organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages o1202-o1203

2-[2-(Benzyl­sulfan­yl)phen­yl]-1,1,3,3-tetra­methyl­guanidine

aDepartment Chemie, Fakultät für Naturwissenschaften, Universität Paderborn, Warburgerstrasse 100, D-33098 Paderborn, Germany
*Correspondence e-mail: ulrich.floerke@upb.de

(Received 15 April 2011; accepted 18 April 2011; online 22 April 2011)

The mol­ecular structure of the title compound, C18H23N3S, shows it to be a derivative of an amino­thio­phenol possessing a tetra­methyl­guanidine group with a localized C=N double bond of 1.304 (2) Å and a protected thiol functional group as an S-benzyl thio­ether. The two aromatic ring planes make a dihedral angle of 67.69 (6)°.

Related literature

For synthesis, see: Neuba (2009[Neuba, A. (2009). PhD thesis, University of Paderborn, Germany.]); Lindoy & Livingstone (1968[Lindoy, L. F. & Livingstone, S. E. (1968). Inorg. Chem. 7, 1149-1154.]); Herres-Pawlis et al. (2005[Herres-Pawlis, S., Neuba, A., Seewald, O., Seshadri, T., Egold, H., Flörke, U. & Henkel, G. (2005). Eur. J. Org. Chem. pp. 4879-4890.]). For related structures, see: Neuba et al. (2007a[Neuba, A., Flörke, U. & Henkel, G. (2007a). Acta Cryst. E63, o3476-o3477.],b[Neuba, A., Flörke, U. & Henkel, G. (2007b). Acta Cryst. E63, o4661.],c[Neuba, A., Flörke, U. & Henkel, G. (2007c). Acta Cryst. E63, o4683.]); Herres et al. (2004[Herres, S., Flörke, U. & Henkel, G. (2004). Acta Cryst. C60, o358-o360.]); Raab et al. (2003[Raab, V., Harms, K., Sundermeyer, J., Kovacevic, B. & Maksic, Z. B. (2003). J. Org. Chem. 68, 8790-8797.], 2002[Raab, V., Kipke, J., Gschwind, R. M. & Sundermeyer, J. (2002). Chem. Eur. J. 8, 1682-1693.]); Peters et al. (2008[Peters, A., Wild, U., Hubner, O., Kaifer, E. & Himmel, H.-J. (2008). Chem. Eur. J. 14, 7813-7821.]). For complexes of metal centres with bis­(tetra­methylguanidino)propyl­ene and amine guanidine hybrids, see: Harmjanz (1997[Harmjanz, F. (1997). PhD thesis, University of Oldenburg, Germany.]); Waden (1999[Waden, H. (1999). PhD thesis, University of Oldenburg, Germany.]); Pohl et al. (2000[Pohl, S., Harmjanz, M., Schneider, J., Saak, W. & Henkel, G. (2000). J. Chem. Soc. Dalton Trans. pp. 3473-3479.]); Schneider (2000[Schneider, J. (2000). PhD thesis, University of Duisburg, Germany.]); Wittmann (1999[Wittmann, H. (1999). PhD thesis, University of Marburg, Germany.]); Wittmann et al. (2001[Wittmann, H., Raab, V., Schorm, A., Plackmeyer, J. & Sundermeyer, J. (2001). Eur. J. Inorg. Chem. pp. 1937-1948.]); Herres et al. (2005[Herres, S., Heuwing, A. J., Flörke, U., Schneider, J. & Henkel, G. (2005). Inorg. Chim. Acta, 358, 1089-1095.]); Herres-Pawlis et al. (2009[Herres-Pawlis, S., Verma, P., Haase, R., Kang, P., Lyons, C. T., Wasinger, E. C., Flörke, U., Henkel, G. & Stack, T. D. P. (2009). J. Am. Chem. Soc. 131, 1154-1169.]); Börner et al. (2007[Börner, J., Herres-Pawlis, S., Flörke, U. & Huber, K. (2007). Eur. J. Inorg. Chem. pp. 5645-5651.], 2009[Börner, J., Flörke, U., Huber, K., Döring, A., Kuckling, D. & Herres-Pawlis, S. (2009). Chem. Eur. J. 15, 2362-2376.]). For sulfur guanidine hybrids based on amino­thio­phenol and cysteamine, see: Neuba (2009[Neuba, A. (2009). PhD thesis, University of Paderborn, Germany.]); Neuba et al. (2008a[Neuba, A., Herres-Pawlis, S., Flörke, U. & Henkel, G. (2008a). Z. Anorg. Allg. Chem. 634, 771-777.],b[Neuba, A., Haase, R., Bernard, M., Flörke, U. & Herres-Pawlis, S. (2008b). Z. Anorg. Allg. Chem. 634, 2511-2517.], 2010[Neuba, A., Herres-Pawlis, S., Seewald, O., Börner, J., Heuwing, J., Flörke, U. & Henkel, G. (2010). Z. Anorg. Allg. Chem. 636, 2641-2649.], 2011[Neuba, A., Flörke, U., Meyer-Klaucke, W., Salomone-Stagni, M., Bill, E., Bothe, E., Höfer, P. & Henkel, G. (2011). Angew. Chem. In the press.]).

[Scheme 1]

Experimental

Crystal data
  • C18H23N3S

  • Mr = 313.45

  • Monoclinic, P 21 /c

  • a = 7.869 (2) Å

  • b = 26.850 (7) Å

  • c = 8.314 (2) Å

  • β = 106.959 (5)°

  • V = 1680.2 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 120 K

  • 0.42 × 0.33 × 0.29 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.923, Tmax = 0.946

  • 14278 measured reflections

  • 3988 independent reflections

  • 2816 reflections with I > 2σ(I)

  • Rint = 0.066

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.091

  • S = 0.92

  • 3988 reflections

  • 203 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Supporting information


Comment top

The synthesis and characterization of novel molecules containing nitrogen and sulfur as donor functions and their application in synthesis of sulfur copper complexes is important for biomimetic copper–sulfur chemistry. In search of multifunctional ligands we have extended our studies to guanidyl-type systems with N-donor functions. The first derivative, the ligand bis(tetramethyl-guanidino)propylene as well as amine guanidine hybrids and their complexes with Cu, Fe, Ni, Ag, Mn, Co and Zn have recently been investigated (Harmjanz, 1997; Waden, 1999; Pohl et al., 2000; Schneider, 2000; Wittmann, 1999; Wittmann et al., 2001; Herres-Pawlis et al., 2005, 2009; Herres et al., 2005; Neuba et al., 2008a,b; 2010; Börner et al. 2007, 2009). We have now developed several sulfur guanidine hybrids based on aminothiophenol and cysteamine (Neuba et al., 2007a,b,c; Neuba, 2009). The synthesized sulfur guanidine compounds possess aliphatic and aromatic thioethers or disulfide groups and were used in the synthesis of copper thiolate complexes to mimic active centres like the CuA in cytochrome-c oxidase and N2O-reductase (Neuba et al., 2011). The two aromatic ring planes make a dihedral angle of 67.69 (6)° and the N1—C6—C11—S1—C12—C13 moiety is mostly planar with largest deviation of 0.084 (1) Å for S1 from the best plane. The guanidine plane C1N3 makes an angle of 59.80 (5)° with the attached aromatic ring. The N1C1 guanidine double bond measures 1.304 (2) Å and is clearly localized. Similar double-bond localization is observed in other guanidine compounds (e.g. Herres et al., 2004; Neuba et al., 2007a,b; Raab et al., 2002, 2003; Peters et al., 2008).

Related literature top

For synthesis, see: Neuba (2009); ; Lindoy & Livingstone (1968); Herres-Pawlis et al. (2005). For related structures, see: Neuba et al. (2007a,b,c); Herres et al. (2004); Raab et al. (2003); Peters et al. (2008); Raab et al. (2002). For complexes of metal centres with bis(tetramethyl-guanidino)propylene and amine guanidine hybrids, see: Harmjanz (1997); Waden (1999); Pohl et al. (2000); Schneider (2000); Wittmann (1999); Wittmann et al. (2001); Herres et al. (2005); Herres-Pawlis et al. (2009); Börner et al. (2007, 2009). For sulfur guanidine hybrids based on aminothiophenol and cysteamine, see: Neuba (2009); Neuba et al. (2007a,b,c, 2008a,b, 2010, 2011).

Experimental top

The title compound was prepared as follows: a solution of tetramethylchloroformamidinium chlorid (Herres-Pawlis et al., 2005) (5.13 g, 30 mmol) in dry MeCN was added dropwise to an ice-cooled solution of 2-(benzylthio)aniline (Lindoy & Livingstone, 1968) (6.45 g, 30 mmol) and triethylamine (4.18 ml, 3.03 g, 30 mmol) in dry MeCN. After 3 h under reflux, a solution of NaOH (1.2 g, 30 mmol) in water was added. The solvents and NEt3 were then evaporated under vacuum. In order to deprotonate the mono-hydrochloride, 50 wt% KOH (aqueous, 15 ml) was added and the free base was extracted into the MeCN phase (3 × 80 ml). The organic phase was dried with Na2SO4. After filtration, the solvent was evaporated under reduced pressure. The title compound was obtained as white powder (yield 69%, 6.4 g). Colourless crystals suitable for X-ray diffraction were obtained by slow cooling of a hot saturated MeCN solution.

Spectroscopic analysis: 1H NMR (500 MHz, CDCl3, 25°C, δ, p.p.m.): 2.68 (s, 12H, CH3), 4.10 (s, 2H, CH2), 6.59 (d, 1H, CH), 6.80 (t, 1H, CH), 7.03 (t, 1H, CH), 7.15 (d, 1H, CH), 7.21 (t, 1H, CH), 7.28 (t, 2H, CH), 7.36 (d, 2H, CH); 13C NMR (125 MHz, CDCl3, 25°C, δ, p.p.m.): 37.3 (CH2), 39.5 (CH3), 120.5 (CH), 121.7 (CH), 126.1 (CH), 126.9 (CH), 127.2 (CH), 127.6 (CH), 128.4 (CH), 128.7 (Cquat), 129.1 (CH), 136.6 (Cquat), 137.8 (Cquat), 160.0 (Cgua); IR (KBr, ν, cm-1): 3053 (w), 3030 (w), 3003 (w), 2918 (m), 2848 (m), 2790 (w), 1589 (vs (CN)), 1558 (s (CN)), 1500 (m (CN)), 1460 (m), 1425 (m), 1377 (s), 1279 (w), 1232 (w), 1207 (w), 1144 (m), 1066 (m), 1038 (m), 1020 (s), 914 (w), 850 (w), 806 (vw), 777 (m), 715 (s), 696 (m), 682 (w), 621 (w), 571 (w), 545 (w), 498 (vw), 484 (w), 461 (w), 445 (w). EI–MS (m/z (%)): 313.0 (100) [M+], 280.0 (31), 269.1 (8) [M+ - N(CH3)2], 242.0 (5), 237.0 (10) [M+ - Ph], 222.0 (14) [M+ - CH2Ph], 215.0 (20), 190.0 (12) [M+ - SCH2Ph], 179.0 (76), 148.9 (28), 135.9 (20), 124.0 (9) [SCH2Ph+], 91.0 (76), 72.0 (20).

Refinement top

H atoms were clearly identified in difference syntheses, idealized and refined riding on the C atoms with C—H = 0.95 (aromatic) or 0.98–0.99 Å, and with isotropic displacement parameters Uiso(H) = 1.2Ueq(C) or 1.5Ueq(–CH3 H atoms). All CH3 H atoms were allowed to rotate but not to tip.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and local programs.

Figures top
[Figure 1] Fig. 1. Molecular structure with displacement ellipsoids drawn at the 50% probability level.
2-[2-(Benzylsulfanyl)phenyl]-1,1,3,3-tetramethylguanidine top
Crystal data top
C18H23N3SF(000) = 672
Mr = 313.45Dx = 1.239 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 842 reflections
a = 7.869 (2) Åθ = 2.7–27.7°
b = 26.850 (7) ŵ = 0.19 mm1
c = 8.314 (2) ÅT = 120 K
β = 106.959 (5)°Block, colourless
V = 1680.2 (8) Å30.42 × 0.33 × 0.29 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
3988 independent reflections
Radiation source: sealed tube2816 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.066
ϕ and ω scansθmax = 27.9°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 109
Tmin = 0.923, Tmax = 0.946k = 3535
14278 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: difference Fourier map
wR(F2) = 0.091H-atom parameters constrained
S = 0.92 w = 1/[σ2(Fo2) + (0.0443P)2]
where P = (Fo2 + 2Fc2)/3
3988 reflections(Δ/σ)max = 0.001
203 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C18H23N3SV = 1680.2 (8) Å3
Mr = 313.45Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.869 (2) ŵ = 0.19 mm1
b = 26.850 (7) ÅT = 120 K
c = 8.314 (2) Å0.42 × 0.33 × 0.29 mm
β = 106.959 (5)°
Data collection top
Bruker SMART APEX
diffractometer
3988 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
2816 reflections with I > 2σ(I)
Tmin = 0.923, Tmax = 0.946Rint = 0.066
14278 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.091H-atom parameters constrained
S = 0.92Δρmax = 0.24 e Å3
3988 reflectionsΔρmin = 0.34 e Å3
203 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.48274 (6)0.392868 (13)0.76377 (5)0.02350 (11)
N10.64141 (18)0.33140 (4)0.56770 (16)0.0214 (3)
N20.93294 (17)0.29594 (4)0.63993 (16)0.0232 (3)
N30.68294 (18)0.24922 (4)0.50838 (17)0.0239 (3)
C10.7516 (2)0.29479 (5)0.57258 (18)0.0203 (3)
C21.0512 (2)0.27118 (7)0.5595 (2)0.0362 (4)
H2A0.98060.25240.46150.054*
H2B1.12940.24830.63950.054*
H2C1.12310.29610.52320.054*
C31.0191 (2)0.33296 (6)0.7646 (2)0.0291 (4)
H3A1.05870.36090.70890.044*
H3B1.12200.31790.84660.044*
H3C0.93490.34500.82250.044*
C40.4983 (2)0.24676 (6)0.4081 (2)0.0311 (4)
H4A0.42230.24450.48250.047*
H4B0.48000.21730.33540.047*
H4C0.46780.27680.33850.047*
C50.7491 (2)0.20329 (5)0.5999 (2)0.0309 (4)
H5A0.87320.20790.66660.046*
H5B0.74140.17600.51960.046*
H5C0.67720.19520.67460.046*
C60.6947 (2)0.38116 (5)0.56372 (19)0.0192 (3)
C70.7988 (2)0.39792 (5)0.4653 (2)0.0233 (3)
H7A0.84700.37440.40520.028*
C80.8338 (2)0.44823 (6)0.4527 (2)0.0252 (4)
H8A0.90420.45890.38380.030*
C90.7656 (2)0.48271 (5)0.5412 (2)0.0236 (3)
H9A0.79050.51710.53430.028*
C100.6610 (2)0.46705 (5)0.63978 (19)0.0220 (3)
H10A0.61530.49080.70090.026*
C110.6223 (2)0.41684 (5)0.65010 (18)0.0192 (3)
C120.4411 (2)0.44748 (5)0.8758 (2)0.0243 (4)
H12A0.55490.46150.94630.029*
H12B0.37970.47330.79470.029*
C130.3272 (2)0.43232 (5)0.98479 (19)0.0210 (3)
C140.4001 (2)0.40508 (6)1.1318 (2)0.0274 (4)
H14A0.52260.39661.16350.033*
C150.2967 (3)0.39029 (6)1.2317 (2)0.0317 (4)
H15A0.34800.37191.33160.038*
C160.1184 (3)0.40237 (6)1.1860 (2)0.0332 (4)
H16A0.04670.39191.25390.040*
C170.0442 (2)0.42969 (6)1.0417 (2)0.0329 (4)
H17A0.07810.43841.01130.039*
C180.1484 (2)0.44444 (6)0.9414 (2)0.0266 (4)
H18A0.09670.46300.84200.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0297 (2)0.01664 (17)0.0296 (2)0.00079 (16)0.01715 (18)0.00202 (15)
N10.0224 (7)0.0167 (6)0.0277 (7)0.0022 (5)0.0116 (6)0.0044 (5)
N20.0206 (7)0.0215 (6)0.0263 (7)0.0002 (5)0.0047 (6)0.0055 (5)
N30.0234 (7)0.0164 (6)0.0296 (7)0.0001 (5)0.0043 (6)0.0045 (5)
C10.0237 (9)0.0187 (7)0.0199 (8)0.0011 (6)0.0089 (7)0.0020 (6)
C20.0267 (10)0.0419 (10)0.0414 (11)0.0044 (8)0.0121 (9)0.0069 (8)
C30.0288 (10)0.0255 (8)0.0281 (9)0.0054 (7)0.0008 (8)0.0025 (7)
C40.0253 (10)0.0251 (8)0.0400 (10)0.0031 (7)0.0049 (8)0.0076 (7)
C50.0350 (10)0.0193 (7)0.0367 (10)0.0001 (7)0.0076 (9)0.0016 (7)
C60.0175 (8)0.0181 (7)0.0219 (8)0.0009 (6)0.0058 (7)0.0018 (6)
C70.0221 (9)0.0230 (8)0.0277 (8)0.0002 (6)0.0119 (7)0.0037 (6)
C80.0228 (9)0.0273 (8)0.0279 (9)0.0026 (7)0.0111 (7)0.0035 (7)
C90.0242 (9)0.0168 (7)0.0289 (9)0.0020 (6)0.0061 (7)0.0020 (6)
C100.0228 (9)0.0173 (7)0.0252 (8)0.0013 (6)0.0059 (7)0.0012 (6)
C110.0182 (8)0.0195 (7)0.0209 (8)0.0004 (6)0.0071 (7)0.0002 (6)
C120.0305 (10)0.0174 (7)0.0280 (9)0.0022 (6)0.0131 (8)0.0036 (6)
C130.0258 (9)0.0169 (7)0.0218 (8)0.0007 (6)0.0092 (7)0.0061 (6)
C140.0259 (9)0.0296 (8)0.0267 (9)0.0056 (7)0.0076 (8)0.0013 (7)
C150.0425 (11)0.0296 (8)0.0243 (9)0.0015 (8)0.0117 (8)0.0015 (7)
C160.0423 (12)0.0292 (9)0.0372 (10)0.0078 (8)0.0260 (9)0.0093 (7)
C170.0224 (10)0.0332 (9)0.0451 (11)0.0010 (7)0.0129 (9)0.0113 (8)
C180.0282 (10)0.0235 (8)0.0281 (9)0.0028 (7)0.0082 (8)0.0025 (6)
Geometric parameters (Å, º) top
S1—C111.7661 (15)C6—C111.413 (2)
S1—C121.8175 (15)C7—C81.389 (2)
N1—C11.3035 (19)C7—H7A0.9500
N1—C61.4033 (18)C8—C91.384 (2)
N2—C11.373 (2)C8—H8A0.9500
N2—C31.4536 (19)C9—C101.386 (2)
N2—C21.455 (2)C9—H9A0.9500
N3—C11.3804 (18)C10—C111.390 (2)
N3—C41.451 (2)C10—H10A0.9500
N3—C51.4628 (19)C12—C131.505 (2)
C2—H2A0.9800C12—H12A0.9900
C2—H2B0.9800C12—H12B0.9900
C2—H2C0.9800C13—C181.385 (2)
C3—H3A0.9800C13—C141.396 (2)
C3—H3B0.9800C14—C151.380 (2)
C3—H3C0.9800C14—H14A0.9500
C4—H4A0.9800C15—C161.381 (3)
C4—H4B0.9800C15—H15A0.9500
C4—H4C0.9800C16—C171.382 (2)
C5—H5A0.9800C16—H16A0.9500
C5—H5B0.9800C17—C181.387 (2)
C5—H5C0.9800C17—H17A0.9500
C6—C71.391 (2)C18—H18A0.9500
C11—S1—C12102.33 (7)C8—C7—H7A119.2
C1—N1—C6121.20 (13)C6—C7—H7A119.2
C1—N2—C3121.30 (13)C9—C8—C7119.62 (14)
C1—N2—C2122.01 (13)C9—C8—H8A120.2
C3—N2—C2114.35 (14)C7—C8—H8A120.2
C1—N3—C4118.43 (13)C8—C9—C10120.05 (14)
C1—N3—C5120.43 (14)C8—C9—H9A120.0
C4—N3—C5113.92 (13)C10—C9—H9A120.0
N1—C1—N2126.77 (14)C9—C10—C11120.61 (14)
N1—C1—N3118.33 (15)C9—C10—H10A119.7
N2—C1—N3114.87 (13)C11—C10—H10A119.7
N2—C2—H2A109.5C10—C11—C6119.88 (14)
N2—C2—H2B109.5C10—C11—S1124.60 (12)
H2A—C2—H2B109.5C6—C11—S1115.51 (11)
N2—C2—H2C109.5C13—C12—S1108.58 (10)
H2A—C2—H2C109.5C13—C12—H12A110.0
H2B—C2—H2C109.5S1—C12—H12A110.0
N2—C3—H3A109.5C13—C12—H12B110.0
N2—C3—H3B109.5S1—C12—H12B110.0
H3A—C3—H3B109.5H12A—C12—H12B108.4
N2—C3—H3C109.5C18—C13—C14118.55 (15)
H3A—C3—H3C109.5C18—C13—C12121.19 (14)
H3B—C3—H3C109.5C14—C13—C12120.25 (15)
N3—C4—H4A109.5C15—C14—C13120.91 (16)
N3—C4—H4B109.5C15—C14—H14A119.5
H4A—C4—H4B109.5C13—C14—H14A119.5
N3—C4—H4C109.5C14—C15—C16119.81 (16)
H4A—C4—H4C109.5C14—C15—H15A120.1
H4B—C4—H4C109.5C16—C15—H15A120.1
N3—C5—H5A109.5C15—C16—C17120.10 (16)
N3—C5—H5B109.5C15—C16—H16A120.0
H5A—C5—H5B109.5C17—C16—H16A120.0
N3—C5—H5C109.5C16—C17—C18119.97 (17)
H5A—C5—H5C109.5C16—C17—H17A120.0
H5B—C5—H5C109.5C18—C17—H17A120.0
C7—C6—N1123.59 (13)C13—C18—C17120.66 (16)
C7—C6—C11118.26 (13)C13—C18—H18A119.7
N1—C6—C11117.77 (13)C17—C18—H18A119.7
C8—C7—C6121.54 (14)
C6—N1—C1—N228.2 (2)C9—C10—C11—S1177.01 (12)
C6—N1—C1—N3153.64 (14)C7—C6—C11—C102.2 (2)
C3—N2—C1—N121.5 (2)N1—C6—C11—C10175.37 (14)
C2—N2—C1—N1140.14 (17)C7—C6—C11—S1176.95 (12)
C3—N2—C1—N3156.70 (13)N1—C6—C11—S13.76 (18)
C2—N2—C1—N341.6 (2)C12—S1—C11—C107.87 (16)
C4—N3—C1—N112.7 (2)C12—S1—C11—C6173.05 (12)
C5—N3—C1—N1135.83 (16)C11—S1—C12—C13178.03 (11)
C4—N3—C1—N2168.95 (14)S1—C12—C13—C18105.18 (15)
C5—N3—C1—N242.6 (2)S1—C12—C13—C1474.12 (16)
C1—N1—C6—C742.6 (2)C18—C13—C14—C150.3 (2)
C1—N1—C6—C11144.63 (15)C12—C13—C14—C15179.05 (14)
N1—C6—C7—C8173.60 (15)C13—C14—C15—C160.2 (2)
C11—C6—C7—C80.8 (2)C14—C15—C16—C170.8 (2)
C6—C7—C8—C90.7 (2)C15—C16—C17—C180.9 (2)
C7—C8—C9—C100.9 (2)C14—C13—C18—C170.2 (2)
C8—C9—C10—C110.5 (2)C12—C13—C18—C17179.14 (14)
C9—C10—C11—C62.0 (2)C16—C17—C18—C130.4 (2)

Experimental details

Crystal data
Chemical formulaC18H23N3S
Mr313.45
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)7.869 (2), 26.850 (7), 8.314 (2)
β (°) 106.959 (5)
V3)1680.2 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.42 × 0.33 × 0.29
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.923, 0.946
No. of measured, independent and
observed [I > 2σ(I)] reflections
14278, 3988, 2816
Rint0.066
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.091, 0.92
No. of reflections3988
No. of parameters203
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.34

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXTL (Sheldrick, 2008) and local programs.

 

Acknowledgements

The authors thank the German Research Council (DFG) and the Federal Ministry of Education and Research (BMBF) for continuous support of their work. AN thanks the university of Paderborn for granting a doctorate scholarship.

References

First citationBörner, J., Flörke, U., Huber, K., Döring, A., Kuckling, D. & Herres-Pawlis, S. (2009). Chem. Eur. J. 15, 2362–2376.  Web of Science PubMed Google Scholar
First citationBörner, J., Herres-Pawlis, S., Flörke, U. & Huber, K. (2007). Eur. J. Inorg. Chem. pp. 5645–5651.  Google Scholar
First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHarmjanz, F. (1997). PhD thesis, University of Oldenburg, Germany.  Google Scholar
First citationHerres, S., Flörke, U. & Henkel, G. (2004). Acta Cryst. C60, o358–o360.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationHerres, S., Heuwing, A. J., Flörke, U., Schneider, J. & Henkel, G. (2005). Inorg. Chim. Acta, 358, 1089–1095.  Web of Science CSD CrossRef CAS Google Scholar
First citationHerres-Pawlis, S., Neuba, A., Seewald, O., Seshadri, T., Egold, H., Flörke, U. & Henkel, G. (2005). Eur. J. Org. Chem. pp. 4879–4890.  Web of Science CSD CrossRef Google Scholar
First citationHerres-Pawlis, S., Verma, P., Haase, R., Kang, P., Lyons, C. T., Wasinger, E. C., Flörke, U., Henkel, G. & Stack, T. D. P. (2009). J. Am. Chem. Soc. 131, 1154–1169.  Web of Science PubMed CAS Google Scholar
First citationLindoy, L. F. & Livingstone, S. E. (1968). Inorg. Chem. 7, 1149–1154.  CrossRef CAS Web of Science Google Scholar
First citationNeuba, A. (2009). PhD thesis, University of Paderborn, Germany.  Google Scholar
First citationNeuba, A., Flörke, U. & Henkel, G. (2007a). Acta Cryst. E63, o3476–o3477.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNeuba, A., Flörke, U. & Henkel, G. (2007b). Acta Cryst. E63, o4661.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNeuba, A., Flörke, U. & Henkel, G. (2007c). Acta Cryst. E63, o4683.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNeuba, A., Flörke, U., Meyer-Klaucke, W., Salomone-Stagni, M., Bill, E., Bothe, E., Höfer, P. & Henkel, G. (2011). Angew. Chem. In the press.  Google Scholar
First citationNeuba, A., Haase, R., Bernard, M., Flörke, U. & Herres-Pawlis, S. (2008b). Z. Anorg. Allg. Chem. 634, 2511–2517.  CrossRef CAS Google Scholar
First citationNeuba, A., Herres-Pawlis, S., Flörke, U. & Henkel, G. (2008a). Z. Anorg. Allg. Chem. 634, 771–777.  CrossRef CAS Google Scholar
First citationNeuba, A., Herres-Pawlis, S., Seewald, O., Börner, J., Heuwing, J., Flörke, U. & Henkel, G. (2010). Z. Anorg. Allg. Chem. 636, 2641–2649.  Web of Science CSD CrossRef CAS Google Scholar
First citationPeters, A., Wild, U., Hubner, O., Kaifer, E. & Himmel, H.-J. (2008). Chem. Eur. J. 14, 7813–7821.  CrossRef PubMed CAS Google Scholar
First citationPohl, S., Harmjanz, M., Schneider, J., Saak, W. & Henkel, G. (2000). J. Chem. Soc. Dalton Trans. pp. 3473–3479.  Web of Science CrossRef Google Scholar
First citationRaab, V., Harms, K., Sundermeyer, J., Kovacevic, B. & Maksic, Z. B. (2003). J. Org. Chem. 68, 8790–8797.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRaab, V., Kipke, J., Gschwind, R. M. & Sundermeyer, J. (2002). Chem. Eur. J. 8, 1682–1693.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSchneider, J. (2000). PhD thesis, University of Duisburg, Germany.  Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWaden, H. (1999). PhD thesis, University of Oldenburg, Germany.  Google Scholar
First citationWittmann, H. (1999). PhD thesis, University of Marburg, Germany.  Google Scholar
First citationWittmann, H., Raab, V., Schorm, A., Plackmeyer, J. & Sundermeyer, J. (2001). Eur. J. Inorg. Chem. pp. 1937–1948.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages o1202-o1203
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds