metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­bromidobis(pyridine-3-carbo­nitrile-κN1)mercury(II)

aDepartment of Chemistry, Basic Science Faculty, East Tehran Branch, Islamic Azad University, Qiam Dasht, Tehran, Iran
*Correspondence e-mail: rezaghiasi1975@gmail.com

(Received 6 April 2011; accepted 8 April 2011; online 16 April 2011)

In the crystal structure of the title compound, [HgBr2(C6H4N2)2], the Hg atom is four coordinated by two pyridine N atoms and two Br anions in a considerably distorted tetrahedral environment. ππ inter­actions between adjacent pyridine rings [centroid–centroid distance of 3.648 (3) Å] stabilize the crystal structure.

Related literature

For related structures, see: Ghiasi (2011[Ghiasi, R. (2011). Acta Cryst. E67, m101.]); Steffen & Palenik (1977[Steffen, W. L. & Palenik, G. J. (1977). Inorg. Chem. 16, 1119-1127.]); Li et al. (2004[Li, X.-H., Wu, H.-Y. & Hu, J.-G. (2004). Acta Cryst. E60, m1533-m1535.]).

[Scheme 1]

Experimental

Crystal data
  • [HgBr2(C6H4N2)2]

  • Mr = 568.61

  • Triclinic, [P \overline 1]

  • a = 8.5823 (6) Å

  • b = 9.4069 (6) Å

  • c = 9.8562 (7) Å

  • α = 81.935 (5)°

  • β = 71.435 (6)°

  • γ = 80.508 (6)°

  • V = 740.70 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 15.78 mm−1

  • T = 120 K

  • 0.45 × 0.22 × 0.20 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.033, Tmax = 0.052

  • 8486 measured reflections

  • 3967 independent reflections

  • 3751 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.084

  • S = 1.18

  • 3967 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 1.13 e Å−3

  • Δρmin = −2.48 e Å−3

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Recently, the crystal satructure of dibromozinc(II)-di-3-pyridine-carbonitrile have been reported, (Ghiasi, 2011). On the other hand there are several complexes, with formula, [MX2L2], such as [ZnCl2(4-cypy)2], (Steffen & Palenik, 1977), [CuBr2(3-Cypy)2], (Li et al. 2004), [where py is pyridine, 4-cypy is 4-cyanopyridine and 3-cypy is 3-cyanopyridine] have been synthesized and characterized by single-crystal X-ray diffraction methods. The molecular structure of the title compound is shown in Fig. 1. The HgII atom is four-coordinated in a slightly distorted tetrahedral configuration by two N atoms from two pyridine rings and two Br- anions. The Hg—Br and Hg—N bond distances and angles (Table 1) are within normal ranges. π-π interactions between adjacent pyridine rings [centroid···centroid distance of 3.648 (3) Å, symmetry code: –x,1-y,1-z] stabilize the packing of the crystal structure.

Related literature top

For related structures, see: Ghiasi (2011); Steffen & Palenik (1977); Li et al. (2004).

Experimental top

Mercury(II) bromide (0.72 gr, 2 mmol) was disolved in methanol (12 ml) and the solution was mixed with a methanolic solution (10 ml) of 3-pyridinecarbonitrile (0.42 g, 4 mmol). This solution was left to evaporate slowly at room temperature. After one week, colorless prismatic crystals of the title compound were isolated (yield 0.64 g, 56.0%, m.p. < 570 K).

Refinement top

All H atoms were positioned geometrically, with C—H=0.96Å aromatics hydrogen atoms and constrained to ride on their parent atoms, with Uiso(H)=1.2Ueq.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Unit-cell packing diagram for (I).
Dibromidobis(pyridine-3-carbonitrile-κN1)mercury(II) top
Crystal data top
[HgBr2(C6H4N2)2]Z = 2
Mr = 568.61F(000) = 516
Triclinic, P1Dx = 2.549 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.5823 (6) ÅCell parameters from 8405 reflections
b = 9.4069 (6) Åθ = 2.2–29.2°
c = 9.8562 (7) ŵ = 15.78 mm1
α = 81.935 (5)°T = 120 K
β = 71.435 (6)°Prism, colorless
γ = 80.508 (6)°0.45 × 0.22 × 0.2 mm
V = 740.70 (9) Å3
Data collection top
Bruker SMART CCD
diffractometer
3751 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
phi and ω scansθmax = 29.2°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 1111
Tmin = 0.033, Tmax = 0.052k = 1212
8486 measured reflectionsl = 1313
3967 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H-atom parameters constrained
S = 1.18 w = 1/[σ2(Fo2) + (0.0481P)2 + 0.8751P]
where P = (Fo2 + 2Fc2)/3
3967 reflections(Δ/σ)max = 0.013
172 parametersΔρmax = 1.13 e Å3
0 restraintsΔρmin = 2.48 e Å3
Crystal data top
[HgBr2(C6H4N2)2]γ = 80.508 (6)°
Mr = 568.61V = 740.70 (9) Å3
Triclinic, P1Z = 2
a = 8.5823 (6) ÅMo Kα radiation
b = 9.4069 (6) ŵ = 15.78 mm1
c = 9.8562 (7) ÅT = 120 K
α = 81.935 (5)°0.45 × 0.22 × 0.2 mm
β = 71.435 (6)°
Data collection top
Bruker SMART CCD
diffractometer
3967 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
3751 reflections with I > 2σ(I)
Tmin = 0.033, Tmax = 0.052Rint = 0.043
8486 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.084H-atom parameters constrained
S = 1.18Δρmax = 1.13 e Å3
3967 reflectionsΔρmin = 2.48 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0093 (6)0.7134 (5)0.4103 (5)0.0225 (9)
H10.01870.7840.46350.027*
C20.1379 (6)0.6544 (5)0.4499 (6)0.0239 (9)
H20.22480.68510.52860.029*
C30.1559 (7)0.5491 (5)0.3719 (5)0.0241 (9)
H30.25340.50730.39710.029*
C40.0218 (6)0.5089 (5)0.2548 (5)0.0224 (9)
C50.0290 (6)0.4010 (5)0.1668 (6)0.0241 (9)
C60.1248 (7)0.5712 (5)0.2222 (5)0.0227 (9)
H60.21460.54090.14540.027*
C70.2284 (7)1.0208 (6)0.0244 (6)0.0277 (10)
H70.19061.07540.05410.033*
C80.1848 (9)1.0747 (6)0.1468 (6)0.0355 (13)
H80.12041.16410.15080.043*
C90.2387 (8)0.9933 (6)0.2636 (6)0.0308 (11)
H90.20991.02590.3470.037*
C100.3368 (6)0.8616 (5)0.2530 (5)0.0221 (9)
C110.3959 (7)0.7725 (6)0.3706 (6)0.0265 (10)
C120.3758 (7)0.8154 (5)0.1251 (5)0.0237 (9)
H120.44130.72710.1180.028*
Br10.59621 (7)0.60216 (6)0.12550 (6)0.02802 (12)
Br20.25093 (7)1.02533 (5)0.34027 (6)0.02714 (12)
Hg10.38539 (2)0.805335 (18)0.216864 (18)0.02106 (7)
N10.1397 (5)0.6727 (5)0.2979 (4)0.0223 (8)
N20.0327 (6)0.3162 (5)0.0956 (6)0.0311 (10)
N30.3219 (6)0.8943 (5)0.0129 (5)0.0238 (8)
N40.4417 (7)0.7012 (5)0.4646 (6)0.0351 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.027 (2)0.019 (2)0.022 (2)0.0020 (17)0.0076 (19)0.0081 (17)
C20.020 (2)0.025 (2)0.024 (2)0.0023 (17)0.0048 (18)0.0038 (18)
C30.027 (2)0.022 (2)0.021 (2)0.0032 (18)0.0052 (19)0.0010 (18)
C40.025 (2)0.022 (2)0.021 (2)0.0013 (18)0.0076 (18)0.0055 (17)
C50.024 (2)0.024 (2)0.025 (2)0.0017 (18)0.0073 (19)0.0041 (18)
C60.025 (2)0.022 (2)0.020 (2)0.0005 (17)0.0043 (18)0.0075 (17)
C70.035 (3)0.024 (2)0.025 (2)0.002 (2)0.010 (2)0.0065 (19)
C80.055 (4)0.025 (2)0.026 (3)0.010 (2)0.017 (3)0.007 (2)
C90.043 (3)0.025 (2)0.026 (2)0.004 (2)0.016 (2)0.005 (2)
C100.025 (2)0.021 (2)0.020 (2)0.0017 (17)0.0062 (18)0.0037 (17)
C110.031 (3)0.025 (2)0.024 (2)0.0001 (19)0.011 (2)0.0036 (19)
C120.027 (2)0.021 (2)0.024 (2)0.0018 (18)0.010 (2)0.0032 (18)
Br10.0268 (2)0.0291 (2)0.0289 (3)0.00759 (19)0.0111 (2)0.01227 (19)
Br20.0334 (3)0.0236 (2)0.0239 (2)0.00029 (19)0.0065 (2)0.01056 (18)
Hg10.02188 (10)0.02100 (10)0.02036 (10)0.00031 (7)0.00584 (7)0.00698 (7)
N10.024 (2)0.0245 (19)0.0182 (18)0.0005 (15)0.0058 (16)0.0068 (15)
N20.030 (2)0.029 (2)0.034 (2)0.0031 (18)0.007 (2)0.0104 (19)
N30.023 (2)0.0250 (19)0.022 (2)0.0014 (16)0.0068 (16)0.0052 (16)
N40.044 (3)0.031 (2)0.031 (2)0.001 (2)0.010 (2)0.009 (2)
Geometric parameters (Å, º) top
C1—N11.347 (6)C7—H70.93
C1—C21.384 (7)C8—C91.385 (8)
C1—H10.93C8—H80.93
C2—C31.391 (7)C9—C101.389 (7)
C2—H20.93C9—H90.93
C3—C41.390 (7)C10—C121.399 (7)
C3—H30.93C10—C111.436 (7)
C4—C61.401 (7)C11—N41.148 (7)
C4—C51.446 (7)C12—N31.334 (7)
C5—N21.144 (7)C12—H120.93
C6—N11.337 (6)Br1—Hg12.4581 (5)
C6—H60.93Br2—Hg12.4736 (5)
C7—N31.333 (7)Hg1—N12.481 (4)
C7—C81.381 (8)Hg1—N32.496 (4)
N1—C1—C2122.7 (5)C8—C9—C10118.4 (5)
N1—C1—H1118.7C8—C9—H9120.8
C2—C1—H1118.7C10—C9—H9120.8
C1—C2—C3120.0 (5)C9—C10—C12119.1 (5)
C1—C2—H2120C9—C10—C11120.7 (5)
C3—C2—H2120C12—C10—C11120.1 (4)
C4—C3—C2117.1 (5)N4—C11—C10179.3 (6)
C4—C3—H3121.4N3—C12—C10121.9 (5)
C2—C3—H3121.4N3—C12—H12119
C3—C4—C6120.0 (5)C10—C12—H12119
C3—C4—C5121.2 (5)Br1—Hg1—Br2159.99 (2)
C6—C4—C5118.8 (5)Br1—Hg1—N198.01 (10)
N2—C5—C4179.0 (6)Br2—Hg1—N197.02 (10)
N1—C6—C4122.1 (5)Br1—Hg1—N397.22 (10)
N1—C6—H6119Br2—Hg1—N395.88 (10)
C4—C6—H6119N1—Hg1—N390.10 (14)
N3—C7—C8123.4 (5)C6—N1—C1118.1 (4)
N3—C7—H7118.3C6—N1—Hg1121.2 (3)
C8—C7—H7118.3C1—N1—Hg1120.3 (3)
C7—C8—C9118.7 (5)C7—N3—C12118.5 (5)
C7—C8—H8120.6C7—N3—Hg1120.3 (3)
C9—C8—H8120.6C12—N3—Hg1121.2 (3)
N1—C1—C2—C30.3 (8)C2—C1—N1—C60.0 (7)
C1—C2—C3—C40.5 (7)C2—C1—N1—Hg1172.5 (4)
C2—C3—C4—C61.7 (7)Br1—Hg1—N1—C638.3 (4)
C2—C3—C4—C5179.7 (5)Br2—Hg1—N1—C6155.0 (4)
C3—C4—C5—N216E1 (4)N3—Hg1—N1—C659.0 (4)
C6—C4—C5—N22E1 (4)Br1—Hg1—N1—C1149.5 (4)
C3—C4—C6—N12.1 (8)Br2—Hg1—N1—C117.2 (4)
C5—C4—C6—N1179.3 (5)N3—Hg1—N1—C1113.2 (4)
N3—C7—C8—C90.8 (10)C8—C7—N3—C120.2 (9)
C7—C8—C9—C101.0 (10)C8—C7—N3—Hg1178.2 (5)
C8—C9—C10—C120.7 (9)C10—C12—N3—C70.1 (8)
C8—C9—C10—C11179.9 (6)C10—C12—N3—Hg1177.9 (4)
C9—C10—C11—N46E1 (5)Br1—Hg1—N3—C7169.9 (4)
C12—C10—C11—N412E1 (5)Br2—Hg1—N3—C75.0 (4)
C9—C10—C12—N30.2 (8)N1—Hg1—N3—C792.1 (4)
C11—C10—C12—N3179.3 (5)Br1—Hg1—N3—C1212.2 (4)
C4—C6—N1—C11.2 (7)Br2—Hg1—N3—C12177.1 (4)
C4—C6—N1—Hg1171.2 (4)N1—Hg1—N3—C1285.9 (4)

Experimental details

Crystal data
Chemical formula[HgBr2(C6H4N2)2]
Mr568.61
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)8.5823 (6), 9.4069 (6), 9.8562 (7)
α, β, γ (°)81.935 (5), 71.435 (6), 80.508 (6)
V3)740.70 (9)
Z2
Radiation typeMo Kα
µ (mm1)15.78
Crystal size (mm)0.45 × 0.22 × 0.2
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.033, 0.052
No. of measured, independent and
observed [I > 2σ(I)] reflections
8486, 3967, 3751
Rint0.043
(sin θ/λ)max1)0.686
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.084, 1.18
No. of reflections3967
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.13, 2.48

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXTL (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

 

References

First citationBruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGhiasi, R. (2011). Acta Cryst. E67, m101.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLi, X.-H., Wu, H.-Y. & Hu, J.-G. (2004). Acta Cryst. E60, m1533–m1535.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteffen, W. L. & Palenik, G. J. (1977). Inorg. Chem. 16, 1119–1127.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds