organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1154

2-Amino-4-phenyl-4H,10H-1,3,5-triazino[1,2-a]benzimidazol-3-ium chloride

aDivision of Chemistry and Environmental Science, Manchester Metropolitan University, Manchester, England, bDepartment of Chemistry, Sohag University, Egypt, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 12 April 2011; accepted 12 April 2011; online 16 April 2011)

2-Guanidinobenzimidazole condenses with benzaldehyde in the presence of hydro­chloric acid to form 2-amino-3,4-dihydro-4-phenyl-1,3,5-triazino[1,2-a]benzimidazole, which was isolated as its hydro­chloride, C15H14N5+·Cl. The positive charge of the cation is formally placed on the double-bonded N atom of the dihydro­triazine ring. The six-membered dihydro­triazine that is fused with the benzimidazole ring system is relatively flat (r.m.s. deviation = 0.106 Å), with the methine C atom deviating most [0.164 (1) Å] from the mean-square plane. The phenyl ring connected to the methine C atom is disordered over two positions in a 0.558 (1):0.442 (1) ratio; the two orientations are aligned at 85.1 (1) and 89.6 (1)° with respect to the dihydro­triazine ring. In the crystal, adjacent cations and anions are linked by N—H⋯N and N—H⋯Cl hydrogen bonds, generating a double chain running along the b axis.

Related literature

For the synthesis, see: Dolzhenko & Chui (2006[Dolzhenko, A. V. & Chui, W.-K. (2006). J. Heterocycl. Chem. 43, 95-100.]); Martin et al. (1981[Martin, D., Graubaum, H., Kempter, G. & Ehrlichmann, W. (1981). J. Prakt. Chem. 323, 303-310.]); Nagarajan et al. (1970[Nagarajan, K., Rao, V. R. & Venkateswarlu, A. (1970). Indian J. Chem. 8, 126-129.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14N5+·Cl

  • Mr = 299.76

  • Triclinic, [P \overline 1]

  • a = 8.6454 (5) Å

  • b = 9.0440 (4) Å

  • c = 9.7182 (6) Å

  • α = 83.306 (4)°

  • β = 70.956 (5)°

  • γ = 81.523 (4)°

  • V = 708.51 (7) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 2.39 mm−1

  • T = 100 K

  • 0.20 × 0.20 × 0.02 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.647, Tmax = 0.954

  • 7924 measured reflections

  • 2818 independent reflections

  • 2667 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.106

  • S = 1.01

  • 2818 reflections

  • 237 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl1 0.88 (1) 2.23 (1) 3.1033 (16) 172 (2)
N4—H4⋯Cl1i 0.88 (1) 2.25 (1) 3.1060 (14) 165 (2)
N5—H3⋯N3ii 0.89 (1) 2.08 (1) 2.9643 (19) 176 (2)
N5—H2⋯Cl1ii 0.88 (1) 2.66 (2) 3.3147 (14) 132 (2)
Symmetry codes: (i) x, y-1, z; (ii) -x, -y+1, -z+1.

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

2-Guanidinobenzimidazole and aromatic aldehydes readily condense to form 2-amino-[1,3,5]triazino[1,2-a]benzimidazoles (Nagarajan et al., 1970; Martin et al., 1981); such compounds exhibit dihydrofolate reductase inhibitory activity (Dolzhenko & Chui, 2006). We added acetylacetone in the synthesis as the resulting compound possesses an amino subsitutent that is capable of further condensation, but the hydrochloric acid we used in the synthesis protonated the compound. The positive charge of the salt (Scheme I) is formally placed on the double-bonded N atom of the dihydrotriazine ring. The six-memebered dihydrotriazine that is fused with the benzimidazole ring-system is relatively flat, with the methine C deviating most from the mean-square plane. The phenyl ring that is connected to the methine C atom is disordered over two positions; the two orientations are aligned at nearly 90 ° with respect to the dihydrotriazine ring (Fig. 1). Adjacent cations and anions are linked by N–H···N and N–H···Cl hydrogen bonds to generate a linear chain motif (Table 1).

Related literature top

For the synthesis, see: Dolzhenko & Chui (2006); Martin et al. (1981); Nagarajan et al. (1970).

Experimental top

2-Guanidinobenzimidazole (1H-benzo[d]imidazol-2-yliminomethanediamine) (10 mmol), benzaldehyde (10 mmol) and excess of cyclohexanone (approx. 10 ml) along with few drops of concentrated hydrochloric acid was heated in N,N-dimethylformamide (50 ml) for 30 minutes. The product was collected and recrystallized from ethanol; m.p. 623 K.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 to 1.00 Å, Uiso(H) 1.2Ueq(C)] and were included in the refinement in the riding model approximation.

The amino H-atoms were located in a difference Fourier map, and were refined with distance restraints of N–H 0.88±0.01 Å; their displacement parameters were refined.

The phenyl ring is disordered over two positions, and was refined as a rigid hexagon of 1.39 Å; the two C–Cphenyl distances were restrained to 1.50±0.01 Å. The disorder refined to a 55.8 (1):44.2 (1) ratio.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of the C15H14N5 Cl salt at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. The disorder is not shown.
2-Amino-4-phenyl-4H,10H-1,3,5- triazino[1,2-a]benzimidazol-3-ium chloride top
Crystal data top
C15H14N5+·ClZ = 2
Mr = 299.76F(000) = 312
Triclinic, P1Dx = 1.405 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54184 Å
a = 8.6454 (5) ÅCell parameters from 4762 reflections
b = 9.0440 (4) Åθ = 4.8–74.3°
c = 9.7182 (6) ŵ = 2.39 mm1
α = 83.306 (4)°T = 100 K
β = 70.956 (5)°Plate, colorless
γ = 81.523 (4)°0.20 × 0.20 × 0.02 mm
V = 708.51 (7) Å3
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2818 independent reflections
Radiation source: SuperNova (Cu) X-ray Source2667 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.017
Detector resolution: 10.4041 pixels mm-1θmax = 74.5°, θmin = 4.8°
ω scansh = 107
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1111
Tmin = 0.647, Tmax = 0.954l = 1211
7924 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0582P)2 + 0.4089P]
where P = (Fo2 + 2Fc2)/3
2818 reflections(Δ/σ)max = 0.001
237 parametersΔρmax = 0.33 e Å3
6 restraintsΔρmin = 0.29 e Å3
Crystal data top
C15H14N5+·Clγ = 81.523 (4)°
Mr = 299.76V = 708.51 (7) Å3
Triclinic, P1Z = 2
a = 8.6454 (5) ÅCu Kα radiation
b = 9.0440 (4) ŵ = 2.39 mm1
c = 9.7182 (6) ÅT = 100 K
α = 83.306 (4)°0.20 × 0.20 × 0.02 mm
β = 70.956 (5)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2818 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
2667 reflections with I > 2σ(I)
Tmin = 0.647, Tmax = 0.954Rint = 0.017
7924 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0406 restraints
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.33 e Å3
2818 reflectionsΔρmin = 0.29 e Å3
237 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.25096 (5)0.91819 (4)0.47166 (4)0.03322 (14)
N10.33424 (18)0.61809 (16)0.63707 (17)0.0319 (3)
N20.37251 (16)0.37732 (15)0.69693 (15)0.0279 (3)
N30.16136 (17)0.46368 (14)0.58756 (15)0.0274 (3)
N40.25040 (18)0.20531 (15)0.61885 (15)0.0297 (3)
N50.03987 (18)0.28598 (15)0.52257 (16)0.0305 (3)
C10.4578 (2)0.5963 (2)0.70333 (19)0.0341 (4)
C20.5488 (2)0.6965 (3)0.7323 (2)0.0464 (5)
H2A0.53320.80080.70610.056*
C30.6639 (3)0.6360 (3)0.8014 (2)0.0587 (7)
H3A0.72800.70090.82360.070*
C40.6878 (3)0.4836 (3)0.8389 (3)0.0588 (7)
H4A0.76830.44700.88560.071*
C50.5980 (2)0.3834 (3)0.8102 (2)0.0465 (5)
H50.61440.27900.83590.056*
C60.4827 (2)0.4437 (2)0.74177 (19)0.0330 (4)
C70.28265 (19)0.48468 (17)0.63639 (17)0.0269 (3)
C80.1501 (2)0.31762 (17)0.57848 (17)0.0263 (3)
C90.3386 (2)0.22131 (18)0.71937 (17)0.0281 (3)
H90.44660.15660.68910.034*0.558 (7)
H9'0.44360.15190.69800.034*0.442 (7)
C100.2434 (3)0.1680 (4)0.8782 (2)0.0294 (11)0.558 (7)
C110.0806 (3)0.2263 (7)0.9423 (3)0.0475 (12)0.558 (7)
H110.02530.29470.88710.057*0.558 (7)
C120.0012 (4)0.1844 (7)1.0873 (3)0.0679 (19)0.558 (7)
H120.11240.22421.13110.081*0.558 (7)
C130.0798 (7)0.0843 (5)1.1681 (2)0.075 (2)0.558 (7)
H130.02390.05571.26710.090*0.558 (7)
C140.2426 (7)0.0261 (3)1.1039 (3)0.0643 (19)0.558 (7)
H140.29790.04231.15910.077*0.558 (7)
C150.3244 (5)0.0679 (3)0.9590 (3)0.0408 (12)0.558 (7)
H150.43560.02810.91510.049*0.558 (7)
C10'0.2393 (3)0.1996 (4)0.8737 (3)0.0296 (14)0.442 (7)
C11'0.1106 (5)0.3042 (4)0.9424 (3)0.0293 (11)0.442 (7)
H11'0.09410.40010.89450.035*0.442 (7)
C12'0.0060 (4)0.2685 (4)1.0813 (3)0.0397 (13)0.442 (7)
H12'0.08200.34001.12830.048*0.442 (7)
C13'0.0302 (4)0.1282 (4)1.1515 (3)0.0356 (13)0.442 (7)
H13'0.04130.10381.24640.043*0.442 (7)
C14'0.1589 (5)0.0236 (3)1.0827 (5)0.0375 (12)0.442 (7)
H14'0.17550.07231.13070.045*0.442 (7)
C15'0.2635 (4)0.0592 (3)0.9438 (4)0.0342 (12)0.442 (7)
H15'0.35150.01230.89680.041*0.442 (7)
H10.300 (3)0.7021 (17)0.594 (2)0.049 (6)*
H40.251 (3)0.1148 (14)0.593 (2)0.042 (6)*
H20.020 (3)0.1933 (13)0.521 (2)0.040 (5)*
H30.016 (2)0.3623 (18)0.486 (2)0.043 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0303 (2)0.0217 (2)0.0453 (3)0.00372 (15)0.00500 (17)0.01220 (16)
N10.0319 (7)0.0235 (7)0.0438 (8)0.0042 (6)0.0128 (6)0.0120 (6)
N20.0253 (7)0.0266 (7)0.0345 (7)0.0015 (5)0.0125 (6)0.0097 (5)
N30.0302 (7)0.0172 (6)0.0394 (7)0.0005 (5)0.0166 (6)0.0060 (5)
N40.0415 (8)0.0186 (6)0.0338 (7)0.0019 (6)0.0192 (6)0.0065 (5)
N50.0364 (8)0.0192 (6)0.0432 (8)0.0051 (6)0.0213 (6)0.0033 (6)
C10.0256 (8)0.0413 (9)0.0361 (9)0.0060 (7)0.0040 (7)0.0195 (7)
C20.0350 (10)0.0598 (13)0.0451 (11)0.0182 (9)0.0006 (8)0.0293 (9)
C30.0324 (10)0.100 (2)0.0505 (12)0.0253 (11)0.0044 (9)0.0371 (13)
C40.0336 (11)0.097 (2)0.0547 (13)0.0087 (11)0.0189 (10)0.0272 (13)
C50.0307 (9)0.0688 (14)0.0447 (10)0.0017 (9)0.0170 (8)0.0173 (10)
C60.0228 (8)0.0433 (10)0.0345 (8)0.0015 (7)0.0071 (7)0.0174 (7)
C70.0258 (8)0.0219 (7)0.0335 (8)0.0003 (6)0.0089 (6)0.0099 (6)
C80.0304 (8)0.0191 (7)0.0308 (8)0.0016 (6)0.0113 (6)0.0038 (6)
C90.0282 (8)0.0274 (8)0.0285 (8)0.0023 (6)0.0099 (6)0.0052 (6)
C100.038 (3)0.031 (2)0.018 (2)0.0146 (15)0.0014 (18)0.0055 (13)
C110.0361 (19)0.069 (4)0.0365 (19)0.0140 (19)0.0019 (15)0.0186 (19)
C120.064 (3)0.096 (6)0.041 (3)0.050 (4)0.010 (2)0.018 (3)
C130.126 (6)0.074 (4)0.028 (2)0.071 (4)0.003 (3)0.003 (3)
C140.131 (6)0.038 (2)0.0330 (19)0.045 (3)0.026 (3)0.0075 (16)
C150.073 (3)0.0228 (16)0.0333 (17)0.0187 (19)0.021 (2)0.0012 (13)
C10'0.028 (3)0.027 (2)0.042 (3)0.0030 (17)0.019 (3)0.0078 (18)
C11'0.032 (2)0.029 (2)0.0245 (18)0.0022 (18)0.0072 (15)0.0058 (15)
C12'0.035 (2)0.042 (3)0.035 (2)0.000 (2)0.0032 (18)0.007 (2)
C13'0.032 (2)0.038 (3)0.032 (3)0.009 (2)0.002 (2)0.001 (2)
C14'0.035 (3)0.029 (2)0.045 (3)0.0102 (18)0.010 (2)0.0078 (19)
C15'0.027 (2)0.031 (2)0.043 (3)0.0072 (18)0.0083 (19)0.0000 (19)
Geometric parameters (Å, º) top
N1—C71.348 (2)C9—C101.551 (2)
N1—C11.397 (2)C9—H91.0000
N1—H10.88 (1)C9—H9'1.0000
N2—C71.355 (2)C10—C111.3900
N2—C61.400 (2)C10—C151.3900
N2—C91.460 (2)C11—C121.3900
N3—C71.329 (2)C11—H110.9500
N3—C81.3538 (19)C12—C131.3900
N4—C81.344 (2)C12—H120.9500
N4—C91.452 (2)C13—C141.3900
N4—H40.882 (10)C13—H130.9500
N5—C81.319 (2)C14—C151.3900
N5—H20.88 (1)C14—H140.9500
N5—H30.89 (1)C15—H150.9500
C1—C21.390 (2)C10'—C11'1.3900
C1—C61.391 (3)C10'—C15'1.3900
C2—C31.389 (3)C11'—C12'1.3900
C2—H2A0.9500C11'—H11'0.9500
C3—C41.387 (4)C12'—C13'1.3900
C3—H3A0.9500C12'—H12'0.9500
C4—C51.382 (3)C13'—C14'1.3900
C4—H4A0.9500C13'—H13'0.9500
C5—C61.386 (3)C14'—C15'1.3900
C5—H50.9500C14'—H14'0.9500
C9—C10'1.471 (3)C15'—H15'0.9500
C7—N1—C1108.78 (14)N2—C9—H9107.9
C7—N1—H1123.8 (16)C10'—C9—H9115.7
C1—N1—H1127.2 (16)C10—C9—H9107.9
C7—N2—C6109.45 (14)N4—C9—H9'110.6
C7—N2—C9121.34 (13)N2—C9—H9'110.7
C6—N2—C9128.97 (14)C10'—C9—H9'110.6
C7—N3—C8113.66 (13)C10—C9—H9'102.7
C8—N4—C9123.13 (13)C11—C10—C15120.0
C8—N4—H4117.9 (14)C11—C10—C9120.27 (17)
C9—N4—H4118.3 (14)C15—C10—C9119.63 (17)
C8—N5—H2122.4 (14)C12—C11—C10120.0
C8—N5—H3117.3 (14)C12—C11—H11120.0
H2—N5—H3120 (2)C10—C11—H11120.0
C2—C1—C6121.02 (19)C11—C12—C13120.0
C2—C1—N1131.53 (19)C11—C12—H12120.0
C6—C1—N1107.46 (14)C13—C12—H12120.0
C1—C2—C3116.5 (2)C14—C13—C12120.0
C1—C2—H2A121.7C14—C13—H13120.0
C3—C2—H2A121.7C12—C13—H13120.0
C4—C3—C2121.9 (2)C15—C14—C13120.0
C4—C3—H3A119.1C15—C14—H14120.0
C2—C3—H3A119.1C13—C14—H14120.0
C5—C4—C3121.9 (2)C14—C15—C10120.0
C5—C4—H4A119.1C14—C15—H15120.0
C3—C4—H4A119.1C10—C15—H15120.0
C4—C5—C6116.2 (2)C11'—C10'—C15'120.0
C4—C5—H5121.9C11'—C10'—C9122.6 (2)
C6—C5—H5121.9C15'—C10'—C9116.8 (2)
C1—C6—C5122.43 (18)C12'—C11'—C10'120.0
C1—C6—N2105.86 (15)C12'—C11'—H11'120.0
C5—C6—N2131.71 (18)C10'—C11'—H11'120.0
N3—C7—N1125.39 (15)C11'—C12'—C13'120.0
N3—C7—N2126.15 (14)C11'—C12'—H12'120.0
N1—C7—N2108.44 (14)C13'—C12'—H12'120.0
N5—C8—N4119.28 (14)C14'—C13'—C12'120.0
N5—C8—N3118.04 (14)C14'—C13'—H13'120.0
N4—C8—N3122.63 (14)C12'—C13'—H13'120.0
N4—C9—N2105.74 (12)C15'—C14'—C13'120.0
N4—C9—C10'113.24 (18)C15'—C14'—H14'120.0
N2—C9—C10'105.86 (18)C13'—C14'—H14'120.0
N4—C9—C10111.64 (16)C14'—C15'—C10'120.0
N2—C9—C10115.56 (18)C14'—C15'—H15'120.0
N4—C9—H9107.9C10'—C15'—H15'120.0
C7—N1—C1—C2179.19 (18)C6—N2—C9—N4164.88 (15)
C7—N1—C1—C60.91 (19)C7—N2—C9—C10'99.0 (2)
C6—C1—C2—C30.3 (3)C6—N2—C9—C10'74.7 (2)
N1—C1—C2—C3179.83 (18)C7—N2—C9—C10102.57 (19)
C1—C2—C3—C40.4 (3)C6—N2—C9—C1071.1 (2)
C2—C3—C4—C50.3 (3)N4—C9—C10—C1153.8 (2)
C3—C4—C5—C60.0 (3)N2—C9—C10—C1167.1 (2)
C2—C1—C6—C50.0 (3)C10'—C9—C10—C1147.2 (10)
N1—C1—C6—C5179.93 (16)N4—C9—C10—C15129.8 (2)
C2—C1—C6—N2179.84 (15)N2—C9—C10—C15109.3 (3)
N1—C1—C6—N20.07 (18)C10'—C9—C10—C15129.2 (11)
C4—C5—C6—C10.1 (3)C15—C10—C11—C120.0
C4—C5—C6—N2179.93 (18)C9—C10—C11—C12176.4 (3)
C7—N2—C6—C11.03 (18)C10—C11—C12—C130.0
C9—N2—C6—C1175.29 (15)C11—C12—C13—C140.0
C7—N2—C6—C5179.13 (18)C12—C13—C14—C150.0
C9—N2—C6—C54.9 (3)C13—C14—C15—C100.0
C8—N3—C7—N1170.54 (15)C11—C10—C15—C140.0
C8—N3—C7—N211.2 (2)C9—C10—C15—C14176.4 (3)
C1—N1—C7—N3176.97 (15)N4—C9—C10'—C11'72.3 (3)
C1—N1—C7—N21.56 (18)N2—C9—C10'—C11'43.1 (3)
C6—N2—C7—N3176.89 (15)C10—C9—C10'—C11'155.5 (11)
C9—N2—C7—N32.1 (2)N4—C9—C10'—C15'98.6 (3)
C6—N2—C7—N11.62 (18)N2—C9—C10'—C15'146.0 (3)
C9—N2—C7—N1176.39 (13)C10—C9—C10'—C15'15.5 (9)
C9—N4—C8—N5160.68 (15)C15'—C10'—C11'—C12'0.0
C9—N4—C8—N321.9 (2)C9—C10'—C11'—C12'170.6 (3)
C7—N3—C8—N5175.88 (15)C10'—C11'—C12'—C13'0.0
C7—N3—C8—N41.6 (2)C11'—C12'—C13'—C14'0.0
C8—N4—C9—N231.2 (2)C12'—C13'—C14'—C15'0.0
C8—N4—C9—C10'84.3 (2)C13'—C14'—C15'—C10'0.0
C8—N4—C9—C1095.3 (2)C11'—C10'—C15'—C14'0.0
C7—N2—C9—N421.46 (19)C9—C10'—C15'—C14'171.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl10.88 (1)2.23 (1)3.1033 (16)172 (2)
N4—H4···Cl1i0.88 (1)2.25 (1)3.1060 (14)165 (2)
N5—H3···N3ii0.89 (1)2.08 (1)2.9643 (19)176 (2)
N5—H2···Cl1ii0.88 (1)2.66 (2)3.3147 (14)132 (2)
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC15H14N5+·Cl
Mr299.76
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.6454 (5), 9.0440 (4), 9.7182 (6)
α, β, γ (°)83.306 (4), 70.956 (5), 81.523 (4)
V3)708.51 (7)
Z2
Radiation typeCu Kα
µ (mm1)2.39
Crystal size (mm)0.20 × 0.20 × 0.02
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.647, 0.954
No. of measured, independent and
observed [I > 2σ(I)] reflections
7924, 2818, 2667
Rint0.017
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.106, 1.01
No. of reflections2818
No. of parameters237
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.29

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl10.88 (1)2.23 (1)3.1033 (16)172 (2)
N4—H4···Cl1i0.88 (1)2.25 (1)3.1060 (14)165 (2)
N5—H3···N3ii0.89 (1)2.08 (1)2.9643 (19)176 (2)
N5—H2···Cl1ii0.88 (1)2.66 (2)3.3147 (14)132 (2)
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z+1.
 

Acknowledgements

We thank Manchester Metropolitan University, Sohag University and the University of Malaya for supporting this study.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationDolzhenko, A. V. & Chui, W.-K. (2006). J. Heterocycl. Chem. 43, 95–100.  CrossRef CAS Google Scholar
First citationMartin, D., Graubaum, H., Kempter, G. & Ehrlichmann, W. (1981). J. Prakt. Chem. 323, 303–310.  CrossRef CAS Google Scholar
First citationNagarajan, K., Rao, V. R. & Venkateswarlu, A. (1970). Indian J. Chem. 8, 126–129.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1154
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds