organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages o1240-o1241

(3-Phenyl­sulfanyl-1-phenyl­sulfonyl-1H-indol-2-yl)methyl acetate

aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: a_sp59@yahoo.in

(Received 11 April 2011; accepted 20 April 2011; online 29 April 2011)

In the title compound, C23H19NO4S2, the indole ring system makes dihedral angles of 89.6 (1) and 84.5 (8)° with the phenyl­sulfonyl and phenyl­sulfanyl rings, respectively. In the crystal, the mol­ecules are linked into C(10) chains running along the c axis by an inter­molecular C—H⋯O hydrogen bond. In addition, the crystal packing is stabilized by C—H⋯π inter­actions.

Related literature

For biological activities of indole derivatives, see: Singh et al. (2000[Singh, U. P., Sarma, B. K., Mishra, P. K. & Ray, A. B. (2000). Folia Microbiol. (Praha), 45, 173-176.]); Andreani et al. (2001[Andreani, A., Granaiola, M., Leoni, A., Locatelli, A., Morigi, R., Rambaldi, M., Giorgi, G., Salvini, L. & Garaliene, V. (2001). Anticancer Drug Des. 16, 167-174.]); Quetin-Leclercq (1994[Quetin-Leclercq, J. (1994). J. Pharm. Belg. 49, 181-192.]); Mukhopadhyay et al. (1981[Mukhopadhyay, S., Handy, G. A., Funayama, S. & Cordell, G. A. (1981). J. Nat. Prod. 44, 696-700.]); Taylor et al. (1999[Taylor, D. L., Ahmed, P. S., Chambers, P., Tyms, A. S., Bedard, J., Duchaine, J., Falardeau, G., Lavallee, J. F., Brown, W., Rando, R. F. & Bowlin, T. (1999). Antivir. Chem. Chemother. 10, 79-86.]); Williams et al. (1993[Williams, T. M., Ciccarone, T. M., MacTough, S. C., Rooney, C. S., Balani, S. K., Condra, J. H., Emini, E. A., Goldman, M. E., Greenlee, W. J. & Kauffman, L. R. (1993). J. Med. Chem. 36, 1291-1294.]); Sivaraman et al. (1996[Sivaraman, J., Subramanian, K., Velmurugan, D., Subramanian, E. & Seetharaman, J. (1996). J. Mol. Struct. 385, 123-128.]). For related structures, see: Ravishankar et al. (2005[Ravishankar, T., Chinnakali, K., Arumugam, N., Srinivasan, P. C., Usman, A. & Fun, H.-K. (2005). Acta Cryst. E61, o2455-o2457.]); Chakkaravarthi et al. (2008[Chakkaravarthi, G., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2008). Acta Cryst. E64, o542.]). For graph-set notation of hydrogen bonds, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C23H19NO4S2

  • Mr = 437.51

  • Monoclinic, P 21 /c

  • a = 14.6530 (6) Å

  • b = 9.4482 (4) Å

  • c = 15.2461 (7) Å

  • β = 97.055 (3)°

  • V = 2094.76 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 293 K

  • 0.25 × 0.22 × 0.19 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.981, Tmax = 0.985

  • 19397 measured reflections

  • 5235 independent reflections

  • 3638 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.104

  • S = 1.03

  • 5235 reflections

  • 272 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the N1/C1/C6–C8 and C1–C6 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O4i 0.93 2.59 3.274 (2) 131
C15—H15⋯Cg1ii 0.93 2.77 3.559 (2) 143
C16—H16⋯Cg2ii 0.93 2.72 3.5146 (19) 143
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2004[Bruker (2004). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Indole derivatives have been found to exhibit antibacterial, antifungal (Singh et al., 2000) and antitumour activities (Andreani et al., 2001). Some of the indole alkaloids extracted from plants possess interesting cytotoxic, antitumour or antiparasitic properties (Quetin-Leclercq, 1994; Mukhopadhyay et al., 1981). Pyrido[1,2-a]indole derivatives have been identified as potent inhibitors of human immunodeficiency virus type 1 (Taylor et al., 1999), and 5-chloro-3-(phenylsulfonyl)indole-2-carboxamide is reported to be a highly potent non-nucleoside inhibitor of HIV-1 reverse transcriptase (Williams et al.,1993). The interaction of phenylsulfonylindole with calf thymus DNA has also been studied by spectroscopic methods (Sivaraman et al., 1996). Against this background, and in order to obtain detailed information on molecular conformations in the solid state, X-ray studies of the title compound (I) have been carried out.

X-Ray analysis confirms the molecular structure and atom connectivity for (I), as illustrated in Fig. 1. The indole ring system is essentially planar, with maximum deviation of 0.020 (2) Å for atom N1. The mean planes of the indole ring system make a dihedral algles of 89.6 (1) and 84.5 (8)° with respect to the phenyl rings, it shows that both the phenyl rings are perpendicular with respect to the indole ring system. The S—O, S—C, and S—N distances are 1.420 (12), 1.754 (17) and 1.676 (14) Å, respectively, these are comparable as observed in similar structures (Ravishankar et al., 2005). As a result of the electron-withdrawing character of the phenylsulfonyl group, the N—Csp2 bond lengths, viz. N1—C1 [1.422 (2) Å] and N1—C8 [1.418 (2) Å], are longer than the mean value of 1.355 (14) Å reported for N atoms with planar configurations.

The S atom exhibits significant deviation from that of a regular tetrahedron, with the largest deviations being seen for the O—S—O [O1—S1—O2 120.3 (7)°] and O—S—N angles [O1—S1—N1 105.4 (7)°]. The widening of the angles may be due to repulsive interactions between the two short SO bonds, similar to what is observed in related structures (Chakkaravarthi et al., 2008). The atom C4 act as a donor to the atom O4 of the neighbouring molecule at (x, 3/2 - y, 1/2 + z). This hydrogen bond is involved in a motif C(10) chain along b axis. In addition to van der Waals interaction, the crystal packing is stabilized by C—H..O and C—H···π interactions.

Related literature top

For biological activities of idole derivatives, see: Singh et al. (2000); Andreani et al. (2001); Quetin-Leclercq (1994); Mukhopadhyay et al. (1981); Taylor et al. (1999); Williams et al. (1993); Sivaraman et al. (1996). For related structures, see: Ravishankar et al. (2005); Chakkaravarthi et al. (2008). For graph-set notation of hydrogen bonds, see: Bernstein et al. (1995).

Experimental top

To solution of 2-(bromomethyl)-1-(phenyl sulfonyl)-3-(phenylthio)-1H-indole (2.18 mmol) in dry dimethyl formamide (10 ml), potassium acetate (4.36 mmol) was added under nitrogen atmosphere, the reaction mixture was stirred at room temperature for 5 h, then it was poured over crushed ice (50 g) containing 1 ml of concentrated hydrochloric acid. The obtained brown solid was filtered and dried. Single crystals of the title compound suitable for X-ray diffraction were obtained by slow evaporation of a solution in methanol.

Refinement top

All H atoms were fixed geometrically and allowed to ride on their parent C atoms, with C—H distances fixed in the range 0.93–0.97 Å with Uiso(H) = 1.5Ueq(C) for methyl H 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title molecule with the atom labeling scheme. The displacement ellipsoids are drawn at the 30% probability level while the H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The molecular packing viewed down the b axis.
(3-Phenylsulfanyl-1-phenylsulfonyl-1H-indol-2-yl)methyl acetate top
Crystal data top
C23H19NO4S2F(000) = 912
Mr = 437.51Dx = 1.387 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5235 reflections
a = 14.6530 (6) Åθ = 1.4–28.4°
b = 9.4482 (4) ŵ = 0.29 mm1
c = 15.2461 (7) ÅT = 293 K
β = 97.055 (3)°Block, white
V = 2094.76 (16) Å30.25 × 0.22 × 0.19 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5235 independent reflections
Radiation source: fine-focus sealed tube3638 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω and ϕ scansθmax = 28.4°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1919
Tmin = 0.981, Tmax = 0.985k = 1112
19397 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0433P)2 + 0.4791P]
where P = (Fo2 + 2Fc2)/3
5235 reflections(Δ/σ)max < 0.001
272 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C23H19NO4S2V = 2094.76 (16) Å3
Mr = 437.51Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.6530 (6) ŵ = 0.29 mm1
b = 9.4482 (4) ÅT = 293 K
c = 15.2461 (7) Å0.25 × 0.22 × 0.19 mm
β = 97.055 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5235 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3638 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.985Rint = 0.027
19397 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.03Δρmax = 0.26 e Å3
5235 reflectionsΔρmin = 0.29 e Å3
272 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.16888 (11)0.62556 (16)0.35882 (10)0.0387 (4)
C20.09311 (12)0.55131 (18)0.38072 (11)0.0463 (4)
H20.03490.56450.35000.056*
C30.10805 (13)0.45722 (19)0.44998 (12)0.0530 (4)
H30.05860.40570.46600.064*
C40.19466 (14)0.43671 (19)0.49671 (12)0.0543 (5)
H40.20190.37280.54340.065*
C50.26938 (13)0.50947 (18)0.47475 (11)0.0482 (4)
H50.32730.49590.50610.058*
C60.25666 (11)0.60461 (16)0.40419 (10)0.0410 (4)
C70.31844 (11)0.69850 (17)0.36612 (11)0.0424 (4)
C80.27026 (11)0.77336 (17)0.30037 (11)0.0422 (4)
C90.30417 (12)0.89164 (18)0.24908 (12)0.0494 (4)
H9A0.37080.88980.25360.059*
H9B0.27950.88420.18720.059*
C100.28751 (13)1.14037 (19)0.24295 (13)0.0534 (4)
C110.2490 (2)1.2651 (2)0.28528 (19)0.0882 (8)
H11A0.26191.34950.25400.132*
H11B0.27651.27220.34560.132*
H11C0.18371.25410.28360.132*
C120.07661 (13)0.49985 (18)0.14300 (12)0.0522 (4)
H120.04900.47750.19300.063*
C130.08604 (15)0.3989 (2)0.08013 (13)0.0622 (5)
H130.06560.30710.08800.075*
C140.12545 (14)0.4326 (2)0.00578 (13)0.0600 (5)
H140.13110.36370.03680.072*
C150.15663 (14)0.5672 (2)0.00607 (12)0.0598 (5)
H150.18310.58940.05670.072*
C160.14880 (12)0.66998 (19)0.05698 (11)0.0506 (4)
H160.17030.76120.04950.061*
C170.10864 (10)0.63531 (16)0.13106 (10)0.0391 (3)
C180.43670 (12)0.7939 (2)0.50554 (13)0.0557 (5)
C190.39555 (14)0.9229 (3)0.51322 (15)0.0681 (6)
H190.36560.96750.46340.082*
C200.39877 (17)0.9870 (3)0.59577 (18)0.0861 (8)
H200.36921.07300.60180.103*
C210.4459 (2)0.9222 (4)0.66824 (17)0.0938 (9)
H210.44890.96540.72330.113*
C220.48819 (18)0.7960 (4)0.66036 (17)0.0896 (8)
H220.52030.75370.70990.108*
C230.48383 (15)0.7297 (3)0.57906 (15)0.0736 (6)
H230.51230.64260.57390.088*
N10.17660 (9)0.73225 (14)0.29437 (9)0.0405 (3)
O10.01013 (8)0.74327 (13)0.24414 (9)0.0550 (3)
O20.11545 (9)0.90024 (12)0.17575 (8)0.0561 (3)
O30.27314 (8)1.02147 (12)0.28681 (8)0.0544 (3)
O40.32709 (11)1.14258 (15)0.17888 (9)0.0712 (4)
S10.09482 (3)0.76585 (4)0.21008 (3)0.04212 (12)
S20.43695 (3)0.71174 (6)0.40011 (3)0.05871 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0493 (9)0.0344 (8)0.0324 (8)0.0008 (7)0.0050 (7)0.0040 (7)
C20.0514 (10)0.0450 (9)0.0421 (10)0.0070 (8)0.0040 (8)0.0032 (8)
C30.0662 (12)0.0463 (10)0.0473 (11)0.0130 (9)0.0105 (9)0.0007 (8)
C40.0806 (13)0.0408 (9)0.0405 (10)0.0069 (9)0.0033 (9)0.0048 (8)
C50.0604 (11)0.0417 (9)0.0404 (9)0.0018 (8)0.0027 (8)0.0027 (8)
C60.0519 (9)0.0353 (8)0.0355 (9)0.0005 (7)0.0036 (7)0.0066 (7)
C70.0454 (9)0.0422 (9)0.0397 (9)0.0008 (7)0.0057 (7)0.0065 (7)
C80.0481 (9)0.0408 (9)0.0390 (9)0.0030 (7)0.0105 (7)0.0067 (7)
C90.0580 (10)0.0438 (9)0.0487 (10)0.0043 (8)0.0162 (8)0.0032 (8)
C100.0585 (11)0.0451 (10)0.0539 (12)0.0092 (8)0.0044 (9)0.0015 (9)
C110.113 (2)0.0501 (13)0.102 (2)0.0067 (12)0.0184 (16)0.0035 (13)
C120.0707 (12)0.0442 (10)0.0436 (10)0.0074 (8)0.0148 (9)0.0013 (8)
C130.0913 (15)0.0389 (10)0.0581 (12)0.0086 (10)0.0158 (11)0.0035 (9)
C140.0825 (14)0.0500 (11)0.0482 (11)0.0101 (10)0.0100 (10)0.0079 (9)
C150.0806 (13)0.0579 (12)0.0446 (11)0.0002 (10)0.0220 (10)0.0007 (9)
C160.0657 (11)0.0422 (9)0.0455 (10)0.0056 (8)0.0128 (9)0.0043 (8)
C170.0436 (8)0.0376 (8)0.0354 (9)0.0030 (7)0.0015 (7)0.0017 (7)
C180.0447 (10)0.0705 (13)0.0511 (11)0.0171 (9)0.0025 (8)0.0018 (10)
C190.0653 (13)0.0789 (15)0.0596 (13)0.0093 (11)0.0061 (10)0.0100 (11)
C200.0887 (17)0.0921 (18)0.0806 (18)0.0225 (14)0.0230 (14)0.0285 (15)
C210.101 (2)0.126 (3)0.0559 (15)0.0570 (19)0.0151 (14)0.0210 (17)
C220.0854 (18)0.126 (2)0.0537 (15)0.0416 (17)0.0083 (12)0.0084 (16)
C230.0645 (13)0.0873 (16)0.0653 (15)0.0191 (11)0.0060 (11)0.0076 (13)
N10.0465 (7)0.0395 (7)0.0350 (7)0.0020 (6)0.0034 (6)0.0009 (6)
O10.0473 (7)0.0625 (8)0.0560 (8)0.0126 (6)0.0097 (6)0.0015 (6)
O20.0733 (8)0.0355 (6)0.0579 (8)0.0073 (6)0.0010 (6)0.0053 (6)
O30.0705 (8)0.0421 (7)0.0537 (7)0.0073 (6)0.0205 (6)0.0047 (6)
O40.0962 (11)0.0635 (9)0.0545 (9)0.0183 (8)0.0113 (8)0.0085 (7)
S10.0477 (2)0.0375 (2)0.0408 (2)0.00722 (17)0.00382 (18)0.00013 (17)
S20.0446 (3)0.0741 (3)0.0573 (3)0.0010 (2)0.0058 (2)0.0084 (3)
Geometric parameters (Å, º) top
C1—C21.388 (2)C12—C171.383 (2)
C1—C61.398 (2)C12—H120.9300
C1—N11.422 (2)C13—C141.371 (3)
C2—C31.377 (2)C13—H130.9300
C2—H20.9300C14—C151.371 (3)
C3—C41.391 (3)C14—H140.9300
C3—H30.9300C15—C161.381 (3)
C4—C51.369 (2)C15—H150.9300
C4—H40.9300C16—C171.376 (2)
C5—C61.397 (2)C16—H160.9300
C5—H50.9300C17—S11.7532 (16)
C6—C71.440 (2)C18—C191.371 (3)
C7—C81.353 (2)C18—C231.382 (3)
C7—S21.7545 (17)C18—S21.785 (2)
C8—N11.418 (2)C19—C201.392 (3)
C8—C91.484 (2)C19—H190.9300
C9—O31.451 (2)C20—C211.373 (4)
C9—H9A0.9700C20—H200.9300
C9—H9B0.9700C21—C221.356 (4)
C10—O41.196 (2)C21—H210.9300
C10—O31.337 (2)C22—C231.383 (4)
C10—C111.488 (3)C22—H220.9300
C11—H11A0.9600C23—H230.9300
C11—H11B0.9600N1—S11.6763 (14)
C11—H11C0.9600O1—S11.4190 (12)
C12—C131.371 (3)O2—S11.4201 (12)
C2—C1—C6121.60 (15)C12—C13—H13119.8
C2—C1—N1131.17 (15)C14—C13—H13119.8
C6—C1—N1107.21 (13)C15—C14—C13120.33 (18)
C3—C2—C1117.01 (17)C15—C14—H14119.8
C3—C2—H2121.5C13—C14—H14119.8
C1—C2—H2121.5C14—C15—C16120.22 (17)
C2—C3—C4122.14 (17)C14—C15—H15119.9
C2—C3—H3118.9C16—C15—H15119.9
C4—C3—H3118.9C17—C16—C15118.97 (16)
C5—C4—C3120.78 (17)C17—C16—H16120.5
C5—C4—H4119.6C15—C16—H16120.5
C3—C4—H4119.6C16—C17—C12120.98 (15)
C4—C5—C6118.46 (17)C16—C17—S1119.59 (13)
C4—C5—H5120.8C12—C17—S1119.40 (12)
C6—C5—H5120.8C19—C18—C23120.1 (2)
C5—C6—C1120.00 (15)C19—C18—S2120.85 (16)
C5—C6—C7132.54 (16)C23—C18—S2118.90 (18)
C1—C6—C7107.41 (14)C18—C19—C20119.8 (2)
C8—C7—C6108.92 (14)C18—C19—H19120.1
C8—C7—S2126.09 (13)C20—C19—H19120.1
C6—C7—S2124.99 (13)C21—C20—C19119.4 (3)
C7—C8—N1108.51 (14)C21—C20—H20120.3
C7—C8—C9127.31 (15)C19—C20—H20120.3
N1—C8—C9123.79 (15)C22—C21—C20120.7 (3)
O3—C9—C8106.62 (12)C22—C21—H21119.6
O3—C9—H9A110.4C20—C21—H21119.6
C8—C9—H9A110.4C21—C22—C23120.4 (3)
O3—C9—H9B110.4C21—C22—H22119.8
C8—C9—H9B110.4C23—C22—H22119.8
H9A—C9—H9B108.6C18—C23—C22119.4 (3)
O4—C10—O3123.03 (18)C18—C23—H23120.3
O4—C10—C11126.05 (19)C22—C23—H23120.3
O3—C10—C11110.92 (18)C8—N1—C1107.94 (13)
C10—C11—H11A109.5C8—N1—S1126.33 (11)
C10—C11—H11B109.5C1—N1—S1123.64 (11)
H11A—C11—H11B109.5C10—O3—C9115.82 (13)
C10—C11—H11C109.5O1—S1—O2120.31 (7)
H11A—C11—H11C109.5O1—S1—N1105.42 (7)
H11B—C11—H11C109.5O2—S1—N1106.70 (7)
C13—C12—C17119.13 (16)O1—S1—C17109.01 (8)
C13—C12—H12120.4O2—S1—C17109.15 (8)
C17—C12—H12120.4N1—S1—C17105.16 (7)
C12—C13—C14120.36 (17)C7—S2—C18100.69 (8)
C6—C1—C2—C30.8 (2)C19—C20—C21—C220.9 (4)
N1—C1—C2—C3177.37 (16)C20—C21—C22—C230.5 (4)
C1—C2—C3—C40.2 (3)C19—C18—C23—C220.7 (3)
C2—C3—C4—C50.6 (3)S2—C18—C23—C22176.63 (16)
C3—C4—C5—C60.1 (3)C21—C22—C23—C180.6 (3)
C4—C5—C6—C11.1 (2)C7—C8—N1—C11.09 (17)
C4—C5—C6—C7178.16 (17)C9—C8—N1—C1174.33 (14)
C2—C1—C6—C51.5 (2)C7—C8—N1—S1165.03 (11)
N1—C1—C6—C5177.06 (14)C9—C8—N1—S121.7 (2)
C2—C1—C6—C7179.21 (14)C2—C1—N1—C8179.43 (16)
N1—C1—C6—C70.66 (16)C6—C1—N1—C81.06 (16)
C5—C6—C7—C8177.32 (17)C2—C1—N1—S116.1 (2)
C1—C6—C7—C80.01 (18)C6—C1—N1—S1165.54 (11)
C5—C6—C7—S22.9 (3)O4—C10—O3—C93.4 (3)
C1—C6—C7—S2179.79 (12)C11—C10—O3—C9177.29 (17)
C6—C7—C8—N10.68 (18)C8—C9—O3—C10172.38 (15)
S2—C7—C8—N1179.54 (11)C8—N1—S1—O1163.03 (13)
C6—C7—C8—C9173.61 (15)C1—N1—S1—O135.40 (14)
S2—C7—C8—C96.6 (2)C8—N1—S1—O234.03 (15)
C7—C8—C9—O3100.22 (19)C1—N1—S1—O2164.40 (12)
N1—C8—C9—O371.71 (19)C8—N1—S1—C1781.83 (14)
C17—C12—C13—C141.0 (3)C1—N1—S1—C1779.75 (13)
C12—C13—C14—C150.6 (3)C16—C17—S1—O1143.04 (14)
C13—C14—C15—C160.2 (3)C12—C17—S1—O135.16 (16)
C14—C15—C16—C170.6 (3)C16—C17—S1—O29.83 (16)
C15—C16—C17—C120.2 (3)C12—C17—S1—O2168.37 (14)
C15—C16—C17—S1177.98 (14)C16—C17—S1—N1104.33 (14)
C13—C12—C17—C160.6 (3)C12—C17—S1—N177.48 (15)
C13—C12—C17—S1178.76 (15)C8—C7—S2—C18110.04 (16)
C23—C18—C19—C202.1 (3)C6—C7—S2—C1870.22 (16)
S2—C18—C19—C20177.95 (16)C19—C18—S2—C758.87 (17)
C18—C19—C20—C212.2 (3)C23—C18—S2—C7125.22 (16)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the N1/C1/C6–C8 and C1–C6 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C4—H4···O4i0.932.593.274 (2)131
C15—H15···Cg1ii0.932.773.559 (2)143
C16—H16···Cg2ii0.932.723.5146 (19)143
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+1/2, z3/2.

Experimental details

Crystal data
Chemical formulaC23H19NO4S2
Mr437.51
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)14.6530 (6), 9.4482 (4), 15.2461 (7)
β (°) 97.055 (3)
V3)2094.76 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.25 × 0.22 × 0.19
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.981, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
19397, 5235, 3638
Rint0.027
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.104, 1.03
No. of reflections5235
No. of parameters272
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.29

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the N1/C1/C6–C8 and C1–C6 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C4—H4···O4i0.932.593.274 (2)130.5
C15—H15···Cg1ii0.932.773.559 (2)143
C16—H16···Cg2ii0.932.723.5146 (19)143
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+1/2, z3/2.
 

Acknowledgements

EG and ASP thank Dr Babu Vargheese, SAIF, IIT, Madras, India, for the X-ray intensity data collection.

References

First citationAndreani, A., Granaiola, M., Leoni, A., Locatelli, A., Morigi, R., Rambaldi, M., Giorgi, G., Salvini, L. & Garaliene, V. (2001). Anticancer Drug Des. 16, 167–174.  Web of Science PubMed CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChakkaravarthi, G., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2008). Acta Cryst. E64, o542.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMukhopadhyay, S., Handy, G. A., Funayama, S. & Cordell, G. A. (1981). J. Nat. Prod. 44, 696–700.  CrossRef CAS PubMed Web of Science Google Scholar
First citationQuetin-Leclercq, J. (1994). J. Pharm. Belg. 49, 181–192.  CAS PubMed Google Scholar
First citationRavishankar, T., Chinnakali, K., Arumugam, N., Srinivasan, P. C., Usman, A. & Fun, H.-K. (2005). Acta Cryst. E61, o2455–o2457.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, U. P., Sarma, B. K., Mishra, P. K. & Ray, A. B. (2000). Folia Microbiol. (Praha), 45, 173–176.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSivaraman, J., Subramanian, K., Velmurugan, D., Subramanian, E. & Seetharaman, J. (1996). J. Mol. Struct. 385, 123–128.  CSD CrossRef CAS Web of Science Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTaylor, D. L., Ahmed, P. S., Chambers, P., Tyms, A. S., Bedard, J., Duchaine, J., Falardeau, G., Lavallee, J. F., Brown, W., Rando, R. F. & Bowlin, T. (1999). Antivir. Chem. Chemother. 10, 79–86.  Web of Science PubMed CAS Google Scholar
First citationWilliams, T. M., Ciccarone, T. M., MacTough, S. C., Rooney, C. S., Balani, S. K., Condra, J. H., Emini, E. A., Goldman, M. E., Greenlee, W. J. & Kauffman, L. R. (1993). J. Med. Chem. 36, 1291–1294.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages o1240-o1241
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds