (2006).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2006); cell SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536811013055/bt5507sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811013055/bt5507Isup2.hkl
The title N-oxide was obtained by intramolecular nucleophilic displacement, which is based on a simple one-pot procedure employing NH2OSiMe2t-Bu, methanesulfonyl chloride, and 2,3-O-iso-propylidene-D-erythronolactol, according to the methodology described by Cicchi et al. (2006) and by us (Flores et al., 2010). Well shaped colourless single crystals were obtained by crystallization from CH2Cl2/MeOH.
Hydrogen atoms were positioned geometrically, with C—H distances constrained to 0.93 Å (aromatic CH), 0.96 Å (methyl), 0.97 Å (methylene) and 0.98 Å (methine) and refined in riding mode with Uiso(H) = xUeq(C), where x = 1.5 for methyl H atoms and x = 1.2 for all other atoms.
Data collection: APEX2 (Bruker, 2006); cell
SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. Molecular structure of C7H11NO3. | |
Fig. 2. Crystal packing of C7H11NO3 view along b axis, showing intermolecular hydrogen bonding. |
C7H11NO3 | F(000) = 672 |
Mr = 157.17 | Dx = 1.302 Mg m−3 |
Monoclinic, C2 | Cu Kα radiation, λ = 1.54178 Å |
Hall symbol: C 2y | Cell parameters from 2365 reflections |
a = 11.335 (2) Å | θ = 1.7–66.9° |
b = 5.4467 (11) Å | µ = 0.86 mm−1 |
c = 26.508 (5) Å | T = 298 K |
β = 101.40 (3)° | Prismatic, colourless |
V = 1604.2 (6) Å3 | 0.15 × 0.10 × 0.08 mm |
Z = 8 |
Bruker APEXII CCD area-detector diffractometer | 2365 independent reflections |
Radiation source: fine-focus sealed tube | 2261 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.022 |
phi and ω scans | θmax = 66.9°, θmin = 1.7° |
Absorption correction: multi-scan (SADABS; Bruker, 2006) | h = −13→11 |
Tmin = 0.902, Tmax = 0.934 | k = −6→5 |
4369 measured reflections | l = −28→31 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.033 | w = 1/[σ2(Fo2) + (0.0479P)2 + 0.4187P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.091 | (Δ/σ)max = 0.001 |
S = 1.05 | Δρmax = 0.16 e Å−3 |
2365 reflections | Δρmin = −0.11 e Å−3 |
204 parameters | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
1 restraint | Extinction coefficient: 0.00105 (18) |
Primary atom site location: structure-invariant direct methods | Absolute structure: Flack (1983), 761 Friedel pairs |
Secondary atom site location: difference Fourier map | Absolute structure parameter: 0.0 (2) |
C7H11NO3 | V = 1604.2 (6) Å3 |
Mr = 157.17 | Z = 8 |
Monoclinic, C2 | Cu Kα radiation |
a = 11.335 (2) Å | µ = 0.86 mm−1 |
b = 5.4467 (11) Å | T = 298 K |
c = 26.508 (5) Å | 0.15 × 0.10 × 0.08 mm |
β = 101.40 (3)° |
Bruker APEXII CCD area-detector diffractometer | 2365 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2006) | 2261 reflections with I > 2σ(I) |
Tmin = 0.902, Tmax = 0.934 | Rint = 0.022 |
4369 measured reflections |
R[F2 > 2σ(F2)] = 0.033 | H-atom parameters constrained |
wR(F2) = 0.091 | Δρmax = 0.16 e Å−3 |
S = 1.05 | Δρmin = −0.11 e Å−3 |
2365 reflections | Absolute structure: Flack (1983), 761 Friedel pairs |
204 parameters | Absolute structure parameter: 0.0 (2) |
1 restraint |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1' | 0.30975 (12) | 0.5460 (3) | 0.84350 (5) | 0.0571 (4) | |
O2' | 0.44334 (11) | 0.8279 (3) | 0.88116 (5) | 0.0566 (4) | |
O3' | 0.14788 (12) | 0.7976 (4) | 0.96810 (6) | 0.0693 (5) | |
N1' | 0.23631 (12) | 0.7223 (3) | 0.94785 (5) | 0.0481 (4) | |
C1' | 0.33483 (16) | 0.4762 (4) | 0.89604 (7) | 0.0476 (4) | |
H1' | 0.3729 | 0.3142 | 0.9013 | 0.057* | |
C3' | 0.34095 (15) | 0.8196 (4) | 0.95186 (6) | 0.0464 (4) | |
H3' | 0.3657 | 0.9601 | 0.9709 | 0.056* | |
C4' | 0.41764 (14) | 0.6811 (4) | 0.92243 (6) | 0.0463 (4) | |
H4' | 0.4907 | 0.6168 | 0.9445 | 0.056* | |
C5' | 0.40764 (17) | 0.6940 (4) | 0.83486 (7) | 0.0525 (5) | |
C6' | 0.3627 (3) | 0.8714 (6) | 0.79227 (9) | 0.0866 (8) | |
H6'1 | 0.2985 | 0.9674 | 0.8009 | 0.130* | |
H6'2 | 0.3337 | 0.7826 | 0.7610 | 0.130* | |
H6'3 | 0.4271 | 0.9780 | 0.7876 | 0.130* | |
C7' | 0.5109 (3) | 0.5377 (6) | 0.82529 (12) | 0.0928 (9) | |
H7'1 | 0.4860 | 0.4458 | 0.7941 | 0.139* | |
H7'2 | 0.5349 | 0.4266 | 0.8536 | 0.139* | |
H7'3 | 0.5776 | 0.6413 | 0.8221 | 0.139* | |
C2' | 0.22244 (16) | 0.4919 (4) | 0.91839 (8) | 0.0553 (5) | |
H2'1 | 0.1510 | 0.4965 | 0.8913 | 0.066* | |
H2'2 | 0.2168 | 0.3528 | 0.9406 | 0.066* | |
O1 | 0.09613 (11) | 0.3663 (3) | 0.62016 (5) | 0.0557 (4) | |
O2 | 0.21761 (13) | 0.6589 (3) | 0.66182 (5) | 0.0666 (5) | |
O3 | 0.36792 (14) | 0.3733 (4) | 0.52993 (7) | 0.0861 (6) | |
N1 | 0.29356 (13) | 0.4731 (4) | 0.55436 (6) | 0.0544 (4) | |
C1 | 0.10961 (15) | 0.5348 (4) | 0.58059 (7) | 0.0514 (5) | |
H1 | 0.0341 | 0.6186 | 0.5659 | 0.062* | |
C2 | 0.16439 (16) | 0.4088 (4) | 0.54033 (7) | 0.0556 (5) | |
H2A | 0.1530 | 0.2325 | 0.5413 | 0.067* | |
H2B | 0.1293 | 0.4687 | 0.5062 | 0.067* | |
C3 | 0.31507 (17) | 0.6385 (4) | 0.58935 (8) | 0.0586 (5) | |
H3 | 0.3910 | 0.7049 | 0.6014 | 0.070* | |
C4 | 0.20620 (17) | 0.7127 (4) | 0.60855 (7) | 0.0522 (5) | |
H4 | 0.1847 | 0.8848 | 0.6007 | 0.063* | |
C5 | 0.12362 (18) | 0.4967 (4) | 0.66756 (7) | 0.0558 (5) | |
C6 | 0.0151 (3) | 0.6365 (7) | 0.67681 (11) | 0.0971 (10) | |
H6A | −0.0464 | 0.5228 | 0.6816 | 0.146* | |
H6B | −0.0148 | 0.7394 | 0.6477 | 0.146* | |
H6C | 0.0374 | 0.7365 | 0.7070 | 0.146* | |
C7 | 0.1714 (3) | 0.3142 (6) | 0.70956 (9) | 0.0882 (8) | |
H7A | 0.2404 | 0.2320 | 0.7016 | 0.132* | |
H7B | 0.1101 | 0.1958 | 0.7120 | 0.132* | |
H7C | 0.1942 | 0.3990 | 0.7418 | 0.132* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1' | 0.0642 (8) | 0.0626 (10) | 0.0440 (7) | −0.0248 (7) | 0.0098 (6) | −0.0060 (6) |
O2' | 0.0573 (7) | 0.0637 (9) | 0.0517 (7) | −0.0225 (7) | 0.0178 (6) | −0.0098 (7) |
O3' | 0.0556 (7) | 0.0876 (12) | 0.0713 (9) | 0.0236 (8) | 0.0283 (7) | 0.0071 (9) |
N1' | 0.0431 (7) | 0.0554 (10) | 0.0467 (8) | 0.0091 (7) | 0.0108 (6) | 0.0067 (7) |
C1' | 0.0541 (9) | 0.0433 (10) | 0.0471 (9) | 0.0010 (9) | 0.0142 (8) | 0.0032 (8) |
C3' | 0.0484 (9) | 0.0476 (10) | 0.0420 (9) | −0.0002 (8) | 0.0061 (7) | 0.0000 (8) |
C4' | 0.0374 (8) | 0.0565 (12) | 0.0434 (9) | 0.0022 (8) | 0.0042 (7) | 0.0000 (9) |
C5' | 0.0612 (11) | 0.0527 (12) | 0.0467 (10) | −0.0157 (9) | 0.0176 (8) | −0.0056 (9) |
C6' | 0.115 (2) | 0.0827 (19) | 0.0616 (13) | −0.0206 (17) | 0.0163 (13) | 0.0152 (14) |
C7' | 0.1036 (19) | 0.084 (2) | 0.108 (2) | 0.0040 (17) | 0.0634 (17) | −0.0118 (18) |
C2' | 0.0509 (10) | 0.0578 (12) | 0.0581 (11) | −0.0114 (10) | 0.0127 (8) | −0.0032 (10) |
O1 | 0.0564 (7) | 0.0588 (9) | 0.0530 (7) | −0.0180 (7) | 0.0137 (6) | −0.0052 (7) |
O2 | 0.0758 (9) | 0.0742 (12) | 0.0499 (8) | −0.0306 (9) | 0.0126 (6) | −0.0074 (8) |
O3 | 0.0679 (9) | 0.1030 (15) | 0.0940 (11) | 0.0252 (10) | 0.0316 (8) | −0.0034 (12) |
N1 | 0.0472 (8) | 0.0598 (10) | 0.0560 (9) | 0.0068 (8) | 0.0098 (7) | 0.0045 (9) |
C1 | 0.0395 (8) | 0.0617 (14) | 0.0502 (10) | 0.0022 (9) | 0.0022 (7) | 0.0044 (9) |
C2 | 0.0511 (10) | 0.0646 (14) | 0.0488 (10) | −0.0048 (9) | 0.0045 (8) | −0.0025 (10) |
C3 | 0.0465 (9) | 0.0662 (14) | 0.0612 (11) | −0.0129 (9) | 0.0061 (8) | 0.0058 (11) |
C4 | 0.0600 (11) | 0.0397 (10) | 0.0572 (11) | −0.0048 (9) | 0.0127 (9) | 0.0008 (9) |
C5 | 0.0627 (11) | 0.0549 (12) | 0.0523 (10) | −0.0128 (10) | 0.0179 (8) | −0.0059 (10) |
C6 | 0.0920 (19) | 0.112 (3) | 0.098 (2) | 0.0096 (19) | 0.0441 (16) | −0.018 (2) |
C7 | 0.127 (2) | 0.0758 (18) | 0.0603 (13) | −0.0100 (18) | 0.0159 (13) | 0.0090 (14) |
O1'—C1' | 1.417 (2) | O1—C5 | 1.423 (2) |
O1'—C5' | 1.426 (2) | O1—C1 | 1.425 (2) |
O2'—C5' | 1.416 (2) | O2—C5 | 1.415 (2) |
O2'—C4' | 1.431 (2) | O2—C4 | 1.423 (2) |
O3'—N1' | 1.2937 (19) | O3—N1 | 1.281 (2) |
N1'—C3' | 1.284 (2) | N1—C3 | 1.282 (3) |
N1'—C2' | 1.470 (3) | N1—C2 | 1.480 (2) |
C1'—C2' | 1.510 (2) | C1—C2 | 1.502 (3) |
C1'—C4' | 1.535 (3) | C1—C4 | 1.538 (3) |
C1'—H1' | 0.9800 | C1—H1 | 0.9800 |
C3'—C4' | 1.484 (3) | C2—H2A | 0.9700 |
C3'—H3' | 0.9300 | C2—H2B | 0.9700 |
C4'—H4' | 0.9800 | C3—C4 | 1.481 (3) |
C5'—C6' | 1.497 (3) | C3—H3 | 0.9300 |
C5'—C7' | 1.509 (4) | C4—H4 | 0.9800 |
C6'—H6'1 | 0.9600 | C5—C6 | 1.507 (3) |
C6'—H6'2 | 0.9600 | C5—C7 | 1.511 (4) |
C6'—H6'3 | 0.9600 | C6—H6A | 0.9600 |
C7'—H7'1 | 0.9600 | C6—H6B | 0.9600 |
C7'—H7'2 | 0.9600 | C6—H6C | 0.9600 |
C7'—H7'3 | 0.9600 | C7—H7A | 0.9600 |
C2'—H2'1 | 0.9700 | C7—H7B | 0.9600 |
C2'—H2'2 | 0.9700 | C7—H7C | 0.9600 |
C1'—O1'—C5' | 107.35 (14) | C5—O1—C1 | 106.97 (16) |
C5'—O2'—C4' | 107.96 (15) | C5—O2—C4 | 108.22 (15) |
C3'—N1'—O3' | 127.85 (19) | O3—N1—C3 | 127.89 (18) |
C3'—N1'—C2' | 113.34 (15) | O3—N1—C2 | 119.33 (19) |
O3'—N1'—C2' | 118.74 (16) | C3—N1—C2 | 112.67 (16) |
O1'—C1'—C2' | 110.46 (15) | O1—C1—C2 | 110.37 (18) |
O1'—C1'—C4' | 103.80 (15) | O1—C1—C4 | 102.75 (14) |
C2'—C1'—C4' | 105.50 (15) | C2—C1—C4 | 105.98 (15) |
O1'—C1'—H1' | 112.2 | O1—C1—H1 | 112.4 |
C2'—C1'—H1' | 112.2 | C2—C1—H1 | 112.4 |
C4'—C1'—H1' | 112.2 | C4—C1—H1 | 112.4 |
N1'—C3'—C4' | 111.98 (18) | N1—C2—C1 | 103.94 (16) |
N1'—C3'—H3' | 124.0 | N1—C2—H2A | 111.0 |
C4'—C3'—H3' | 124.0 | C1—C2—H2A | 111.0 |
O2'—C4'—C3' | 110.31 (17) | N1—C2—H2B | 111.0 |
O2'—C4'—C1' | 104.86 (13) | C1—C2—H2B | 111.0 |
C3'—C4'—C1' | 103.90 (14) | H2A—C2—H2B | 109.0 |
O2'—C4'—H4' | 112.4 | N1—C3—C4 | 112.86 (17) |
C3'—C4'—H4' | 112.4 | N1—C3—H3 | 123.6 |
C1'—C4'—H4' | 112.4 | C4—C3—H3 | 123.6 |
O2'—C5'—O1' | 104.48 (13) | O2—C4—C3 | 111.49 (17) |
O2'—C5'—C6' | 108.5 (2) | O2—C4—C1 | 105.37 (15) |
O1'—C5'—C6' | 109.05 (19) | C3—C4—C1 | 102.97 (17) |
O2'—C5'—C7' | 109.8 (2) | O2—C4—H4 | 112.2 |
O1'—C5'—C7' | 111.2 (2) | C3—C4—H4 | 112.2 |
C6'—C5'—C7' | 113.4 (2) | C1—C4—H4 | 112.2 |
C5'—C6'—H6'1 | 109.5 | O2—C5—O1 | 104.75 (13) |
C5'—C6'—H6'2 | 109.5 | O2—C5—C6 | 111.0 (2) |
H6'1—C6'—H6'2 | 109.5 | O1—C5—C6 | 110.64 (19) |
C5'—C6'—H6'3 | 109.5 | O2—C5—C7 | 108.8 (2) |
H6'1—C6'—H6'3 | 109.5 | O1—C5—C7 | 107.8 (2) |
H6'2—C6'—H6'3 | 109.5 | C6—C5—C7 | 113.4 (2) |
C5'—C7'—H7'1 | 109.5 | C5—C6—H6A | 109.5 |
C5'—C7'—H7'2 | 109.5 | C5—C6—H6B | 109.5 |
H7'1—C7'—H7'2 | 109.5 | H6A—C6—H6B | 109.5 |
C5'—C7'—H7'3 | 109.5 | C5—C6—H6C | 109.5 |
H7'1—C7'—H7'3 | 109.5 | H6A—C6—H6C | 109.5 |
H7'2—C7'—H7'3 | 109.5 | H6B—C6—H6C | 109.5 |
N1'—C2'—C1' | 104.30 (16) | C5—C7—H7A | 109.5 |
N1'—C2'—H2'1 | 110.9 | C5—C7—H7B | 109.5 |
C1'—C2'—H2'1 | 110.9 | H7A—C7—H7B | 109.5 |
N1'—C2'—H2'2 | 110.9 | C5—C7—H7C | 109.5 |
C1'—C2'—H2'2 | 110.9 | H7A—C7—H7C | 109.5 |
H2'1—C2'—H2'2 | 108.9 | H7B—C7—H7C | 109.5 |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O1i | 0.93 | 2.44 | 3.366 (3) | 171 |
C1—H1···O3ii | 0.98 | 2.38 | 3.355 (3) | 171 |
C2—H2A···O3iii | 0.97 | 2.70 | 3.441 (3) | 134 |
C2—H2B···O3iv | 0.97 | 2.41 | 3.120 (3) | 130 |
C2′—H2′1···O2′v | 0.97 | 2.49 | 3.247 (2) | 135 |
C4′—H4′···O3′vi | 0.98 | 2.48 | 3.375 (3) | 152 |
C2′—H2′2···O3′vii | 0.97 | 2.61 | 3.254 (2) | 124 |
C3′—H3′···O3′viii | 0.93 | 2.48 | 3.345 (3) | 156 |
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x−1/2, y+1/2, z; (iii) −x+1/2, y−1/2, −z+1; (iv) −x+1/2, y+1/2, −z+1; (v) x−1/2, y−1/2, z; (vi) x+1/2, y−1/2, z; (vii) −x+1/2, y−1/2, −z+2; (viii) −x+1/2, y+1/2, −z+2. |
Experimental details
Crystal data | |
Chemical formula | C7H11NO3 |
Mr | 157.17 |
Crystal system, space group | Monoclinic, C2 |
Temperature (K) | 298 |
a, b, c (Å) | 11.335 (2), 5.4467 (11), 26.508 (5) |
β (°) | 101.40 (3) |
V (Å3) | 1604.2 (6) |
Z | 8 |
Radiation type | Cu Kα |
µ (mm−1) | 0.86 |
Crystal size (mm) | 0.15 × 0.10 × 0.08 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2006) |
Tmin, Tmax | 0.902, 0.934 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4369, 2365, 2261 |
Rint | 0.022 |
(sin θ/λ)max (Å−1) | 0.596 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.033, 0.091, 1.05 |
No. of reflections | 2365 |
No. of parameters | 204 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.16, −0.11 |
Absolute structure | Flack (1983), 761 Friedel pairs |
Absolute structure parameter | 0.0 (2) |
Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006).
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O1i | 0.93 | 2.44 | 3.366 (3) | 171 |
C1—H1···O3ii | 0.98 | 2.38 | 3.355 (3) | 171 |
C2—H2A···O3iii | 0.97 | 2.70 | 3.441 (3) | 134 |
C2—H2B···O3iv | 0.97 | 2.41 | 3.120 (3) | 130 |
C2'—H2'1···O2'v | 0.97 | 2.49 | 3.247 (2) | 135 |
C4'—H4'···O3'vi | 0.98 | 2.48 | 3.375 (3) | 152 |
C2'—H2'2···O3'vii | 0.97 | 2.61 | 3.254 (2) | 124 |
C3'—H3'···O3'viii | 0.93 | 2.48 | 3.345 (3) | 156 |
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x−1/2, y+1/2, z; (iii) −x+1/2, y−1/2, −z+1; (iv) −x+1/2, y+1/2, −z+1; (v) x−1/2, y−1/2, z; (vi) x+1/2, y−1/2, z; (vii) −x+1/2, y−1/2, −z+2; (viii) −x+1/2, y+1/2, −z+2. |
Acknowledgements
The authors are grateful to the MICINN (CTQ2009–11172), Junta de Castilla y Leon, for financial support (GR178 and SA001A09) and for the doctoral fellowships awarded to MFF.
References
Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cicchi, S., Corsi, M., Brandi, A. & Goti, A. (2002). J. Org. Chem. 67, 1678–1681. Web of Science CrossRef PubMed CAS Google Scholar
Cicchi, S., Marradi, M., Vogel, P. & Goti, A. (2006). J. Org. Chem. 71, 1614–1619. Web of Science CrossRef PubMed CAS Google Scholar
Closa, M. & Wightman, R. H. (1998). Synth. Commun. 28, 3443–3450. CrossRef CAS Google Scholar
Döpp, D. & Döpp, H. (1990). In Houben-Weyl - Methoden der Organischen Chemie, Vol. E14b, edited by D. Klamann & H. Hagemann. Stuttgart: Georg Thieme. Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Flores, M. F., Nuñez, M., Moro, R. F., Garrido, N. M., Marcos, I. S., Iglesias, E. F., Garcia, P. & Diez, D. (2010). Molecules, 15, 1501–1512. Web of Science CrossRef CAS PubMed Google Scholar
Hall, A., Meldrum, K. P., Therond, P. R. & Wightman, R. H. (1997). Synlett, pp.123–125. Google Scholar
Hamer, J. & Macaluso, A. (1964). Chem. Rev. 64, 473–495. CrossRef CAS Web of Science Google Scholar
Keleşoğlu, Z., Gültekin, Z. & Büyükgüngör, O. (2010). Acta Cryst. E66, o2332–o2333. Web of Science CSD CrossRef IUCr Journals Google Scholar
Lombardo, M. & Trombini, C. (2002). Curr. Org. Chem. 6, 695–713. CrossRef CAS Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
McCaig, A. E., Meldrum, K. P. & Wightman, R. H. (1998). Tetrahedron, 54, 9429–9446. Web of Science CrossRef CAS Google Scholar
Merino, P., Merchan, F. L., Franco, S. & Tejero, T. (2000). Synlett, pp. 442–454. Google Scholar
Revuelta, J., Cicchi, S., Goti, A. & Brandi, A. (2007). Synthesis, pp. 485–504. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tufariello, J. J. (1984). In 1,3-Dipolar Cycloaddition Chemistry, edited by A. Padwa. New York: John Wiley & Sons. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Nitrones have been the subject of intense research efforts, because of the wide role played in the synthesis of complex molecular frameworks. They undergo several synthetically useful reactions such as 1,3-dipolar cycloadditions, (Tufariello et al., 1984) nucleophilic additions, (Merino et al., 2000; Lombardo et al., 2002). Both the reactions give rise to the formation of new carbon-carbon bonds, often with a high degree of stereocontrol. These features, together with the direct access to nitrones by simple reactions (Hamer et al., 1964; Döpp et al., 1990), and their stability which permits isolation and long storage, make nitrones ideal tools for application in organic syntheses, particularly in the field of alkaloids, nitrogen containing natural products or bioactive analogues. The construction of highly functionalized nitrogen heterocycles in a stereoselective manner is an important focus of medicinal and natural product chemistry. Although, in the last few years, the title compound has been reported more and more in the literature as a starting material due to its biological relevance in the synthesis of polyhydroxypyrrolidines or polyhydroxypyrrolizidines, both interesting compounds as potential glycosidase inhibitors and consequently as potential therapeutic (antibiotic, antiviral, antitumoral) agents (Hall et al., 1997; Closa et al., 1998; McCaig et al., 1998; Cicchi et al., 2002; Revuelta et al., 2007) there was not any crystallographic data.
Following our special interest in nitrogen compounds such as isoxazolidines, we prepared the title N-oxide, and its crystal structure is reported here.
The asymmetric unit contains two symmetrically independent molecules. The title molecule consists of a pyrroline-N-oxide ring with an isopropylidenedioxy as substituent. All the bond lengths and angles are within the normal ranges. The carbonyl group at N1 is coplanar with the pyrroline ring being the O3—N1=C3—C4 and O3'-N1'=C3'-C4' torsion angles of 179.1 (4)° and 179.2 (7)°, respectively. These results are in good agreement with the literature (Keleşoğlu et al., 2010).
In the crystal structure, intermolecular C—H···O interactions (Table 1) link the molecules (Fig. 2) into infinite zigzag chains along the a axis.