organic compounds
2-[2-(Benzylsulfanyl)phenyl]-1,1,3,3-tetramethylguanidine
aDepartment Chemie, Fakultät für Naturwissenschaften, Universität Paderborn, Warburgerstrasse 100, D-33098 Paderborn, Germany
*Correspondence e-mail: ulrich.floerke@upb.de
The molecular structure of the title compound, C18H23N3S, shows it to be a derivative of an aminothiophenol possessing a tetramethylguanidine group with a localized C=N double bond of 1.304 (2) Å and a protected thiol as an S-benzyl thioether. The two aromatic ring planes make a dihedral angle of 67.69 (6)°.
Related literature
For synthesis, see: Neuba (2009); Lindoy & Livingstone (1968); Herres-Pawlis et al. (2005). For related structures, see: Neuba et al. (2007a,b,c); Herres et al. (2004); Raab et al. (2003, 2002); Peters et al. (2008). For complexes of metal centres with bis(tetramethylguanidino)propylene and amine guanidine hybrids, see: Harmjanz (1997); Waden (1999); Pohl et al. (2000); Schneider (2000); Wittmann (1999); Wittmann et al. (2001); Herres et al. (2005); Herres-Pawlis et al. (2009); Börner et al. (2007, 2009). For sulfur guanidine hybrids based on aminothiophenol and cysteamine, see: Neuba (2009); Neuba et al. (2008a,b, 2010, 2011).
Experimental
Crystal data
|
Data collection: SMART (Bruker, 2002); cell SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.
Supporting information
10.1107/S1600536811014577/bt5518sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811014577/bt5518Isup2.hkl
The title compound was prepared as follows: a solution of tetramethylchloroformamidinium chlorid (Herres-Pawlis et al., 2005) (5.13 g, 30 mmol) in dry MeCN was added dropwise to an ice-cooled solution of 2-(benzylthio)aniline (Lindoy & Livingstone, 1968) (6.45 g, 30 mmol) and triethylamine (4.18 ml, 3.03 g, 30 mmol) in dry MeCN. After 3 h under reflux, a solution of NaOH (1.2 g, 30 mmol) in water was added. The solvents and NEt3 were then evaporated under vacuum. In order to deprotonate the mono-hydrochloride, 50 wt% KOH (aqueous, 15 ml) was added and the free base was extracted into the MeCN phase (3 × 80 ml). The organic phase was dried with Na2SO4. After filtration, the solvent was evaporated under reduced pressure. The title compound was obtained as white powder (yield 69%, 6.4 g). Colourless crystals suitable for X-ray diffraction were obtained by slow cooling of a hot saturated MeCN solution.
Spectroscopic analysis: 1H NMR (500 MHz, CDCl3, 25°C, δ, p.p.m.): 2.68 (s, 12H, CH3), 4.10 (s, 2H, CH2), 6.59 (d, 1H, CH), 6.80 (t, 1H, CH), 7.03 (t, 1H, CH), 7.15 (d, 1H, CH), 7.21 (t, 1H, CH), 7.28 (t, 2H, CH), 7.36 (d, 2H, CH); 13C NMR (125 MHz, CDCl3, 25°C, δ, p.p.m.): 37.3 (CH2), 39.5 (CH3), 120.5 (CH), 121.7 (CH), 126.1 (CH), 126.9 (CH), 127.2 (CH), 127.6 (CH), 128.4 (CH), 128.7 (Cquat), 129.1 (CH), 136.6 (Cquat), 137.8 (Cquat), 160.0 (Cgua); IR (KBr, ν, cm-1): 3053 (w), 3030 (w), 3003 (w), 2918 (m), 2848 (m), 2790 (w), 1589 (vs (C═N)), 1558 (s (C═N)), 1500 (m (C═N)), 1460 (m), 1425 (m), 1377 (s), 1279 (w), 1232 (w), 1207 (w), 1144 (m), 1066 (m), 1038 (m), 1020 (s), 914 (w), 850 (w), 806 (vw), 777 (m), 715 (s), 696 (m), 682 (w), 621 (w), 571 (w), 545 (w), 498 (vw), 484 (w), 461 (w), 445 (w). EI–MS (m/z (%)): 313.0 (100) [M+], 280.0 (31), 269.1 (8) [M+ - N(CH3)2], 242.0 (5), 237.0 (10) [M+ - Ph], 222.0 (14) [M+ - CH2Ph], 215.0 (20), 190.0 (12) [M+ - SCH2Ph], 179.0 (76), 148.9 (28), 135.9 (20), 124.0 (9) [SCH2Ph+], 91.0 (76), 72.0 (20).
H atoms were clearly identified in difference syntheses, idealized and refined riding on the C atoms with C—H = 0.95 (aromatic) or 0.98–0.99 Å, and with isotropic displacement parameters Uiso(H) = 1.2Ueq(C) or 1.5Ueq(–CH3 H atoms). All CH3 H atoms were allowed to rotate but not to tip.
Data collection: SMART (Bruker, 2002); cell
SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and local programs.Fig. 1. Molecular structure with displacement ellipsoids drawn at the 50% probability level. |
C18H23N3S | F(000) = 672 |
Mr = 313.45 | Dx = 1.239 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 842 reflections |
a = 7.869 (2) Å | θ = 2.7–27.7° |
b = 26.850 (7) Å | µ = 0.19 mm−1 |
c = 8.314 (2) Å | T = 120 K |
β = 106.959 (5)° | Block, colourless |
V = 1680.2 (8) Å3 | 0.42 × 0.33 × 0.29 mm |
Z = 4 |
Bruker SMART APEX diffractometer | 3988 independent reflections |
Radiation source: sealed tube | 2816 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.066 |
ϕ and ω scans | θmax = 27.9°, θmin = 1.5° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) | h = −10→9 |
Tmin = 0.923, Tmax = 0.946 | k = −35→35 |
14278 measured reflections | l = −10→10 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.091 | H-atom parameters constrained |
S = 0.92 | w = 1/[σ2(Fo2) + (0.0443P)2] where P = (Fo2 + 2Fc2)/3 |
3988 reflections | (Δ/σ)max = 0.001 |
203 parameters | Δρmax = 0.24 e Å−3 |
0 restraints | Δρmin = −0.34 e Å−3 |
C18H23N3S | V = 1680.2 (8) Å3 |
Mr = 313.45 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 7.869 (2) Å | µ = 0.19 mm−1 |
b = 26.850 (7) Å | T = 120 K |
c = 8.314 (2) Å | 0.42 × 0.33 × 0.29 mm |
β = 106.959 (5)° |
Bruker SMART APEX diffractometer | 3988 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) | 2816 reflections with I > 2σ(I) |
Tmin = 0.923, Tmax = 0.946 | Rint = 0.066 |
14278 measured reflections |
R[F2 > 2σ(F2)] = 0.041 | 0 restraints |
wR(F2) = 0.091 | H-atom parameters constrained |
S = 0.92 | Δρmax = 0.24 e Å−3 |
3988 reflections | Δρmin = −0.34 e Å−3 |
203 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.48274 (6) | 0.392868 (13) | 0.76377 (5) | 0.02350 (11) | |
N1 | 0.64141 (18) | 0.33140 (4) | 0.56770 (16) | 0.0214 (3) | |
N2 | 0.93294 (17) | 0.29594 (4) | 0.63993 (16) | 0.0232 (3) | |
N3 | 0.68294 (18) | 0.24922 (4) | 0.50838 (17) | 0.0239 (3) | |
C1 | 0.7516 (2) | 0.29479 (5) | 0.57258 (18) | 0.0203 (3) | |
C2 | 1.0512 (2) | 0.27118 (7) | 0.5595 (2) | 0.0362 (4) | |
H2A | 0.9806 | 0.2524 | 0.4615 | 0.054* | |
H2B | 1.1294 | 0.2483 | 0.6395 | 0.054* | |
H2C | 1.1231 | 0.2961 | 0.5232 | 0.054* | |
C3 | 1.0191 (2) | 0.33296 (6) | 0.7646 (2) | 0.0291 (4) | |
H3A | 1.0587 | 0.3609 | 0.7089 | 0.044* | |
H3B | 1.1220 | 0.3179 | 0.8466 | 0.044* | |
H3C | 0.9349 | 0.3450 | 0.8225 | 0.044* | |
C4 | 0.4983 (2) | 0.24676 (6) | 0.4081 (2) | 0.0311 (4) | |
H4A | 0.4223 | 0.2445 | 0.4825 | 0.047* | |
H4B | 0.4800 | 0.2173 | 0.3354 | 0.047* | |
H4C | 0.4678 | 0.2768 | 0.3385 | 0.047* | |
C5 | 0.7491 (2) | 0.20329 (5) | 0.5999 (2) | 0.0309 (4) | |
H5A | 0.8732 | 0.2079 | 0.6666 | 0.046* | |
H5B | 0.7414 | 0.1760 | 0.5196 | 0.046* | |
H5C | 0.6772 | 0.1952 | 0.6746 | 0.046* | |
C6 | 0.6947 (2) | 0.38116 (5) | 0.56372 (19) | 0.0192 (3) | |
C7 | 0.7988 (2) | 0.39792 (5) | 0.4653 (2) | 0.0233 (3) | |
H7A | 0.8470 | 0.3744 | 0.4052 | 0.028* | |
C8 | 0.8338 (2) | 0.44823 (6) | 0.4527 (2) | 0.0252 (4) | |
H8A | 0.9042 | 0.4589 | 0.3838 | 0.030* | |
C9 | 0.7656 (2) | 0.48271 (5) | 0.5412 (2) | 0.0236 (3) | |
H9A | 0.7905 | 0.5171 | 0.5343 | 0.028* | |
C10 | 0.6610 (2) | 0.46705 (5) | 0.63978 (19) | 0.0220 (3) | |
H10A | 0.6153 | 0.4908 | 0.7009 | 0.026* | |
C11 | 0.6223 (2) | 0.41684 (5) | 0.65010 (18) | 0.0192 (3) | |
C12 | 0.4411 (2) | 0.44748 (5) | 0.8758 (2) | 0.0243 (4) | |
H12A | 0.5549 | 0.4615 | 0.9463 | 0.029* | |
H12B | 0.3797 | 0.4733 | 0.7947 | 0.029* | |
C13 | 0.3272 (2) | 0.43232 (5) | 0.98479 (19) | 0.0210 (3) | |
C14 | 0.4001 (2) | 0.40508 (6) | 1.1318 (2) | 0.0274 (4) | |
H14A | 0.5226 | 0.3966 | 1.1635 | 0.033* | |
C15 | 0.2967 (3) | 0.39029 (6) | 1.2317 (2) | 0.0317 (4) | |
H15A | 0.3480 | 0.3719 | 1.3316 | 0.038* | |
C16 | 0.1184 (3) | 0.40237 (6) | 1.1860 (2) | 0.0332 (4) | |
H16A | 0.0467 | 0.3919 | 1.2539 | 0.040* | |
C17 | 0.0442 (2) | 0.42969 (6) | 1.0417 (2) | 0.0329 (4) | |
H17A | −0.0781 | 0.4384 | 1.0113 | 0.039* | |
C18 | 0.1484 (2) | 0.44444 (6) | 0.9414 (2) | 0.0266 (4) | |
H18A | 0.0967 | 0.4630 | 0.8420 | 0.032* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0297 (2) | 0.01664 (17) | 0.0296 (2) | −0.00079 (16) | 0.01715 (18) | −0.00202 (15) |
N1 | 0.0224 (7) | 0.0167 (6) | 0.0277 (7) | −0.0022 (5) | 0.0116 (6) | −0.0044 (5) |
N2 | 0.0206 (7) | 0.0215 (6) | 0.0263 (7) | −0.0002 (5) | 0.0047 (6) | −0.0055 (5) |
N3 | 0.0234 (7) | 0.0164 (6) | 0.0296 (7) | −0.0001 (5) | 0.0043 (6) | −0.0045 (5) |
C1 | 0.0237 (9) | 0.0187 (7) | 0.0199 (8) | −0.0011 (6) | 0.0089 (7) | −0.0020 (6) |
C2 | 0.0267 (10) | 0.0419 (10) | 0.0414 (11) | 0.0044 (8) | 0.0121 (9) | −0.0069 (8) |
C3 | 0.0288 (10) | 0.0255 (8) | 0.0281 (9) | −0.0054 (7) | 0.0008 (8) | −0.0025 (7) |
C4 | 0.0253 (10) | 0.0251 (8) | 0.0400 (10) | −0.0031 (7) | 0.0049 (8) | −0.0076 (7) |
C5 | 0.0350 (10) | 0.0193 (7) | 0.0367 (10) | 0.0001 (7) | 0.0076 (9) | −0.0016 (7) |
C6 | 0.0175 (8) | 0.0181 (7) | 0.0219 (8) | −0.0009 (6) | 0.0058 (7) | −0.0018 (6) |
C7 | 0.0221 (9) | 0.0230 (8) | 0.0277 (8) | 0.0002 (6) | 0.0119 (7) | −0.0037 (6) |
C8 | 0.0228 (9) | 0.0273 (8) | 0.0279 (9) | −0.0026 (7) | 0.0111 (7) | 0.0035 (7) |
C9 | 0.0242 (9) | 0.0168 (7) | 0.0289 (9) | −0.0020 (6) | 0.0061 (7) | 0.0020 (6) |
C10 | 0.0228 (9) | 0.0173 (7) | 0.0252 (8) | 0.0013 (6) | 0.0059 (7) | −0.0012 (6) |
C11 | 0.0182 (8) | 0.0195 (7) | 0.0209 (8) | −0.0004 (6) | 0.0071 (7) | −0.0002 (6) |
C12 | 0.0305 (10) | 0.0174 (7) | 0.0280 (9) | 0.0022 (6) | 0.0131 (8) | −0.0036 (6) |
C13 | 0.0258 (9) | 0.0169 (7) | 0.0218 (8) | 0.0007 (6) | 0.0092 (7) | −0.0061 (6) |
C14 | 0.0259 (9) | 0.0296 (8) | 0.0267 (9) | 0.0056 (7) | 0.0076 (8) | −0.0013 (7) |
C15 | 0.0425 (11) | 0.0296 (8) | 0.0243 (9) | 0.0015 (8) | 0.0117 (8) | 0.0015 (7) |
C16 | 0.0423 (12) | 0.0292 (9) | 0.0372 (10) | −0.0078 (8) | 0.0260 (9) | −0.0093 (7) |
C17 | 0.0224 (10) | 0.0332 (9) | 0.0451 (11) | 0.0010 (7) | 0.0129 (9) | −0.0113 (8) |
C18 | 0.0282 (10) | 0.0235 (8) | 0.0281 (9) | 0.0028 (7) | 0.0082 (8) | −0.0025 (6) |
S1—C11 | 1.7661 (15) | C6—C11 | 1.413 (2) |
S1—C12 | 1.8175 (15) | C7—C8 | 1.389 (2) |
N1—C1 | 1.3035 (19) | C7—H7A | 0.9500 |
N1—C6 | 1.4033 (18) | C8—C9 | 1.384 (2) |
N2—C1 | 1.373 (2) | C8—H8A | 0.9500 |
N2—C3 | 1.4536 (19) | C9—C10 | 1.386 (2) |
N2—C2 | 1.455 (2) | C9—H9A | 0.9500 |
N3—C1 | 1.3804 (18) | C10—C11 | 1.390 (2) |
N3—C4 | 1.451 (2) | C10—H10A | 0.9500 |
N3—C5 | 1.4628 (19) | C12—C13 | 1.505 (2) |
C2—H2A | 0.9800 | C12—H12A | 0.9900 |
C2—H2B | 0.9800 | C12—H12B | 0.9900 |
C2—H2C | 0.9800 | C13—C18 | 1.385 (2) |
C3—H3A | 0.9800 | C13—C14 | 1.396 (2) |
C3—H3B | 0.9800 | C14—C15 | 1.380 (2) |
C3—H3C | 0.9800 | C14—H14A | 0.9500 |
C4—H4A | 0.9800 | C15—C16 | 1.381 (3) |
C4—H4B | 0.9800 | C15—H15A | 0.9500 |
C4—H4C | 0.9800 | C16—C17 | 1.382 (2) |
C5—H5A | 0.9800 | C16—H16A | 0.9500 |
C5—H5B | 0.9800 | C17—C18 | 1.387 (2) |
C5—H5C | 0.9800 | C17—H17A | 0.9500 |
C6—C7 | 1.391 (2) | C18—H18A | 0.9500 |
C11—S1—C12 | 102.33 (7) | C8—C7—H7A | 119.2 |
C1—N1—C6 | 121.20 (13) | C6—C7—H7A | 119.2 |
C1—N2—C3 | 121.30 (13) | C9—C8—C7 | 119.62 (14) |
C1—N2—C2 | 122.01 (13) | C9—C8—H8A | 120.2 |
C3—N2—C2 | 114.35 (14) | C7—C8—H8A | 120.2 |
C1—N3—C4 | 118.43 (13) | C8—C9—C10 | 120.05 (14) |
C1—N3—C5 | 120.43 (14) | C8—C9—H9A | 120.0 |
C4—N3—C5 | 113.92 (13) | C10—C9—H9A | 120.0 |
N1—C1—N2 | 126.77 (14) | C9—C10—C11 | 120.61 (14) |
N1—C1—N3 | 118.33 (15) | C9—C10—H10A | 119.7 |
N2—C1—N3 | 114.87 (13) | C11—C10—H10A | 119.7 |
N2—C2—H2A | 109.5 | C10—C11—C6 | 119.88 (14) |
N2—C2—H2B | 109.5 | C10—C11—S1 | 124.60 (12) |
H2A—C2—H2B | 109.5 | C6—C11—S1 | 115.51 (11) |
N2—C2—H2C | 109.5 | C13—C12—S1 | 108.58 (10) |
H2A—C2—H2C | 109.5 | C13—C12—H12A | 110.0 |
H2B—C2—H2C | 109.5 | S1—C12—H12A | 110.0 |
N2—C3—H3A | 109.5 | C13—C12—H12B | 110.0 |
N2—C3—H3B | 109.5 | S1—C12—H12B | 110.0 |
H3A—C3—H3B | 109.5 | H12A—C12—H12B | 108.4 |
N2—C3—H3C | 109.5 | C18—C13—C14 | 118.55 (15) |
H3A—C3—H3C | 109.5 | C18—C13—C12 | 121.19 (14) |
H3B—C3—H3C | 109.5 | C14—C13—C12 | 120.25 (15) |
N3—C4—H4A | 109.5 | C15—C14—C13 | 120.91 (16) |
N3—C4—H4B | 109.5 | C15—C14—H14A | 119.5 |
H4A—C4—H4B | 109.5 | C13—C14—H14A | 119.5 |
N3—C4—H4C | 109.5 | C14—C15—C16 | 119.81 (16) |
H4A—C4—H4C | 109.5 | C14—C15—H15A | 120.1 |
H4B—C4—H4C | 109.5 | C16—C15—H15A | 120.1 |
N3—C5—H5A | 109.5 | C15—C16—C17 | 120.10 (16) |
N3—C5—H5B | 109.5 | C15—C16—H16A | 120.0 |
H5A—C5—H5B | 109.5 | C17—C16—H16A | 120.0 |
N3—C5—H5C | 109.5 | C16—C17—C18 | 119.97 (17) |
H5A—C5—H5C | 109.5 | C16—C17—H17A | 120.0 |
H5B—C5—H5C | 109.5 | C18—C17—H17A | 120.0 |
C7—C6—N1 | 123.59 (13) | C13—C18—C17 | 120.66 (16) |
C7—C6—C11 | 118.26 (13) | C13—C18—H18A | 119.7 |
N1—C6—C11 | 117.77 (13) | C17—C18—H18A | 119.7 |
C8—C7—C6 | 121.54 (14) | ||
C6—N1—C1—N2 | 28.2 (2) | C9—C10—C11—S1 | −177.01 (12) |
C6—N1—C1—N3 | −153.64 (14) | C7—C6—C11—C10 | −2.2 (2) |
C3—N2—C1—N1 | 21.5 (2) | N1—C6—C11—C10 | −175.37 (14) |
C2—N2—C1—N1 | −140.14 (17) | C7—C6—C11—S1 | 176.95 (12) |
C3—N2—C1—N3 | −156.70 (13) | N1—C6—C11—S1 | 3.76 (18) |
C2—N2—C1—N3 | 41.6 (2) | C12—S1—C11—C10 | −7.87 (16) |
C4—N3—C1—N1 | 12.7 (2) | C12—S1—C11—C6 | 173.05 (12) |
C5—N3—C1—N1 | −135.83 (16) | C11—S1—C12—C13 | −178.03 (11) |
C4—N3—C1—N2 | −168.95 (14) | S1—C12—C13—C18 | −105.18 (15) |
C5—N3—C1—N2 | 42.6 (2) | S1—C12—C13—C14 | 74.12 (16) |
C1—N1—C6—C7 | 42.6 (2) | C18—C13—C14—C15 | 0.3 (2) |
C1—N1—C6—C11 | −144.63 (15) | C12—C13—C14—C15 | −179.05 (14) |
N1—C6—C7—C8 | 173.60 (15) | C13—C14—C15—C16 | 0.2 (2) |
C11—C6—C7—C8 | 0.8 (2) | C14—C15—C16—C17 | −0.8 (2) |
C6—C7—C8—C9 | 0.7 (2) | C15—C16—C17—C18 | 0.9 (2) |
C7—C8—C9—C10 | −0.9 (2) | C14—C13—C18—C17 | −0.2 (2) |
C8—C9—C10—C11 | −0.5 (2) | C12—C13—C18—C17 | 179.14 (14) |
C9—C10—C11—C6 | 2.0 (2) | C16—C17—C18—C13 | −0.4 (2) |
Experimental details
Crystal data | |
Chemical formula | C18H23N3S |
Mr | 313.45 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 120 |
a, b, c (Å) | 7.869 (2), 26.850 (7), 8.314 (2) |
β (°) | 106.959 (5) |
V (Å3) | 1680.2 (8) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.19 |
Crystal size (mm) | 0.42 × 0.33 × 0.29 |
Data collection | |
Diffractometer | Bruker SMART APEX diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2004) |
Tmin, Tmax | 0.923, 0.946 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 14278, 3988, 2816 |
Rint | 0.066 |
(sin θ/λ)max (Å−1) | 0.658 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.041, 0.091, 0.92 |
No. of reflections | 3988 |
No. of parameters | 203 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.24, −0.34 |
Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXTL (Sheldrick, 2008) and local programs.
Acknowledgements
The authors thank the German Research Council (DFG) and the Federal Ministry of Education and Research (BMBF) for continuous support of their work. AN thanks the university of Paderborn for granting a doctorate scholarship.
References
Börner, J., Flörke, U., Huber, K., Döring, A., Kuckling, D. & Herres-Pawlis, S. (2009). Chem. Eur. J. 15, 2362–2376. Web of Science PubMed Google Scholar
Börner, J., Herres-Pawlis, S., Flörke, U. & Huber, K. (2007). Eur. J. Inorg. Chem. pp. 5645–5651. Google Scholar
Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Harmjanz, F. (1997). PhD thesis, University of Oldenburg, Germany. Google Scholar
Herres, S., Flörke, U. & Henkel, G. (2004). Acta Cryst. C60, o358–o360. CSD CrossRef CAS IUCr Journals Google Scholar
Herres, S., Heuwing, A. J., Flörke, U., Schneider, J. & Henkel, G. (2005). Inorg. Chim. Acta, 358, 1089–1095. Web of Science CSD CrossRef CAS Google Scholar
Herres-Pawlis, S., Neuba, A., Seewald, O., Seshadri, T., Egold, H., Flörke, U. & Henkel, G. (2005). Eur. J. Org. Chem. pp. 4879–4890. Web of Science CSD CrossRef Google Scholar
Herres-Pawlis, S., Verma, P., Haase, R., Kang, P., Lyons, C. T., Wasinger, E. C., Flörke, U., Henkel, G. & Stack, T. D. P. (2009). J. Am. Chem. Soc. 131, 1154–1169. Web of Science PubMed CAS Google Scholar
Lindoy, L. F. & Livingstone, S. E. (1968). Inorg. Chem. 7, 1149–1154. CrossRef CAS Web of Science Google Scholar
Neuba, A. (2009). PhD thesis, University of Paderborn, Germany. Google Scholar
Neuba, A., Flörke, U. & Henkel, G. (2007a). Acta Cryst. E63, o3476–o3477. Web of Science CSD CrossRef IUCr Journals Google Scholar
Neuba, A., Flörke, U. & Henkel, G. (2007b). Acta Cryst. E63, o4661. Web of Science CSD CrossRef IUCr Journals Google Scholar
Neuba, A., Flörke, U. & Henkel, G. (2007c). Acta Cryst. E63, o4683. Web of Science CSD CrossRef IUCr Journals Google Scholar
Neuba, A., Flörke, U., Meyer-Klaucke, W., Salomone-Stagni, M., Bill, E., Bothe, E., Höfer, P. & Henkel, G. (2011). Angew. Chem. In the press. Google Scholar
Neuba, A., Haase, R., Bernard, M., Flörke, U. & Herres-Pawlis, S. (2008b). Z. Anorg. Allg. Chem. 634, 2511–2517. CrossRef CAS Google Scholar
Neuba, A., Herres-Pawlis, S., Flörke, U. & Henkel, G. (2008a). Z. Anorg. Allg. Chem. 634, 771–777. CrossRef CAS Google Scholar
Neuba, A., Herres-Pawlis, S., Seewald, O., Börner, J., Heuwing, J., Flörke, U. & Henkel, G. (2010). Z. Anorg. Allg. Chem. 636, 2641–2649. Web of Science CSD CrossRef CAS Google Scholar
Peters, A., Wild, U., Hubner, O., Kaifer, E. & Himmel, H.-J. (2008). Chem. Eur. J. 14, 7813–7821. CrossRef PubMed CAS Google Scholar
Pohl, S., Harmjanz, M., Schneider, J., Saak, W. & Henkel, G. (2000). J. Chem. Soc. Dalton Trans. pp. 3473–3479. Web of Science CrossRef Google Scholar
Raab, V., Harms, K., Sundermeyer, J., Kovacevic, B. & Maksic, Z. B. (2003). J. Org. Chem. 68, 8790–8797. Web of Science CSD CrossRef PubMed CAS Google Scholar
Raab, V., Kipke, J., Gschwind, R. M. & Sundermeyer, J. (2002). Chem. Eur. J. 8, 1682–1693. Web of Science CSD CrossRef PubMed CAS Google Scholar
Schneider, J. (2000). PhD thesis, University of Duisburg, Germany. Google Scholar
Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Waden, H. (1999). PhD thesis, University of Oldenburg, Germany. Google Scholar
Wittmann, H. (1999). PhD thesis, University of Marburg, Germany. Google Scholar
Wittmann, H., Raab, V., Schorm, A., Plackmeyer, J. & Sundermeyer, J. (2001). Eur. J. Inorg. Chem. pp. 1937–1948. CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The synthesis and characterization of novel molecules containing nitrogen and sulfur as donor functions and their application in synthesis of sulfur copper complexes is important for biomimetic copper–sulfur chemistry. In search of multifunctional ligands we have extended our studies to guanidyl-type systems with N-donor functions. The first derivative, the ligand bis(tetramethyl-guanidino)propylene as well as amine guanidine hybrids and their complexes with Cu, Fe, Ni, Ag, Mn, Co and Zn have recently been investigated (Harmjanz, 1997; Waden, 1999; Pohl et al., 2000; Schneider, 2000; Wittmann, 1999; Wittmann et al., 2001; Herres-Pawlis et al., 2005, 2009; Herres et al., 2005; Neuba et al., 2008a,b; 2010; Börner et al. 2007, 2009). We have now developed several sulfur guanidine hybrids based on aminothiophenol and cysteamine (Neuba et al., 2007a,b,c; Neuba, 2009). The synthesized sulfur guanidine compounds possess aliphatic and aromatic thioethers or disulfide groups and were used in the synthesis of copper thiolate complexes to mimic active centres like the CuA in cytochrome-c oxidase and N2O-reductase (Neuba et al., 2011). The two aromatic ring planes make a dihedral angle of 67.69 (6)° and the N1—C6—C11—S1—C12—C13 moiety is mostly planar with largest deviation of 0.084 (1) Å for S1 from the best plane. The guanidine plane C1N3 makes an angle of 59.80 (5)° with the attached aromatic ring. The N1═C1 guanidine double bond measures 1.304 (2) Å and is clearly localized. Similar double-bond localization is observed in other guanidine compounds (e.g. Herres et al., 2004; Neuba et al., 2007a,b; Raab et al., 2002, 2003; Peters et al., 2008).