organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1153

4-(4-Chloro­benz­yl)-5-methyl-2-phenyl-1H-pyrazol-3(2H)-one

aDivision of Chemistry and Environmental Science, Manchester Metropolitan University, Manchester, England, bDepartment of Chemistry, Sohag University, Egypt, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 12 April 2011; accepted 12 April 2011; online 16 April 2011)

The five-membered ring of the title compound, C17H15ClN2O, is almost planar (r.m.s. deviation = 0.008 Å), and its phenyl subsitutent is aligned at 34.9 (1)° with respect to this ring. The angle at the methyl­ene C atom is opened to 116.4 (2)°. In the crystal, adjacent mol­ecules are linked by an N—H⋯O hydrogen bond, generating a linear chain along the a axis.

Related literature

For the synthesis, see: Pettinari et al. (1994[Pettinari, C., Marchetti, F., Augusto, C., Marciante, C., Spagna, R. & Colapietro, M. (1994). Polyhedron, 13, 939-950.]).

[Scheme 1]

Experimental

Crystal data
  • C17H15ClN2O

  • Mr = 298.76

  • Orthorhombic, F d d 2

  • a = 23.1540 (3) Å

  • b = 43.8905 (6) Å

  • c = 5.6239 (1) Å

  • V = 5715.23 (15) Å3

  • Z = 16

  • Cu Kα radiation

  • μ = 2.36 mm−1

  • T = 100 K

  • 0.30 × 0.30 × 0.03 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.538, Tmax = 0.933

  • 10182 measured reflections

  • 2623 independent reflections

  • 2611 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.097

  • S = 1.08

  • 2623 reflections

  • 195 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.41 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1011 Friedel pairs

  • Flack parameter: 0.000 (12)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1i 0.85 (3) 1.82 (3) 2.6516 (18) 165 (2)
Symmetry code: (i) [x+{\script{1\over 4}}, -y-{\script{1\over 4}}, z-{\script{1\over 4}}].

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

3-Methyl-1-phenyl-4,5-dihydro-1H-5-pyrazolone possesses an active methylene linkage that undergoes condensation with aromatic aldehydes to yield compounds that react with metal salts (Pettinari et al., 1994). In these organic compounds, the pyrazole ring is connected to the aromatic system (of the aldehyde precursor) by a methylene linkage. The five-membered ring of C17H15ClN2O (Scheme I) is planar, and its phenyl subsitutent is aligned at 34.9 (1) ° with respect to this ring. The angle at the methylene C atom is opened to 116.4 (2) ° (Fig. 1). Adjacent molecules are linked by an N–H···O hydrogen bond to generate a linear chain along the a-axis of the orthorhombic unit cell (Fig. 2).

Related literature top

For the synthesis, see: Pettinari et al. (1994).

Experimental top

3-Methyl-1-phenyl-4,5-dihydro-1H-5-pyrazolone (10 mmol) and 4-chlorobenzaldehyde (10 mmol) along with few drops of concentrated hydrochloric acid were heated at 426 K in N,N-dimethylformamide (50 ml) for 8 h. The product was collected and recrystallized from ethanol; m.p. 471 K.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 to 0.98 Å, Uiso(H) 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation.

The amino H-atom was located in a difference Fourier map, and was freely refined.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of C17H15ClN2O at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. Hydrogen-bonded chain structure.
4-(4-Chlorobenzyl)-5-methyl-2-phenyl-1H-pyrazol-3(2H)-one top
Crystal data top
C17H15ClN2OF(000) = 2496
Mr = 298.76Dx = 1.389 Mg m3
Orthorhombic, Fdd2Cu Kα radiation, λ = 1.54184 Å
Hall symbol: F 2 -2dCell parameters from 8414 reflections
a = 23.1540 (3) Åθ = 3.8–74.2°
b = 43.8905 (6) ŵ = 2.36 mm1
c = 5.6239 (1) ÅT = 100 K
V = 5715.23 (15) Å3Plate, colorless
Z = 160.30 × 0.30 × 0.03 mm
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2623 independent reflections
Radiation source: SuperNova (Cu) X-ray Source2611 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.028
Detector resolution: 10.4041 pixels mm-1θmax = 74.3°, θmin = 4.0°
ω scansh = 2428
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 5354
Tmin = 0.538, Tmax = 0.933l = 66
10182 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0771P)2 + 3.0966P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
2623 reflectionsΔρmax = 0.21 e Å3
195 parametersΔρmin = 0.41 e Å3
1 restraintAbsolute structure: Flack (1983), 1011 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.000 (12)
Crystal data top
C17H15ClN2OV = 5715.23 (15) Å3
Mr = 298.76Z = 16
Orthorhombic, Fdd2Cu Kα radiation
a = 23.1540 (3) ŵ = 2.36 mm1
b = 43.8905 (6) ÅT = 100 K
c = 5.6239 (1) Å0.30 × 0.30 × 0.03 mm
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2623 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
2611 reflections with I > 2σ(I)
Tmin = 0.538, Tmax = 0.933Rint = 0.028
10182 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.097Δρmax = 0.21 e Å3
S = 1.08Δρmin = 0.41 e Å3
2623 reflectionsAbsolute structure: Flack (1983), 1011 Friedel pairs
195 parametersAbsolute structure parameter: 0.000 (12)
1 restraint
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.122967 (18)0.029555 (10)0.59020 (10)0.02795 (14)
O10.20050 (5)0.13339 (3)0.3426 (3)0.0201 (3)
N10.29664 (5)0.13658 (3)0.2283 (3)0.0152 (3)
N20.34778 (6)0.12275 (3)0.2955 (3)0.0161 (3)
H20.3806 (10)0.1243 (5)0.228 (5)0.019 (5)*
C10.29551 (6)0.16087 (4)0.0632 (3)0.0143 (3)
C20.25718 (7)0.18504 (4)0.1001 (3)0.0168 (3)
H2A0.23330.18540.23730.020*
C30.25436 (7)0.20838 (4)0.0648 (4)0.0200 (4)
H30.22790.22470.04160.024*
C40.28990 (7)0.20825 (4)0.2645 (4)0.0223 (4)
H40.28750.22430.37760.027*
C50.32888 (7)0.18450 (4)0.2971 (4)0.0205 (4)
H50.35370.18450.43160.025*
C60.33170 (7)0.16074 (4)0.1343 (3)0.0169 (3)
H60.35820.14450.15770.020*
C70.25237 (6)0.12512 (4)0.3689 (3)0.0150 (3)
C80.27831 (7)0.10413 (4)0.5272 (3)0.0156 (3)
C90.33640 (7)0.10305 (4)0.4713 (3)0.0162 (3)
C100.38394 (7)0.08494 (4)0.5800 (4)0.0210 (4)
H10A0.41670.08410.47000.031*
H10B0.39610.09460.72900.031*
H10C0.37030.06420.61260.031*
C110.24961 (7)0.08915 (4)0.7360 (3)0.0178 (3)
H11A0.27890.08630.86210.021*
H11B0.22000.10330.79890.021*
C120.22098 (6)0.05861 (4)0.6893 (3)0.0154 (3)
C130.22392 (7)0.03570 (4)0.8595 (3)0.0172 (3)
H130.24650.03880.99850.021*
C140.19446 (7)0.00837 (4)0.8301 (4)0.0193 (3)
H140.19680.00720.94670.023*
C150.16151 (7)0.00439 (4)0.6266 (3)0.0188 (4)
C160.15824 (7)0.02657 (4)0.4517 (3)0.0184 (3)
H160.13570.02340.31280.022*
C170.18871 (7)0.05357 (4)0.4839 (3)0.0175 (3)
H170.18750.06880.36400.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0289 (2)0.0233 (2)0.0317 (3)0.01125 (15)0.00111 (18)0.00169 (18)
O10.0092 (5)0.0249 (6)0.0261 (7)0.0009 (4)0.0031 (5)0.0062 (6)
N10.0089 (6)0.0176 (6)0.0191 (7)0.0009 (5)0.0009 (5)0.0015 (6)
N20.0086 (6)0.0191 (6)0.0206 (8)0.0025 (5)0.0023 (6)0.0025 (6)
C10.0110 (6)0.0154 (7)0.0164 (8)0.0031 (5)0.0018 (6)0.0000 (6)
C20.0117 (6)0.0168 (7)0.0220 (9)0.0010 (5)0.0014 (7)0.0001 (7)
C30.0148 (7)0.0174 (8)0.0277 (10)0.0010 (6)0.0018 (7)0.0003 (7)
C40.0190 (8)0.0216 (8)0.0262 (10)0.0053 (6)0.0021 (7)0.0062 (8)
C50.0167 (7)0.0263 (8)0.0185 (9)0.0057 (6)0.0021 (7)0.0009 (8)
C60.0128 (7)0.0187 (7)0.0191 (9)0.0026 (5)0.0007 (6)0.0021 (7)
C70.0118 (7)0.0157 (7)0.0176 (9)0.0027 (5)0.0021 (6)0.0020 (6)
C80.0133 (7)0.0159 (7)0.0177 (9)0.0015 (6)0.0006 (6)0.0020 (6)
C90.0147 (7)0.0162 (7)0.0177 (9)0.0010 (6)0.0024 (7)0.0018 (7)
C100.0174 (7)0.0213 (8)0.0242 (10)0.0036 (6)0.0005 (7)0.0023 (8)
C110.0185 (7)0.0174 (7)0.0176 (9)0.0018 (6)0.0024 (7)0.0005 (7)
C120.0104 (6)0.0178 (8)0.0178 (9)0.0013 (5)0.0042 (6)0.0001 (6)
C130.0145 (7)0.0212 (7)0.0157 (9)0.0005 (6)0.0003 (6)0.0006 (7)
C140.0188 (7)0.0190 (7)0.0203 (9)0.0009 (6)0.0023 (7)0.0030 (7)
C150.0150 (7)0.0185 (8)0.0229 (10)0.0032 (6)0.0029 (6)0.0023 (7)
C160.0154 (7)0.0250 (9)0.0149 (8)0.0001 (6)0.0009 (6)0.0019 (7)
C170.0149 (7)0.0200 (8)0.0177 (9)0.0015 (6)0.0028 (6)0.0030 (7)
Geometric parameters (Å, º) top
Cl1—C151.7488 (16)C8—C91.382 (2)
O1—C71.263 (2)C8—C111.501 (2)
N1—N21.3833 (18)C9—C101.489 (2)
N1—C71.389 (2)C10—H10A0.9800
N1—C11.414 (2)C10—H10B0.9800
N2—C91.340 (2)C10—H10C0.9800
N2—H20.85 (3)C11—C121.519 (2)
C1—C61.391 (2)C11—H11A0.9900
C1—C21.398 (2)C11—H11B0.9900
C2—C31.383 (3)C12—C131.390 (2)
C2—H2A0.9500C12—C171.394 (3)
C3—C41.392 (3)C13—C141.390 (2)
C3—H30.9500C13—H130.9500
C4—C51.391 (3)C14—C151.386 (3)
C4—H40.9500C14—H140.9500
C5—C61.389 (3)C15—C161.386 (3)
C5—H50.9500C16—C171.391 (2)
C6—H60.9500C16—H160.9500
C7—C81.415 (2)C17—H170.9500
N2—N1—C7108.49 (14)C8—C9—C10130.13 (17)
N2—N1—C1121.74 (13)C9—C10—H10A109.5
C7—N1—C1129.29 (13)C9—C10—H10B109.5
C9—N2—N1108.46 (13)H10A—C10—H10B109.5
C9—N2—H2123.9 (16)C9—C10—H10C109.5
N1—N2—H2127.2 (16)H10A—C10—H10C109.5
C6—C1—C2120.26 (16)H10B—C10—H10C109.5
C6—C1—N1120.65 (14)C8—C11—C12116.41 (15)
C2—C1—N1119.09 (15)C8—C11—H11A108.2
C3—C2—C1119.48 (16)C12—C11—H11A108.2
C3—C2—H2A120.3C8—C11—H11B108.2
C1—C2—H2A120.3C12—C11—H11B108.2
C2—C3—C4120.66 (16)H11A—C11—H11B107.3
C2—C3—H3119.7C13—C12—C17118.84 (15)
C4—C3—H3119.7C13—C12—C11119.89 (15)
C5—C4—C3119.54 (17)C17—C12—C11121.16 (16)
C5—C4—H4120.2C12—C13—C14121.22 (16)
C3—C4—H4120.2C12—C13—H13119.4
C6—C5—C4120.39 (17)C14—C13—H13119.4
C6—C5—H5119.8C15—C14—C13118.51 (16)
C4—C5—H5119.8C15—C14—H14120.7
C5—C6—C1119.65 (15)C13—C14—H14120.7
C5—C6—H6120.2C14—C15—C16121.82 (15)
C1—C6—H6120.2C14—C15—Cl1119.01 (13)
O1—C7—N1122.06 (16)C16—C15—Cl1119.16 (14)
O1—C7—C8131.63 (15)C15—C16—C17118.58 (17)
N1—C7—C8106.30 (13)C15—C16—H16120.7
C9—C8—C7107.01 (15)C17—C16—H16120.7
C9—C8—C11126.41 (16)C16—C17—C12121.00 (17)
C7—C8—C11126.12 (15)C16—C17—H17119.5
N2—C9—C8109.69 (14)C12—C17—H17119.5
N2—C9—C10120.14 (14)
C7—N1—N2—C90.45 (19)N1—C7—C8—C11170.82 (16)
C1—N1—N2—C9173.26 (14)N1—N2—C9—C81.6 (2)
N2—N1—C1—C639.1 (2)N1—N2—C9—C10179.61 (16)
C7—N1—C1—C6149.68 (17)C7—C8—C9—N22.2 (2)
N2—N1—C1—C2141.26 (16)C11—C8—C9—N2170.45 (15)
C7—N1—C1—C229.9 (2)C7—C8—C9—C10179.87 (18)
C6—C1—C2—C31.8 (2)C11—C8—C9—C107.3 (3)
N1—C1—C2—C3177.77 (15)C9—C8—C11—C1297.3 (2)
C1—C2—C3—C41.0 (2)C7—C8—C11—C1291.5 (2)
C2—C3—C4—C50.5 (3)C8—C11—C12—C13142.06 (16)
C3—C4—C5—C61.2 (3)C8—C11—C12—C1741.7 (2)
C4—C5—C6—C10.4 (2)C17—C12—C13—C141.3 (2)
C2—C1—C6—C51.1 (2)C11—C12—C13—C14174.99 (15)
N1—C1—C6—C5178.48 (15)C12—C13—C14—C150.4 (2)
N2—N1—C7—O1178.60 (15)C13—C14—C15—C161.3 (2)
C1—N1—C7—O19.3 (3)C13—C14—C15—Cl1178.64 (13)
N2—N1—C7—C80.87 (19)C14—C15—C16—C170.5 (3)
C1—N1—C7—C8171.23 (16)Cl1—C15—C16—C17179.46 (13)
O1—C7—C8—C9177.57 (18)C15—C16—C17—C121.3 (2)
N1—C7—C8—C91.82 (19)C13—C12—C17—C162.2 (2)
O1—C7—C8—C119.8 (3)C11—C12—C17—C16174.10 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.85 (3)1.82 (3)2.6516 (18)165 (2)
Symmetry code: (i) x+1/4, y1/4, z1/4.

Experimental details

Crystal data
Chemical formulaC17H15ClN2O
Mr298.76
Crystal system, space groupOrthorhombic, Fdd2
Temperature (K)100
a, b, c (Å)23.1540 (3), 43.8905 (6), 5.6239 (1)
V3)5715.23 (15)
Z16
Radiation typeCu Kα
µ (mm1)2.36
Crystal size (mm)0.30 × 0.30 × 0.03
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.538, 0.933
No. of measured, independent and
observed [I > 2σ(I)] reflections
10182, 2623, 2611
Rint0.028
(sin θ/λ)max1)0.624
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.097, 1.08
No. of reflections2623
No. of parameters195
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.41
Absolute structureFlack (1983), 1011 Friedel pairs
Absolute structure parameter0.000 (12)

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.85 (3)1.82 (3)2.6516 (18)165 (2)
Symmetry code: (i) x+1/4, y1/4, z1/4.
 

Acknowledgements

We thank Machester Metropolitan University, Sohag University and the University of Malaya for supporting this study.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPettinari, C., Marchetti, F., Augusto, C., Marciante, C., Spagna, R. & Colapietro, M. (1994). Polyhedron, 13, 939–950.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1153
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds