metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

cis-Bis[1,1-di­benzyl-3-(furan-2-yl­carbonyl)thio­ureato-κ2O,S]copper(II)

aDepartamento de Química Inorgánica, Facultad de Química, Universidad de la Habana, Habana 10400, Cuba, bGrupo de Cristalogafia, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brazil, and cLaboratorio de Síntesis Orgánica, Facultad de Química, Universidad de la Habana, Habana 10400, Cuba
*Correspondence e-mail: hperez@fq.uh.cu

(Received 14 April 2011; accepted 15 April 2011; online 22 April 2011)

In the title compound, [Cu(C20H17N2O2S)2], the CuII atom is coordinated by the S and O atoms of two 1,1-dibenzyl-3-(furan-2-ylcarbon­yl)thio­ureate ligands in a distorted square-planar geometry. The two O and two S atoms are mutually cis to each other. The Cu—S and Cu—O bond lengths lie within the ranges of those found in related structures. The dihedral angle between the planes of the two chelating rings is 26.15 (6)°.

Related literature

For general background, see: Arslan et al. (2003[Arslan, H., Flörke, U. & Külcü, N. (2003). Transition Met. Chem. 28, 816-819.]). For synthesis details, see: Nagasawa & Mitsunobu (1981[Nagasawa, H. & Mitsunobu, O. (1981). Bull. Chem. Soc. Jpn, 54, 2223-2224.]). For related structures, see: Binzet et al. (2006[Binzet, G., Arslan, H., Flörke, U., Külcü, N. & Duran, N. (2006). J. Coord. Chem. 62, 266-276.]); Gomes et al. (2007[Gomes, L. R., Santos, L. M. N. B. F., Schröder, B., Wagner, C. & Low, J. N. (2007). Acta Cryst. E63, m953-m955.]); Pérez et al. (2011[Pérez, H., da Silva, C. C. P., Plutín, A. M., de Simone, C. A. & Ellena, J. (2011). Acta Cryst. E67, m504.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C20H17N2O2S)2]

  • Mr = 762.37

  • Monoclinic, P 21 /n

  • a = 18.8390 (3) Å

  • b = 10.8730 (2) Å

  • c = 19.6200 (3) Å

  • β = 114.748 (1)°

  • V = 3649.79 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.76 mm−1

  • T = 293 K

  • 0.49 × 0.44 × 0.39 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • Absorption correction: gaussian (Coppens et al., 1965[Coppens, P., Leiserowitz, L. & Rabinovich, D. (1965). Acta Cryst. 18, 1035-1038.]) Tmin = 0.779, Tmax = 0.886

  • 21982 measured reflections

  • 7413 independent reflections

  • 6761 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.122

  • S = 1.07

  • 7413 reflections

  • 460 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.39 e Å−3

Data collection: COLLECT (Enraf–Nonius, 2000[Enraf-Nonius (2000). COLLECT. Enraf-Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SCALEPACK and SORTAV (Blessing, 1987[Blessing, R. H. (1987). Crystallogr. Rev. 1, 3-58], 1989[Blessing, R. H. (1989). J. Appl. Cryst. 22, 396-397.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

N-acyl-N',N'-disubstituted thioureas have attracted the attention of researches over the last three decades with regard to coordination behaviour towards transition metals (Arslan et al., 2003). During complex formation, the ligand is deprotonated, which results in a neutral complex with a six-membered ring chelating the metal ion.

In the crystal structure of the title complex, the two furoylthiourea molecules adopt a cis conformation, bonded to the central CuII ion as shown in Fig. 1. The complex coordination geometry is a distorted square-plane as reflected by angles O1—Cu—S2 [166.02 (6)°] and O2—Cu—S1 [163.52 (7)°]. The distance of Cu atom from the best plane through the coordination sphere is 0.2486 (1) Å. The chelate ring systems, Cu–O1–C1–N1–C2–S1 and Cu–O2–C21–N3–C22–S2, are nearly planar with the largest deviations from the best plane being -0.118 (1) Å for C2 and 0.114 (2) Å for C22, respectively. The dihedral angle of 26.15 (6)° between these chelate planes indicates a strong distortion from square planar towards tetrahedral geometry. By comparison, the corresponding O—Ni—S angles and dihedral angle for the NiII analog (Pérez et al., 2011) are 169.66 (5)°, 170.09 (6)° and 20.33 (6)°, respectively. As a result, the square-planar coordination geometry of the title molecule is more distorted. The Cu—S and Cu—O bond lengths lie within the range of those found in the related structures (Gomes et al., 2007, Binzet et al., 2006). The bond lengths of the thiocarbonyl and carbonyl bonds are longer than the average for CS (1.68 Å) and CO (1.20 Å) in thioureas, while the C—N bonds in the chelate rings are all shorter than the average for C—N single bond of about 1.48 Å. This indicates extensive electronic delocalization within the complex rings. Fig. 2 shows the arrangement of the complex molecules in the unit cell.

Related literature top

For general background, see: Arslan et al. (2003). For synthesis details, see: Nagasawa & Mitsunobu (1981). For related structures, see: Binzet et al. (2006); Gomes et al. (2007); Pérez et al. (2011).

Experimental top

The 1,1-dibenzyl-3-[(furan-2-yl)-carbonyl]thiourea ligand was prepared using the standard procedure previously reported in the literature (Nagasawa & Mitsunobu, 1981) by the reaction of furoyl chloride with KSCN in anhydrous acetone, and then condensation with dibenzylamine. To an ethanol solution (30 ml) containing the ligand (0.70 g, 2 mmol) was added an ethanol solution of Cu(CH3COO)2.H2O (0.20 g, 1 mmol). The solution was stirred at room temperature for 2 h, and at once a solution of NaOH (1 N) was added to adjust pH to the neutral value. The mixture was filtered and the filtrate was evaporated under reduced pressure to give a green solid, which was washed with acetone. Single crystals were obtained by slow evaporation of a chloroform/dichloromethane solution (1:1, v/v) of the complex.

Refinement top

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic, and C—H = 0.97 Å and 1.5Ueq(C) for methylene.

Computing details top

Data collection: COLLECT (Enraf–Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); SORTAV (Blessing, 1987, 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing of title complex, viewed along [010]. H atoms have been omitted for clarity.
cis-Bis[1,1-dibenzyl-3-(furan-2-ylcarbonyl)thioureato- κ2O,S]copper(II) top
Crystal data top
[Cu(C20H17N2O2S)2]F(000) = 1580
Mr = 762.37Dx = 1.387 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 22283 reflections
a = 18.8390 (3) Åθ = 2.9–26.7°
b = 10.8730 (2) ŵ = 0.76 mm1
c = 19.6200 (3) ÅT = 293 K
β = 114.748 (1)°Prism, blue
V = 3649.79 (10) Å30.49 × 0.44 × 0.39 mm
Z = 4
Data collection top
Nonius KappaCCD area-detector
diffractometer
7413 independent reflections
Radiation source: Enraf–Nonius FR5906761 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 9 pixels mm-1θmax = 26.7°, θmin = 3.0°
CCD rotation images, thick slices scansh = 2323
Absorption correction: gaussian
(Coppens et al., 1965)
k = 1313
Tmin = 0.779, Tmax = 0.886l = 2424
21982 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0633P)2 + 1.1325P]
where P = (Fo2 + 2Fc2)/3
7413 reflections(Δ/σ)max = 0.001
460 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
[Cu(C20H17N2O2S)2]V = 3649.79 (10) Å3
Mr = 762.37Z = 4
Monoclinic, P21/nMo Kα radiation
a = 18.8390 (3) ŵ = 0.76 mm1
b = 10.8730 (2) ÅT = 293 K
c = 19.6200 (3) Å0.49 × 0.44 × 0.39 mm
β = 114.748 (1)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
7413 independent reflections
Absorption correction: gaussian
(Coppens et al., 1965)
6761 reflections with I > 2σ(I)
Tmin = 0.779, Tmax = 0.886Rint = 0.027
21982 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.122H-atom parameters constrained
S = 1.07Δρmax = 0.23 e Å3
7413 reflectionsΔρmin = 0.39 e Å3
460 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu0.508045 (16)0.07839 (3)0.297423 (16)0.04477 (11)
S20.59888 (4)0.07792 (6)0.25262 (4)0.05644 (19)
S10.53343 (5)0.27665 (7)0.32023 (5)0.0707 (2)
O10.45058 (10)0.06749 (15)0.35857 (10)0.0493 (4)
O20.46288 (11)0.07565 (18)0.25155 (12)0.0641 (5)
O30.39877 (11)0.02783 (16)0.45314 (11)0.0570 (4)
O40.35836 (12)0.2514 (2)0.18813 (13)0.0763 (6)
N10.44597 (11)0.26752 (17)0.40284 (11)0.0424 (4)
N20.47257 (11)0.45499 (18)0.36697 (11)0.0429 (4)
N30.53966 (11)0.14815 (18)0.19153 (11)0.0447 (4)
N40.65912 (11)0.09441 (17)0.19891 (11)0.0425 (4)
C10.43832 (12)0.1451 (2)0.39995 (12)0.0395 (5)
C20.47889 (13)0.3315 (2)0.36579 (13)0.0420 (5)
C30.40694 (13)0.0971 (2)0.45135 (13)0.0415 (5)
C40.38350 (16)0.1503 (3)0.50008 (15)0.0574 (7)
H40.38370.2340.510.069*
C50.35819 (19)0.0537 (3)0.53378 (17)0.0668 (8)
H50.3380.06180.56950.08*
C60.36918 (17)0.0499 (3)0.50399 (17)0.0626 (7)
H60.3580.12790.51650.075*
C70.43616 (13)0.5172 (2)0.41091 (12)0.0422 (5)
H7A0.47160.580.44170.051*
H7B0.42910.45770.44440.051*
C80.35843 (13)0.5760 (2)0.36437 (12)0.0414 (5)
C90.29283 (14)0.5045 (3)0.32657 (14)0.0545 (6)
H90.29760.41930.32720.065*
C100.22047 (16)0.5575 (3)0.28797 (17)0.0673 (8)
H100.17680.50860.26270.081*
C110.21354 (17)0.6836 (3)0.28721 (16)0.0685 (8)
H110.16480.720.26160.082*
C120.27814 (18)0.7558 (3)0.32403 (17)0.0681 (8)
H120.27320.84090.32310.082*
C130.35041 (16)0.7019 (2)0.36246 (15)0.0540 (6)
H130.39410.75120.38730.065*
C140.50761 (15)0.5373 (2)0.33057 (14)0.0495 (6)
H14A0.47770.61310.31750.059*
H14B0.50310.49930.28420.059*
C150.59256 (15)0.5687 (2)0.37715 (14)0.0465 (5)
C160.63705 (15)0.5165 (2)0.44601 (14)0.0533 (6)
H160.6150.45770.46580.064*
C170.71447 (18)0.5511 (3)0.48607 (18)0.0709 (8)
H170.74390.5160.53270.085*
C180.7477 (2)0.6370 (4)0.4571 (2)0.0827 (10)
H180.79940.66080.48420.099*
C190.7043 (2)0.6874 (3)0.3881 (2)0.0791 (10)
H190.7270.74450.3680.095*
C200.62787 (18)0.6542 (3)0.34867 (18)0.0621 (7)
H200.5990.68950.3020.075*
C210.47872 (13)0.1453 (2)0.20874 (13)0.0441 (5)
C220.59750 (13)0.0648 (2)0.21315 (12)0.0405 (5)
C230.42344 (14)0.2456 (2)0.17448 (13)0.0491 (6)
C240.42619 (19)0.3425 (3)0.13331 (16)0.0645 (7)
H240.46490.35970.11690.077*
C250.3587 (2)0.4131 (3)0.1198 (2)0.0890 (11)
H250.34430.48610.09270.107*
C260.3200 (2)0.3554 (4)0.1530 (2)0.0917 (12)
H260.27280.38220.15240.11*
C270.66466 (15)0.2122 (2)0.16429 (13)0.0476 (6)
H27A0.6280.27020.16930.057*
H27B0.71680.24560.1910.057*
C280.64762 (15)0.1988 (2)0.08239 (14)0.0484 (6)
C290.57841 (18)0.1499 (3)0.03292 (17)0.0744 (9)
H290.54180.12390.05010.089*
C300.5620 (2)0.1384 (4)0.04314 (18)0.0916 (11)
H300.51490.1040.07620.11*
C310.6151 (2)0.1776 (4)0.06883 (19)0.0873 (11)
H310.60420.17040.11950.105*
C320.6840 (2)0.2271 (3)0.02047 (19)0.0816 (10)
H320.72010.25430.03810.098*
C330.70071 (19)0.2372 (3)0.05522 (17)0.0648 (7)
H330.74830.27030.08810.078*
C340.72555 (14)0.0120 (2)0.21270 (13)0.0453 (5)
H34A0.70970.07190.21590.054*
H34B0.73940.01660.17040.054*
C350.79670 (14)0.0422 (2)0.28359 (14)0.0452 (5)
C360.79724 (17)0.0283 (3)0.35352 (16)0.0621 (7)
H360.75250.00070.35770.074*
C370.8635 (2)0.0550 (3)0.41754 (18)0.0785 (9)
H370.86280.04590.46440.094*
C380.9302 (2)0.0947 (3)0.4126 (2)0.0787 (9)
H380.97480.11190.45580.094*
C390.93044 (19)0.1087 (4)0.3436 (2)0.0822 (10)
H390.97540.1360.33970.099*
C400.86415 (17)0.0825 (3)0.27935 (18)0.0648 (8)
H400.8650.09220.23260.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.04319 (18)0.04824 (19)0.04929 (19)0.00021 (12)0.02570 (14)0.01030 (13)
S20.0615 (4)0.0452 (4)0.0818 (5)0.0050 (3)0.0489 (4)0.0158 (3)
S10.0980 (6)0.0474 (4)0.1073 (6)0.0094 (4)0.0828 (5)0.0144 (4)
O10.0552 (10)0.0469 (9)0.0563 (10)0.0054 (7)0.0336 (8)0.0133 (8)
O20.0590 (11)0.0696 (13)0.0804 (13)0.0178 (9)0.0454 (10)0.0342 (10)
O30.0683 (11)0.0439 (9)0.0703 (12)0.0069 (8)0.0403 (10)0.0053 (9)
O40.0626 (12)0.0881 (16)0.0874 (15)0.0211 (11)0.0405 (11)0.0213 (12)
N10.0440 (10)0.0412 (10)0.0481 (10)0.0014 (8)0.0252 (9)0.0018 (9)
N20.0474 (11)0.0409 (10)0.0433 (10)0.0041 (8)0.0218 (9)0.0028 (8)
N30.0473 (11)0.0462 (11)0.0446 (10)0.0001 (9)0.0233 (9)0.0041 (9)
N40.0487 (11)0.0396 (10)0.0472 (11)0.0025 (8)0.0279 (9)0.0029 (8)
C10.0328 (11)0.0457 (13)0.0402 (11)0.0035 (9)0.0154 (9)0.0033 (10)
C20.0432 (12)0.0420 (12)0.0429 (12)0.0009 (9)0.0202 (10)0.0027 (10)
C30.0412 (12)0.0375 (12)0.0477 (12)0.0010 (9)0.0204 (10)0.0025 (10)
C40.0742 (18)0.0493 (14)0.0653 (16)0.0050 (13)0.0456 (15)0.0022 (13)
C50.080 (2)0.073 (2)0.0662 (18)0.0004 (15)0.0490 (16)0.0085 (15)
C60.0674 (18)0.0558 (16)0.0739 (19)0.0076 (13)0.0389 (15)0.0094 (14)
C70.0445 (12)0.0419 (12)0.0371 (11)0.0055 (10)0.0140 (10)0.0031 (10)
C80.0432 (12)0.0443 (13)0.0358 (11)0.0047 (10)0.0157 (10)0.0013 (9)
C90.0476 (14)0.0512 (15)0.0579 (15)0.0003 (11)0.0153 (12)0.0010 (12)
C100.0427 (14)0.083 (2)0.0657 (18)0.0004 (14)0.0126 (13)0.0011 (16)
C110.0495 (16)0.090 (2)0.0579 (16)0.0248 (15)0.0144 (13)0.0093 (16)
C120.075 (2)0.0539 (16)0.0663 (18)0.0252 (15)0.0209 (15)0.0085 (14)
C130.0550 (15)0.0451 (14)0.0536 (14)0.0078 (11)0.0145 (12)0.0023 (12)
C140.0591 (15)0.0446 (13)0.0481 (13)0.0048 (11)0.0258 (12)0.0084 (11)
C150.0572 (14)0.0372 (12)0.0530 (14)0.0043 (10)0.0309 (12)0.0026 (10)
C160.0573 (15)0.0509 (15)0.0557 (14)0.0048 (12)0.0277 (13)0.0016 (12)
C170.0568 (17)0.080 (2)0.0663 (18)0.0095 (15)0.0166 (15)0.0163 (16)
C180.0609 (19)0.083 (2)0.113 (3)0.0150 (17)0.045 (2)0.037 (2)
C190.085 (2)0.0617 (19)0.115 (3)0.0185 (17)0.066 (2)0.0185 (19)
C200.079 (2)0.0470 (15)0.0763 (18)0.0002 (13)0.0483 (16)0.0032 (13)
C210.0447 (12)0.0476 (13)0.0416 (12)0.0001 (10)0.0198 (10)0.0043 (10)
C220.0472 (12)0.0414 (12)0.0390 (11)0.0047 (10)0.0240 (10)0.0021 (9)
C230.0489 (14)0.0550 (15)0.0448 (13)0.0050 (11)0.0210 (11)0.0044 (11)
C240.082 (2)0.0624 (17)0.0602 (16)0.0189 (15)0.0406 (15)0.0195 (14)
C250.111 (3)0.082 (2)0.072 (2)0.044 (2)0.037 (2)0.0325 (18)
C260.076 (2)0.110 (3)0.088 (2)0.046 (2)0.032 (2)0.019 (2)
C270.0567 (14)0.0395 (12)0.0550 (14)0.0068 (10)0.0316 (12)0.0018 (11)
C280.0561 (14)0.0446 (13)0.0512 (13)0.0004 (11)0.0290 (12)0.0095 (11)
C290.0671 (19)0.098 (2)0.0580 (17)0.0151 (17)0.0262 (15)0.0092 (17)
C300.084 (2)0.122 (3)0.0528 (18)0.013 (2)0.0128 (17)0.0080 (19)
C310.112 (3)0.101 (3)0.0537 (17)0.017 (2)0.040 (2)0.0148 (18)
C320.104 (3)0.093 (2)0.074 (2)0.003 (2)0.062 (2)0.0129 (19)
C330.0751 (19)0.0673 (18)0.0683 (17)0.0095 (15)0.0461 (15)0.0000 (14)
C340.0550 (14)0.0404 (12)0.0544 (13)0.0022 (10)0.0366 (12)0.0017 (11)
C350.0531 (14)0.0383 (12)0.0527 (13)0.0045 (10)0.0305 (12)0.0040 (10)
C360.0674 (17)0.0714 (18)0.0568 (15)0.0016 (14)0.0353 (14)0.0061 (14)
C370.086 (2)0.095 (3)0.0522 (17)0.0030 (19)0.0257 (17)0.0060 (16)
C380.069 (2)0.076 (2)0.071 (2)0.0052 (16)0.0100 (17)0.0041 (16)
C390.0589 (19)0.097 (3)0.087 (2)0.0159 (17)0.0274 (18)0.005 (2)
C400.0599 (17)0.079 (2)0.0643 (17)0.0119 (14)0.0345 (15)0.0024 (14)
Geometric parameters (Å, º) top
Cu—O11.9269 (16)C15—C161.379 (4)
Cu—S12.2128 (8)C15—C201.389 (4)
O1—C11.257 (3)C16—C171.388 (4)
N1—C11.338 (3)C16—H160.93
Cu—O21.9230 (18)C17—C181.373 (5)
Cu—S22.2272 (7)C17—H170.93
S1—C21.726 (2)C18—C191.369 (5)
S2—C221.730 (2)C18—H180.93
O2—C211.256 (3)C19—C201.367 (5)
O3—C61.353 (3)C19—H190.93
O3—C31.369 (3)C20—H200.93
O4—C231.362 (3)C21—C231.462 (3)
O4—C261.364 (4)C23—C241.342 (4)
N1—C21.332 (3)C24—C251.412 (4)
N2—C21.349 (3)C24—H240.93
N2—C141.463 (3)C25—C261.322 (5)
N2—C71.472 (3)C25—H250.93
N3—C211.326 (3)C26—H260.93
N3—C221.342 (3)C27—C281.508 (3)
N4—C221.342 (3)C27—H27A0.97
N4—C341.470 (3)C27—H27B0.97
N4—C271.474 (3)C28—C291.366 (4)
C1—C31.462 (3)C28—C331.380 (4)
C3—C41.341 (3)C29—C301.397 (4)
C4—C51.425 (4)C29—H290.93
C4—H40.93C30—C311.364 (5)
C5—C61.325 (4)C30—H300.93
C5—H50.93C31—C321.358 (5)
C6—H60.93C31—H310.93
C7—C81.506 (3)C32—C331.388 (4)
C7—H7A0.97C32—H320.93
C7—H7B0.97C33—H330.93
C8—C131.376 (3)C34—C351.509 (3)
C8—C91.384 (3)C34—H34A0.97
C9—C101.379 (4)C34—H34B0.97
C9—H90.93C35—C401.379 (4)
C10—C111.376 (4)C35—C361.376 (3)
C10—H100.93C36—C371.381 (4)
C11—C121.372 (4)C36—H360.93
C11—H110.93C37—C381.370 (5)
C12—C131.380 (4)C37—H370.93
C12—H120.93C38—C391.365 (5)
C13—H130.93C38—H380.93
C14—C151.513 (4)C39—C401.382 (5)
C14—H14A0.97C39—H390.93
C14—H14B0.97C40—H400.93
O2—Cu—O189.08 (7)C16—C17—H17119.9
O2—Cu—S1163.52 (7)C19—C18—C17119.6 (3)
O1—Cu—S193.68 (5)C19—C18—H18120.2
O2—Cu—S294.35 (5)C17—C18—H18120.2
O1—Cu—S2166.02 (6)C18—C19—C20120.4 (3)
S1—Cu—S286.86 (2)C18—C19—H19119.8
C22—S2—Cu107.99 (8)C20—C19—H19119.8
C2—S1—Cu108.45 (8)C19—C20—C15121.1 (3)
C1—O1—Cu131.58 (15)C19—C20—H20119.4
C21—O2—Cu130.97 (16)C15—C20—H20119.4
C6—O3—C3106.3 (2)O2—C21—N3131.1 (2)
C23—O4—C26105.7 (2)O2—C21—C23115.7 (2)
C2—N1—C1124.29 (19)N3—C21—C23113.0 (2)
C2—N2—C14122.62 (19)N3—C22—N4115.52 (19)
C2—N2—C7122.24 (19)N3—C22—S2127.25 (17)
C14—N2—C7114.91 (19)N4—C22—S2117.15 (17)
C21—N3—C22125.4 (2)C24—C23—O4110.3 (2)
C22—N4—C34124.03 (19)C24—C23—C21131.5 (2)
C22—N4—C27122.60 (19)O4—C23—C21118.1 (2)
C34—N4—C27113.32 (18)C23—C24—C25106.4 (3)
O1—C1—N1130.5 (2)C23—C24—H24126.8
O1—C1—C3116.3 (2)C25—C24—H24126.8
N1—C1—C3113.16 (19)C26—C25—C24106.8 (3)
N1—C2—N2116.5 (2)C26—C25—H25126.6
N1—C2—S1128.01 (18)C24—C25—H25126.6
N2—C2—S1115.40 (17)C25—C26—O4110.9 (3)
C4—C3—O3109.6 (2)C25—C26—H26124.5
C4—C3—C1133.4 (2)O4—C26—H26124.5
O3—C3—C1116.99 (19)N4—C27—C28112.5 (2)
C3—C4—C5106.7 (2)N4—C27—H27A109.1
C3—C4—H4126.7C28—C27—H27A109.1
C5—C4—H4126.7N4—C27—H27B109.1
C6—C5—C4106.1 (2)C28—C27—H27B109.1
C6—C5—H5126.9H27A—C27—H27B107.8
C4—C5—H5126.9C29—C28—C33118.3 (3)
C5—C6—O3111.3 (2)C29—C28—C27120.6 (2)
C5—C6—H6124.4C33—C28—C27121.1 (2)
O3—C6—H6124.4C28—C29—C30120.8 (3)
N2—C7—C8114.41 (18)C28—C29—H29119.6
N2—C7—H7A108.7C30—C29—H29119.6
C8—C7—H7A108.7C31—C30—C29119.9 (3)
N2—C7—H7B108.7C31—C30—H30120.1
C8—C7—H7B108.7C29—C30—H30120.1
H7A—C7—H7B107.6C32—C31—C30120.0 (3)
C13—C8—C9118.8 (2)C32—C31—H31120
C13—C8—C7120.5 (2)C30—C31—H31120
C9—C8—C7120.6 (2)C31—C32—C33120.1 (3)
C10—C9—C8121.0 (3)C31—C32—H32120
C10—C9—H9119.5C33—C32—H32120
C8—C9—H9119.5C28—C33—C32120.9 (3)
C11—C10—C9119.4 (3)C28—C33—H33119.6
C11—C10—H10120.3C32—C33—H33119.6
C9—C10—H10120.3N4—C34—C35113.34 (19)
C12—C11—C10120.3 (3)N4—C34—H34A108.9
C12—C11—H11119.8C35—C34—H34A108.9
C10—C11—H11119.8N4—C34—H34B108.9
C11—C12—C13119.9 (3)C35—C34—H34B108.9
C11—C12—H12120H34A—C34—H34B107.7
C13—C12—H12120C40—C35—C36118.2 (3)
C12—C13—C8120.6 (3)C40—C35—C34119.9 (2)
C12—C13—H13119.7C36—C35—C34121.9 (2)
C8—C13—H13119.7C35—C36—C37120.7 (3)
N2—C14—C15115.0 (2)C35—C36—H36119.6
N2—C14—H14A108.5C37—C36—H36119.6
C15—C14—H14A108.5C38—C37—C36120.5 (3)
N2—C14—H14B108.5C38—C37—H37119.7
C15—C14—H14B108.5C36—C37—H37119.7
H14A—C14—H14B107.5C39—C38—C37119.3 (3)
C16—C15—C20118.2 (3)C39—C38—H38120.3
C16—C15—C14123.7 (2)C37—C38—H38120.3
C20—C15—C14118.1 (2)C38—C39—C40120.3 (3)
C15—C16—C17120.5 (3)C38—C39—H39119.9
C15—C16—H16119.8C40—C39—H39119.9
C17—C16—H16119.8C35—C40—C39120.9 (3)
C18—C17—C16120.2 (3)C35—C40—H40119.5
C18—C17—H17119.9C39—C40—H40119.5
O2—Cu—S2—C229.59 (11)C15—C16—C17—C180.6 (4)
O1—Cu—S2—C2294.2 (2)C16—C17—C18—C190.7 (5)
S1—Cu—S2—C22173.12 (9)C17—C18—C19—C201.1 (5)
O2—Cu—S1—C289.5 (2)C18—C19—C20—C150.3 (5)
O1—Cu—S1—C29.81 (11)C16—C15—C20—C190.9 (4)
S2—Cu—S1—C2175.82 (9)C14—C15—C20—C19179.6 (3)
O2—Cu—O1—C1168.3 (2)Cu—O2—C21—N313.8 (4)
S1—Cu—O1—C14.5 (2)Cu—O2—C21—C23170.15 (19)
S2—Cu—O1—C187.3 (3)C22—N3—C21—O26.4 (4)
O1—Cu—O2—C21169.5 (3)C22—N3—C21—C23177.5 (2)
S1—Cu—O2—C2190.5 (3)C21—N3—C22—N4170.6 (2)
S2—Cu—O2—C213.1 (3)C21—N3—C22—S212.8 (4)
Cu—O1—C1—N116.9 (4)C34—N4—C22—N3175.0 (2)
Cu—O1—C1—C3166.58 (16)C27—N4—C22—N32.1 (3)
C2—N1—C1—O18.8 (4)C34—N4—C22—S21.9 (3)
C2—N1—C1—C3174.5 (2)C27—N4—C22—S2179.00 (17)
C1—N1—C2—N2171.5 (2)Cu—S2—C22—N318.8 (2)
C1—N1—C2—S112.3 (3)Cu—S2—C22—N4164.70 (15)
C14—N2—C2—N1178.3 (2)C26—O4—C23—C240.7 (3)
C7—N2—C2—N14.1 (3)C26—O4—C23—C21177.1 (3)
C14—N2—C2—S11.6 (3)O2—C21—C23—C24172.0 (3)
C7—N2—C2—S1172.62 (16)N3—C21—C23—C244.8 (4)
Cu—S1—C2—N119.6 (2)O2—C21—C23—O43.4 (4)
Cu—S1—C2—N2164.11 (15)N3—C21—C23—O4179.8 (2)
C6—O3—C3—C40.4 (3)O4—C23—C24—C250.4 (4)
C6—O3—C3—C1180.0 (2)C21—C23—C24—C25176.1 (3)
O1—C1—C3—C4176.3 (3)C23—C24—C25—C260.1 (4)
N1—C1—C3—C40.8 (4)C24—C25—C26—O40.5 (5)
O1—C1—C3—O34.2 (3)C23—O4—C26—C250.8 (4)
N1—C1—C3—O3178.7 (2)C22—N4—C27—C28103.0 (3)
O3—C3—C4—C50.8 (3)C34—N4—C27—C2874.3 (3)
C1—C3—C4—C5179.7 (3)N4—C27—C28—C2956.7 (3)
C3—C4—C5—C60.9 (3)N4—C27—C28—C33124.3 (3)
C4—C5—C6—O30.7 (4)C33—C28—C29—C300.3 (5)
C3—O3—C6—C50.2 (3)C27—C28—C29—C30179.4 (3)
C2—N2—C7—C8109.9 (2)C28—C29—C30—C310.7 (6)
C14—N2—C7—C875.5 (3)C29—C30—C31—C320.4 (6)
N2—C7—C8—C13112.8 (3)C30—C31—C32—C330.4 (6)
N2—C7—C8—C971.2 (3)C29—C28—C33—C320.4 (5)
C13—C8—C9—C100.4 (4)C27—C28—C33—C32178.6 (3)
C7—C8—C9—C10175.6 (2)C31—C32—C33—C280.8 (5)
C8—C9—C10—C110.1 (4)C22—N4—C34—C35101.4 (3)
C9—C10—C11—C120.5 (5)C27—N4—C34—C3581.2 (2)
C10—C11—C12—C130.4 (5)N4—C34—C35—C40114.7 (3)
C11—C12—C13—C80.1 (4)N4—C34—C35—C3666.7 (3)
C9—C8—C13—C120.5 (4)C40—C35—C36—C370.5 (4)
C7—C8—C13—C12175.5 (2)C34—C35—C36—C37179.1 (3)
C2—N2—C14—C1584.6 (3)C35—C36—C37—C380.6 (5)
C7—N2—C14—C1589.9 (2)C36—C37—C38—C390.5 (6)
N2—C14—C15—C165.7 (3)C37—C38—C39—C400.3 (6)
N2—C14—C15—C20174.8 (2)C36—C35—C40—C390.2 (5)
C20—C15—C16—C171.4 (4)C34—C35—C40—C39178.9 (3)
C14—C15—C16—C17179.1 (2)C38—C39—C40—C350.2 (5)

Experimental details

Crystal data
Chemical formula[Cu(C20H17N2O2S)2]
Mr762.37
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)18.8390 (3), 10.8730 (2), 19.6200 (3)
β (°) 114.748 (1)
V3)3649.79 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.76
Crystal size (mm)0.49 × 0.44 × 0.39
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correctionGaussian
(Coppens et al., 1965)
Tmin, Tmax0.779, 0.886
No. of measured, independent and
observed [I > 2σ(I)] reflections
21982, 7413, 6761
Rint0.027
(sin θ/λ)max1)0.631
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.122, 1.07
No. of reflections7413
No. of parameters460
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.39

Computer programs: COLLECT (Enraf–Nonius, 2000), DENZO and SCALEPACK (Otwinowski & Minor, 1997); SORTAV (Blessing, 1987, 1989), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999).

 

Acknowledgements

The authors thank the Grupo de Cristalografia, IFSC, USP, Brazil, for allowing the X-ray data collection. The authors acknowledge financial support from the PhD Cooperative Program ICTP/CLAF.

References

First citationArslan, H., Flörke, U. & Külcü, N. (2003). Transition Met. Chem. 28, 816–819.  Web of Science CSD CrossRef CAS Google Scholar
First citationBinzet, G., Arslan, H., Flörke, U., Külcü, N. & Duran, N. (2006). J. Coord. Chem. 62, 266–276.  Google Scholar
First citationBlessing, R. H. (1987). Crystallogr. Rev. 1, 3–58  CrossRef Google Scholar
First citationBlessing, R. H. (1989). J. Appl. Cryst. 22, 396–397.  CrossRef Web of Science IUCr Journals Google Scholar
First citationCoppens, P., Leiserowitz, L. & Rabinovich, D. (1965). Acta Cryst. 18, 1035–1038.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationEnraf–Nonius (2000). COLLECT. Enraf-Nonius BV, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGomes, L. R., Santos, L. M. N. B. F., Schröder, B., Wagner, C. & Low, J. N. (2007). Acta Cryst. E63, m953–m955.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNagasawa, H. & Mitsunobu, O. (1981). Bull. Chem. Soc. Jpn, 54, 2223–2224.  CrossRef CAS Web of Science Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPérez, H., da Silva, C. C. P., Plutín, A. M., de Simone, C. A. & Ellena, J. (2011). Acta Cryst. E67, m504.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds