metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(pyridazine-κN)bis­­(seleno­cyanato-κN)zinc

aInstitut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Max-Eyth Strasse 2, D-24098 Kiel, Germany
*Correspondence e-mail: jboeckmann@ac.uni-kiel.de

(Received 4 April 2011; accepted 5 April 2011; online 13 April 2011)

The asymmetric unit of the title compound, [Zn(NCSe)2(C4H4N2)2], consists of one ZnII cation, located on a twofold rotation axis, one seleno­cyanate anion and one pyridazine ligand in general positions. The ZnII atom is coordinated by two N-atoms of two pyridazine ligands and two terminal N-bonded seleno­cyanate anions within a slightly distorted tetra­hedral coordination environment. In the crystal, discrete complex mol­ecules are arranged in layers parallel to the ac plane, with ZnII⋯ZnII distances of 8.0906 (6) Å along the a axis and of 9.0490 (7) or 9.3604 (7) Å along the c axis. The complex mol­ecules are further linked via weak Se⋯Se inter­actions, with Se⋯Se distances of 3.8235 (9) Å.

Related literature

For related structures see: Boeckmann et al. (2011[Boeckmann, J., Reinert, T. & Näther, C. (2011). Z. Anorg. Allg. Chem. doi:10.1002/zaac.201100043. ]); Bhosekar et al. (2010[Bhosekar, G., Boeckmann, J., Jess, I. & Näther, C. (2010). Z. Anorg. Allg. Chem. 636, 2595-2601.]); Wriedt & Näther (2010[Wriedt, M. & Näther, C. (2010). Chem. Commun. 46, 4707-4709.]); Zhu et al. (2008[Zhu, L., Xu, D., Wang, X. & Yu, G. (2008). J. Chem. Crystallogr. 38, 609-612.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(NCSe)2(C4H4N2)2]

  • Mr = 435.51

  • Monoclinic, C 2/c

  • a = 15.1521 (10) Å

  • b = 5.6783 (4) Å

  • c = 17.4855 (13) Å

  • β = 94.981 (6)°

  • V = 1498.74 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 6.49 mm−1

  • T = 293 K

  • 0.09 × 0.06 × 0.04 mm

Data collection
  • Stoe IPDS-2 diffractometer

  • Absorption correction: numerical (X-SHAPE and X-RED32; Stoe & Cie, 2008[Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.373, Tmax = 0.664

  • 9054 measured reflections

  • 1634 independent reflections

  • 1287 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.097

  • S = 1.13

  • 1634 reflections

  • 87 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Selected geometric parameters (Å, °)

Zn1—N1 1.925 (4)
Zn1—N11 2.022 (3)
N1—Zn1—N1i 117.5 (3)
N1—Zn1—N11i 111.40 (17)
N1—Zn1—N11 106.96 (16)
N11i—Zn1—N11 101.48 (18)
Symmetry code: (i) [-x+1, y, -z+{\script{1\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2008[Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 2011[Brandenburg, K. (2011). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The structure determination of the title compound was performed as a part of a project on the synthesis of new selenocyanato coordination compounds (Wriedt & Näther, 2010). In our ongoing investigations we have reacted zinc(II)nitrate with potassium(I)selenocyanate and pyridazine in acetonitrile, which leads to the phase pure formation of bis(selenocyanato-N)-bis(pyridazine-N)zinc(II).

The title compound is isotypic to its thiocyanato analogon reported recently (Bhosekar et al., 2010). In the crystal structure the zinc atoms are surrounded by two N-atoms of two symmetry equivalent pyridazine ligands and two N-bonded symmetry equivalent thiocyanato anions in a slightly distorted tetrahedral geometry (Fig. 1 and Tab. 1). The discrete complexes are arranged in layers parallel along the ac plane with ZnII···ZnII distances of 8.0906 (6) Å along the a axis and of 9.0490 (7) or 9.3604 (7) Å along the c axis. Within these layers these complexes are further connected via weak Se···Se interactions of 3.8235 (9) Å (Fig. 2). Crystal structures of related thio- and selenocyanato compounds with pyridine as neutral coligand have already been described in literature (Zhu et al., 2008; Boeckmann et al., 2011).

Related literature top

For related structures see: Boeckmann et al. (2011); Bhosekar et al. (2010); Wriedt & Näther (2010); Zhu et al. (2008).

Experimental top

The title compound was prepared by the reaction of 74.35 mg Zn(NO3)2 × 6 H2O (0.25 mmol), 72.0 mg KSeCN (0.50 mmol) and 18.1 µL pyridazine (0.25 mmol) in 1.00 ml acetonitrile at RT in a closed 3 ml snap cap vial. After one week colourless blocks of the title compound were obtained.

Refinement top

All H atoms were located in difference map but were positioned with idealized geometry and were refined using a riding model with Ueq(H) = 1.2 Ueq(C) and with C—H = 0.93 Å.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2008); cell refinement: X-AREA (Stoe & Cie, 2008); data reduction: X-AREA (Stoe & Cie, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2011); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : Crystal structure of the title compund with labelling and displacement ellipsoids drawn at the 30% probability level. Symmetry codes: i = -x + 1, y, -z + 1/2.
[Figure 2] Fig. 2. : Packing diagram of title compound with view along the crystallographic b axis. Intermolecular Se···Se interactions are shown as dashed lines.
Bis(pyridazine-κN)bis(selenocyanato-κN)zinc top
Crystal data top
[Zn(NCSe)2(C4H4N2)2]F(000) = 832
Mr = 435.51Dx = 1.930 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 9054 reflections
a = 15.1521 (10) Åθ = 2.3–27.0°
b = 5.6783 (4) ŵ = 6.49 mm1
c = 17.4855 (13) ÅT = 293 K
β = 94.981 (6)°Block, colourless
V = 1498.74 (18) Å30.09 × 0.06 × 0.04 mm
Z = 4
Data collection top
Stoe IPDS-2
diffractometer
1634 independent reflections
Radiation source: fine-focus sealed tube1287 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω scansθmax = 27.0°, θmin = 2.3°
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2008)
h = 1919
Tmin = 0.373, Tmax = 0.664k = 77
9054 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0314P)2 + 3.5658P]
where P = (Fo2 + 2Fc2)/3
1634 reflections(Δ/σ)max < 0.001
87 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
[Zn(NCSe)2(C4H4N2)2]V = 1498.74 (18) Å3
Mr = 435.51Z = 4
Monoclinic, C2/cMo Kα radiation
a = 15.1521 (10) ŵ = 6.49 mm1
b = 5.6783 (4) ÅT = 293 K
c = 17.4855 (13) Å0.09 × 0.06 × 0.04 mm
β = 94.981 (6)°
Data collection top
Stoe IPDS-2
diffractometer
1634 independent reflections
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2008)
1287 reflections with I > 2σ(I)
Tmin = 0.373, Tmax = 0.664Rint = 0.028
9054 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.13Δρmax = 0.49 e Å3
1634 reflectionsΔρmin = 0.39 e Å3
87 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.50000.29445 (12)0.25000.0599 (2)
N10.4362 (3)0.4703 (8)0.3215 (3)0.0882 (13)
C10.4026 (4)0.5649 (9)0.3694 (3)0.0746 (13)
Se10.35126 (4)0.71204 (11)0.44311 (3)0.0895 (2)
N110.5806 (2)0.0691 (6)0.31236 (18)0.0529 (7)
N120.6478 (3)0.0093 (8)0.2760 (2)0.0805 (12)
C110.6957 (4)0.1819 (13)0.3105 (5)0.110 (2)
H110.74320.24170.28630.131*
C120.6781 (5)0.2768 (11)0.3808 (5)0.108 (2)
H120.71320.39680.40330.129*
C130.6107 (5)0.1931 (11)0.4148 (4)0.1007 (19)
H130.59580.25220.46160.121*
C140.5640 (3)0.0171 (9)0.3784 (3)0.0747 (13)
H140.51690.04650.40220.090*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0636 (4)0.0529 (4)0.0629 (4)0.0000.0043 (3)0.000
N10.092 (3)0.080 (3)0.092 (3)0.027 (2)0.000 (2)0.027 (2)
C10.081 (3)0.061 (3)0.079 (3)0.018 (2)0.009 (2)0.005 (2)
Se10.1106 (5)0.0806 (4)0.0785 (4)0.0227 (3)0.0144 (3)0.0112 (3)
N110.0485 (17)0.0543 (19)0.0559 (18)0.0004 (14)0.0047 (14)0.0038 (15)
N120.059 (2)0.093 (3)0.093 (3)0.011 (2)0.023 (2)0.005 (2)
C110.062 (3)0.110 (5)0.158 (7)0.019 (3)0.016 (4)0.023 (5)
C120.093 (4)0.082 (4)0.140 (6)0.013 (4)0.039 (4)0.011 (4)
C130.125 (5)0.085 (4)0.090 (4)0.016 (4)0.005 (4)0.019 (3)
C140.086 (3)0.073 (3)0.067 (3)0.010 (3)0.017 (2)0.007 (2)
Geometric parameters (Å, º) top
Zn1—N11.925 (4)N12—C111.332 (8)
Zn1—N1i1.925 (4)C11—C121.389 (11)
Zn1—N11i2.022 (3)C11—H110.9300
Zn1—N112.022 (3)C12—C131.315 (9)
N1—C11.150 (6)C12—H120.9300
C1—Se11.772 (5)C13—C141.351 (8)
N11—C141.299 (5)C13—H130.9300
N11—N121.324 (5)C14—H140.9300
N1—Zn1—N1i117.5 (3)N12—C11—C12123.2 (6)
N1—Zn1—N11i111.40 (17)N12—C11—H11118.4
N1i—Zn1—N11i106.96 (16)C12—C11—H11118.4
N1—Zn1—N11106.96 (16)C13—C12—C11118.4 (6)
N1i—Zn1—N11111.40 (17)C13—C12—H12120.8
N11i—Zn1—N11101.48 (18)C11—C12—H12120.8
C1—N1—Zn1173.8 (4)C12—C13—C14116.8 (6)
N1—C1—Se1179.7 (6)C12—C13—H13121.6
C14—N11—N12121.1 (4)C14—C13—H13121.6
C14—N11—Zn1124.3 (3)N11—C14—C13124.3 (5)
N12—N11—Zn1114.1 (3)N11—C14—H14117.8
N11—N12—C11116.2 (5)C13—C14—H14117.8
Symmetry code: (i) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Zn(NCSe)2(C4H4N2)2]
Mr435.51
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)15.1521 (10), 5.6783 (4), 17.4855 (13)
β (°) 94.981 (6)
V3)1498.74 (18)
Z4
Radiation typeMo Kα
µ (mm1)6.49
Crystal size (mm)0.09 × 0.06 × 0.04
Data collection
DiffractometerStoe IPDS2
diffractometer
Absorption correctionNumerical
(X-SHAPE and X-RED32; Stoe & Cie, 2008)
Tmin, Tmax0.373, 0.664
No. of measured, independent and
observed [I > 2σ(I)] reflections
9054, 1634, 1287
Rint0.028
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.097, 1.13
No. of reflections1634
No. of parameters87
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.39

Computer programs: X-AREA (Stoe & Cie, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2011).

Selected geometric parameters (Å, º) top
Zn1—N11.925 (4)Zn1—N112.022 (3)
N1—Zn1—N1i117.5 (3)N1—Zn1—N11106.96 (16)
N1—Zn1—N11i111.40 (17)N11i—Zn1—N11101.48 (18)
Symmetry code: (i) x+1, y, z+1/2.
 

Acknowledgements

We gratefully acknowledge financial support by the DFG (project No. NA 720/3–1) and the State of Schleswig–Holstein. We thank Professor Dr Wolfgang Bensch for access to his experimental facilities. Special thanks go to Inke Jess for her support of the single-crystal measurements.

References

First citationBhosekar, G., Boeckmann, J., Jess, I. & Näther, C. (2010). Z. Anorg. Allg. Chem. 636, 2595–2601.  CSD CrossRef CAS Google Scholar
First citationBoeckmann, J., Reinert, T. & Näther, C. (2011). Z. Anorg. Allg. Chem. doi:10.1002/zaac.201100043.  Google Scholar
First citationBrandenburg, K. (2011). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWriedt, M. & Näther, C. (2010). Chem. Commun. 46, 4707–4709.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhu, L., Xu, D., Wang, X. & Yu, G. (2008). J. Chem. Crystallogr. 38, 609–612.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds