metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages m648-m649

cis-Bis[N′-(4-bromo­benzo­yl)-N,N-di­methyl­thio­ureato-κ2O,S]copper(II)

aDepartment of Chemistry, Faculty of Education, Mersin University, Mersin, TR 33169, Turkey, bDepartment of Chemistry, University of Paderborn, Paderborn D-33098, Germany, cDepartment of Chemistry, Faculty of Arts and Science, Mersin University, Mersin, TR 33343, Turkey, and dDepartment of Chemistry, Emory University, Atlanta, GA 30322, USA
*Correspondence e-mail: hakan.arslan.acad@gmail.com

(Received 26 April 2011; accepted 26 April 2011; online 29 April 2011)

The asymmetric unit of the title compound, [Cu(C10H10BrN2OS)2], contains two independent complex mol­ecules with almost identical conformations. Two S and two O atoms form the coordination environment of the Cu atom, resulting in a slightly distorted square-planar coordination. The S atoms are in a cis configuration. The crystal structure is stabilized by weak inter­molecular C—H⋯Br hydrogen-bonding inter­actions.

Related literature

For the synthesis of the title compound, see: Binzet et al. (2009[Binzet, G., Külcü, N., Flörke, U. & Arslan, H. (2009). J. Coord. Chem. 62, 3454-3462.]); Emen et al. (2005[Emen, F. M., Arslan, H., Külcü, N., Flörke, U. & Duran, N. (2005). Pol. J. Chem. 79, 1615-1626.]). For complexes with thio­urea derivatives, see: Sacht et al. (2000[Sacht, C., Datt, M. S., Otto, S. & Roodt, A. (2000). J. Chem. Soc. Dalton Trans. pp. 4579-4585.]); Arslan et al. (2009[Arslan, H., Duran, N., Börekçi, G., Özer, C. K. & Akbay, C. (2009). Molecules, 14, 519-527.]); Avşar et al. (2002[Avşar, G., Külcü, N. & Arslan, H. (2002). Turk. J. Chem. 26, 607-615.], 2003[Avşar, G., Arslan, H., Haupt, H.-J. & Külcü, N. (2003). Turk. J. Chem. 27, 281-285.]); Mansuroğlu et al. (2008[Mansuroğlu, D. S., Arslan, H., Flörke, U. & Külcü, N. (2008). J. Coord. Chem. 61, 3134-3146.]); Henderson et al. (2002[Henderson, W., Nicholson, K., Dinger, M. B. & Bennett, R. L. (2002). Inorg. Chim. Acta, 338, 210-218.]). For related compounds, see: Arslan et al. (2003[Arslan, H., Vanderveer, D., Emen, F. M. & Külcü, N. (2003). Z. Kristallogr. New Cryst. Struct. 218, 479-480.], 2006[Arslan, H., Flörke, U., Külcü, N. & Emen, F. M. (2006). J. Coord. Chem. 59, 223-228.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C10H10BrN2OS)2]

  • Mr = 635.88

  • Triclinic, [P \overline 1]

  • a = 9.1780 (11) Å

  • b = 11.0028 (13) Å

  • c = 23.241 (3) Å

  • α = 94.857 (2)°

  • β = 96.144 (3)°

  • γ = 95.095 (2)°

  • V = 2313.7 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.60 mm−1

  • T = 120 K

  • 0.28 × 0.21 × 0.12 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.359, Tmax = 0.608

  • 20433 measured reflections

  • 10926 independent reflections

  • 8446 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.117

  • S = 1.00

  • 10926 reflections

  • 567 parameters

  • H-atom parameters constrained

  • Δρmax = 0.98 e Å−3

  • Δρmin = −0.84 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13C⋯Br2i 0.98 2.92 3.809 (4) 150
C19—H19A⋯Br4ii 0.95 2.91 3.858 (4) 174
C27—H27A⋯Br1iii 0.95 2.90 3.849 (4) 176
C37—H37A⋯Br3iv 0.95 2.93 3.845 (4) 163
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x, y, z+1; (iii) x, y, z-1; (iv) x+1, y+1, z.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), OLEX2, publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]).

Supporting information


Comment top

The ability of thiourea derivatives to complex with transition metal cations is well known (Arslan et al., 2009; Avşar et al., 2002, Arslan et al., 2006). Thioureas are able to coordinate a range of metal centers as neutral ligands, monoanions or dianions (Sacht et al., 2000; Henderson et al., 2002). The oxygen, nitrogen and sulfur donors of thioureas provide a multitude of bonding possibilities.

In view of this information and in continuation of our research into the thiourea derivatives, we synthesized and characterized a series of substituted thiourea derivatives (Binzet et al., 2009; Arslan et al., 2003; Avşar et al., 2003; Emen et al., 2005; Mansuroğlu et al., 2008). The title compound, cis-bis(N,N-dimethyl-N'-4-bromobenzoylthioureato)copper(II), (I), is another example of our synthesized thiourea derivatives that contains both aryl and alkyl groups.

There are two similar molecules in the asymmetric unit, so discussion will primarily focus on one of these independent molecules; see Fig. 1 and 2 for a view of one of the two independent molecules. There is very little difference between the bond lengths and angles of these molecules. The crystal structure of the title compound confirms N,N-dimethyl-N'-4-bromobenzoylthiourea ligand is a bidentate chelating ligand, coordinating to the copper atom through the thiocarbonyl and carbonyl groups. The central copper atom shows slightly distorted square-planar coordination and the sulfur atoms are in a cis configuration. The maximum deviations from the S2O2 mean plane are 0.065 (3) Å for oxygen, 0.054 (1) Å for sulfur and 0.000 (1) Å for copper. The Cu1/S2/C11/N3/C14/O2 ring adopts an envelope conformation with puckering parameter Q = 0.2593 (19) Å, θ = 121.0 (7)°, ϕ = 181.3 (8) ° (Cremer & Pople, 1975). Cu—O [average 1.857 (3) Å] and Cu—S [average 2.1442 (10) Å] bond lengths are in the expected ranges. The dihedral angle between these chelate planes of 6.23 (10)° indicates slight distortion from square planar towards tetrahedral geometry. C–O, C–S and C–N bond lengths of the complex suggest considerable electronic delocalization in the chelate rings. The bond lengths of the carbonyl O1–C4 1.265 (4) Å; O2–C14 1.270 (4) Å and thiocarbonyl S1–C1 1.738 (4) Å; S2–C11 1.734 (4) Å groups lie between those for double and single bonds, similar to related structures (Arslan et al. 2003, 2006; Avşar et al., 2003; Binzet et al., 2009), while both C–O and C–S bond lengths are typical of double bonds in the free ligand. The other bond lengths in title compound show normal values.

Related literature top

For the synthesis of the title compound, see: Binzet et al. (2009); Emen et al. (2005). For complexes with thiourea derivatives, see: Sacht et al. (2000); Arslan et al. (2009); Avşar et al. (2002, 2003); Mansuroğlu et al. (2008); Henderson et al. (2002). For related compounds, see: Arslan et al. (2003, 2006). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

A solution of 4-bromobenzoyl chloride (0.005 M) in acetone (50 cm3) was added dropwise to a suspension of potassium thiocyanate (0.005 M) in anhydrous acetone (50 cm3). The reaction mixture was heated under reflux for 30 min and then cooled to room temperature. A solution of dimethylamine (0.005 M) in acetone (30 cm3) was added and the resulting mixture was stirred for 2 h. Hydrochloric acid (0.1 N, 300 cm3) was added and the solution filtered. The solid product was washed with water and purified by recrystallization from ethanol: dichloromethane (1: 2). M.p.: 222–224 °C. C20H20Br2CuN4O2S2: C, 37.78; H, 3.17; N, 8.81. Found: C, 37.97; H, 3.20; N, 8.79%.

Refinement top

H atom positions were clearly derived from difference Fourier maps and refined using a riding model, fixing the bond lengths at 0.98 and 0.95 Å for CH3 and CH(aromatic), respectively. The displacement parameters of the H atoms were constrained with Uiso(H) = 1.2Ueq (C) or 1.5Ueq (methyl C).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009), publCIF (Westrip, 2010) and Mercury (Macrae et al., 2006).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Overlay diagram of the two independent molecules in the crystal structure of the title compound.
cis-Bis(N,N-dimethyl-N'-4-bromobenzoylthioureato)copper(II) top
Crystal data top
[Cu(C10H10BrN2OS)2]Z = 4
Mr = 635.88F(000) = 1260
Triclinic, P1Dx = 1.825 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.1780 (11) ÅCell parameters from 3977 reflections
b = 11.0028 (13) Åθ = 2.3–28.7°
c = 23.241 (3) ŵ = 4.60 mm1
α = 94.857 (2)°T = 120 K
β = 96.144 (3)°Prism, red
γ = 95.095 (2)°0.28 × 0.21 × 0.12 mm
V = 2313.7 (5) Å3
Data collection top
Bruker SMART APEX
diffractometer
10926 independent reflections
Radiation source: sealed tube8446 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ϕ and ω scansθmax = 27.9°, θmin = 0.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1112
Tmin = 0.359, Tmax = 0.608k = 1414
20433 measured reflectionsl = 3028
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: difference Fourier map
wR(F2) = 0.117H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0696P)2]
where P = (Fo2 + 2Fc2)/3
10926 reflections(Δ/σ)max = 0.001
567 parametersΔρmax = 0.98 e Å3
0 restraintsΔρmin = 0.84 e Å3
Crystal data top
[Cu(C10H10BrN2OS)2]γ = 95.095 (2)°
Mr = 635.88V = 2313.7 (5) Å3
Triclinic, P1Z = 4
a = 9.1780 (11) ÅMo Kα radiation
b = 11.0028 (13) ŵ = 4.60 mm1
c = 23.241 (3) ÅT = 120 K
α = 94.857 (2)°0.28 × 0.21 × 0.12 mm
β = 96.144 (3)°
Data collection top
Bruker SMART APEX
diffractometer
10926 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
8446 reflections with I > 2σ(I)
Tmin = 0.359, Tmax = 0.608Rint = 0.029
20433 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 1.00Δρmax = 0.98 e Å3
10926 reflectionsΔρmin = 0.84 e Å3
567 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.28252 (5)0.12213 (4)0.428728 (19)0.02274 (11)
Br10.37548 (5)0.19864 (4)0.753935 (17)0.03539 (11)
Br21.00293 (4)0.48331 (4)0.664265 (18)0.03169 (10)
S10.13289 (10)0.01269 (8)0.37520 (4)0.02310 (19)
S20.26287 (10)0.23785 (8)0.35908 (4)0.02323 (19)
O10.2935 (3)0.0289 (2)0.49212 (11)0.0255 (6)
O20.4210 (3)0.2305 (2)0.47515 (11)0.0250 (5)
N10.0876 (3)0.1172 (3)0.47730 (13)0.0210 (6)
N20.0790 (3)0.1706 (3)0.39781 (13)0.0240 (6)
N30.5181 (3)0.3709 (3)0.41560 (13)0.0214 (6)
N40.4318 (3)0.4184 (3)0.32595 (13)0.0240 (7)
C10.0445 (4)0.1031 (3)0.42136 (16)0.0214 (7)
C20.1409 (4)0.1633 (4)0.33765 (17)0.0308 (9)
H2A0.15340.07760.33140.046*
H2B0.23680.21210.33000.046*
H2C0.07410.19520.31120.046*
C30.1613 (4)0.2547 (4)0.43166 (18)0.0294 (8)
H3A0.10340.26070.46910.044*
H3B0.17990.33610.41010.044*
H3C0.25530.22340.43830.044*
C40.2079 (4)0.0569 (3)0.50652 (15)0.0200 (7)
C50.2476 (4)0.0921 (3)0.56630 (15)0.0211 (7)
C60.1521 (4)0.1724 (3)0.59169 (16)0.0241 (7)
H6A0.06200.20670.57010.029*
C70.1876 (4)0.2026 (3)0.64818 (17)0.0278 (8)
H7A0.12170.25590.66560.033*
C80.3206 (4)0.1534 (3)0.67833 (15)0.0252 (8)
C90.4182 (4)0.0729 (3)0.65460 (17)0.0259 (8)
H9A0.50860.03930.67620.031*
C100.3797 (4)0.0429 (3)0.59820 (16)0.0247 (8)
H10A0.44470.01200.58130.030*
C110.4137 (4)0.3472 (3)0.36911 (16)0.0213 (7)
C120.5545 (4)0.5137 (4)0.33028 (18)0.0339 (9)
H12A0.56970.55560.36970.051*
H12B0.53240.57300.30220.051*
H12C0.64400.47650.32190.051*
C130.3332 (4)0.4071 (4)0.27193 (16)0.0289 (8)
H13A0.29450.32110.26200.043*
H13B0.38730.43550.24070.043*
H13C0.25130.45710.27680.043*
C140.5131 (4)0.3156 (3)0.46358 (15)0.0207 (7)
C150.6319 (4)0.3585 (3)0.51186 (15)0.0198 (7)
C160.7371 (4)0.4549 (3)0.50670 (16)0.0269 (8)
H16A0.73260.49530.47210.032*
C170.8489 (4)0.4928 (4)0.55177 (17)0.0291 (8)
H17A0.92120.55810.54810.035*
C180.8525 (4)0.4340 (3)0.60154 (16)0.0234 (7)
C190.7489 (4)0.3378 (3)0.60788 (17)0.0272 (8)
H19A0.75290.29800.64270.033*
C200.6396 (4)0.3010 (3)0.56235 (16)0.0254 (8)
H20A0.56840.23480.56600.031*
Cu20.35911 (5)0.18310 (4)0.070914 (19)0.02242 (11)
Br30.00952 (4)0.42199 (4)0.175362 (17)0.03082 (10)
Br40.73008 (5)0.17128 (4)0.253135 (18)0.03850 (12)
S30.25683 (10)0.14812 (8)0.14730 (4)0.02390 (19)
S40.45871 (11)0.35186 (8)0.11731 (4)0.0259 (2)
O30.2718 (3)0.0415 (2)0.02839 (11)0.0256 (6)
O40.4483 (3)0.2068 (2)0.00413 (11)0.0256 (6)
N50.0961 (3)0.0513 (3)0.08088 (13)0.0216 (6)
N60.0270 (3)0.0084 (3)0.16917 (13)0.0252 (7)
N70.6098 (3)0.3874 (3)0.02166 (13)0.0228 (6)
N80.6605 (3)0.5243 (3)0.10071 (13)0.0235 (6)
C210.1191 (4)0.0278 (3)0.12893 (15)0.0205 (7)
C220.0890 (5)0.0925 (4)0.15936 (19)0.0373 (10)
H22A0.12770.10360.11810.056*
H22B0.16850.07420.18270.056*
H22C0.04900.16780.17060.056*
C230.0390 (4)0.0848 (4)0.22442 (16)0.0285 (8)
H23A0.13270.07550.24730.043*
H23B0.04260.05920.24610.043*
H23C0.03490.17080.21690.043*
C240.1727 (4)0.0415 (3)0.03654 (15)0.0200 (7)
C250.1355 (4)0.1392 (3)0.01296 (15)0.0196 (7)
C260.2139 (4)0.1347 (3)0.06115 (16)0.0228 (7)
H26A0.29280.07260.06120.027*
C270.1772 (4)0.2202 (3)0.10896 (16)0.0234 (7)
H27A0.22970.21690.14190.028*
C280.0628 (4)0.3107 (3)0.10794 (15)0.0222 (7)
C290.0135 (4)0.3181 (3)0.06067 (17)0.0278 (8)
H29A0.09060.38170.06050.033*
C300.0227 (4)0.2317 (3)0.01284 (16)0.0244 (8)
H30A0.03010.23610.02000.029*
C310.5819 (4)0.4225 (3)0.07554 (15)0.0205 (7)
C320.7652 (4)0.5938 (3)0.06970 (18)0.0315 (9)
H32A0.86430.56950.07970.047*
H32B0.76450.68160.08090.047*
H32C0.73710.57680.02770.047*
C330.6478 (5)0.5730 (4)0.15988 (17)0.0311 (9)
H33A0.54940.60010.16200.047*
H33B0.72230.64280.17130.047*
H33C0.66310.50910.18620.047*
C340.5439 (4)0.2865 (3)0.00926 (15)0.0211 (7)
C350.5885 (4)0.2613 (3)0.06848 (15)0.0211 (7)
C360.6950 (4)0.3395 (3)0.08950 (17)0.0281 (8)
H36A0.73960.41070.06600.034*
C370.7353 (4)0.3128 (4)0.14478 (17)0.0309 (9)
H37A0.80790.36540.15920.037*
C380.6697 (4)0.2099 (4)0.17848 (15)0.0266 (8)
C390.5635 (4)0.1312 (3)0.15925 (17)0.0276 (8)
H39A0.51900.06050.18310.033*
C400.5238 (4)0.1586 (3)0.10393 (16)0.0244 (8)
H40A0.45070.10570.09000.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0229 (2)0.0228 (2)0.0215 (2)0.00394 (17)0.00288 (18)0.00245 (17)
Br10.0406 (2)0.0475 (3)0.0205 (2)0.01112 (19)0.00464 (17)0.00856 (17)
Br20.0305 (2)0.0327 (2)0.0279 (2)0.00079 (16)0.00602 (16)0.00411 (16)
S10.0268 (5)0.0224 (4)0.0186 (4)0.0055 (3)0.0029 (3)0.0018 (3)
S20.0219 (4)0.0224 (4)0.0236 (5)0.0054 (3)0.0014 (3)0.0046 (3)
O10.0259 (13)0.0274 (13)0.0217 (14)0.0076 (11)0.0007 (11)0.0068 (11)
O20.0240 (13)0.0286 (13)0.0205 (13)0.0107 (11)0.0024 (10)0.0048 (11)
N10.0221 (15)0.0215 (14)0.0199 (15)0.0009 (12)0.0054 (12)0.0037 (12)
N20.0229 (15)0.0240 (15)0.0233 (16)0.0053 (12)0.0017 (12)0.0012 (12)
N30.0220 (15)0.0208 (14)0.0201 (16)0.0034 (12)0.0020 (12)0.0009 (12)
N40.0270 (16)0.0261 (16)0.0177 (16)0.0058 (13)0.0018 (13)0.0051 (12)
C10.0214 (17)0.0166 (16)0.0260 (19)0.0018 (13)0.0051 (14)0.0014 (14)
C20.026 (2)0.035 (2)0.027 (2)0.0080 (17)0.0052 (16)0.0016 (17)
C30.028 (2)0.0276 (19)0.030 (2)0.0130 (16)0.0052 (16)0.0012 (16)
C40.0207 (17)0.0198 (16)0.0193 (18)0.0015 (13)0.0033 (14)0.0000 (13)
C50.0243 (18)0.0193 (16)0.0195 (18)0.0010 (14)0.0031 (14)0.0012 (13)
C60.0234 (18)0.0239 (18)0.0242 (19)0.0016 (14)0.0030 (15)0.0024 (15)
C70.030 (2)0.0271 (19)0.028 (2)0.0007 (16)0.0085 (16)0.0053 (16)
C80.031 (2)0.0302 (19)0.0159 (18)0.0079 (16)0.0032 (15)0.0030 (15)
C90.0213 (18)0.0299 (19)0.027 (2)0.0029 (15)0.0028 (15)0.0030 (16)
C100.0208 (18)0.0254 (18)0.028 (2)0.0015 (14)0.0062 (15)0.0027 (15)
C110.0196 (17)0.0184 (16)0.0259 (19)0.0016 (13)0.0040 (14)0.0011 (14)
C120.034 (2)0.037 (2)0.028 (2)0.0113 (18)0.0008 (17)0.0107 (18)
C130.031 (2)0.033 (2)0.022 (2)0.0026 (16)0.0005 (16)0.0062 (16)
C140.0206 (17)0.0194 (16)0.0217 (18)0.0014 (13)0.0045 (14)0.0024 (14)
C150.0216 (17)0.0199 (16)0.0181 (17)0.0014 (13)0.0046 (14)0.0000 (13)
C160.034 (2)0.0258 (19)0.0196 (19)0.0066 (16)0.0014 (15)0.0066 (15)
C170.033 (2)0.0273 (19)0.024 (2)0.0115 (16)0.0042 (16)0.0006 (15)
C180.0233 (18)0.0228 (17)0.0214 (19)0.0000 (14)0.0018 (14)0.0051 (14)
C190.033 (2)0.0256 (19)0.0214 (19)0.0040 (16)0.0014 (16)0.0049 (15)
C200.029 (2)0.0203 (17)0.026 (2)0.0085 (14)0.0051 (15)0.0047 (15)
Cu20.0251 (2)0.0211 (2)0.0201 (2)0.00261 (17)0.00350 (18)0.00064 (17)
Br30.0370 (2)0.0287 (2)0.0227 (2)0.00348 (16)0.00316 (16)0.00510 (15)
Br40.0525 (3)0.0426 (2)0.0223 (2)0.0032 (2)0.01448 (19)0.00322 (17)
S30.0280 (5)0.0236 (4)0.0182 (4)0.0060 (4)0.0041 (4)0.0015 (3)
S40.0328 (5)0.0213 (4)0.0224 (5)0.0072 (4)0.0093 (4)0.0027 (4)
O30.0311 (14)0.0226 (13)0.0208 (14)0.0098 (11)0.0064 (11)0.0025 (10)
O40.0329 (14)0.0243 (13)0.0183 (13)0.0085 (11)0.0073 (11)0.0006 (10)
N50.0221 (15)0.0241 (15)0.0170 (15)0.0012 (12)0.0009 (12)0.0007 (12)
N60.0260 (16)0.0285 (16)0.0195 (16)0.0073 (13)0.0062 (13)0.0013 (13)
N70.0256 (16)0.0223 (15)0.0210 (16)0.0020 (12)0.0067 (12)0.0040 (12)
N80.0295 (16)0.0210 (15)0.0188 (16)0.0060 (12)0.0054 (13)0.0003 (12)
C210.0209 (17)0.0198 (16)0.0207 (18)0.0002 (13)0.0011 (14)0.0051 (14)
C220.033 (2)0.042 (2)0.034 (2)0.0151 (19)0.0097 (18)0.0004 (19)
C230.032 (2)0.0298 (19)0.024 (2)0.0039 (16)0.0099 (16)0.0006 (16)
C240.0202 (17)0.0179 (16)0.0204 (18)0.0020 (13)0.0005 (14)0.0018 (13)
C250.0227 (18)0.0207 (16)0.0143 (17)0.0001 (13)0.0005 (13)0.0007 (13)
C260.0221 (18)0.0221 (17)0.0233 (19)0.0040 (14)0.0026 (14)0.0033 (14)
C270.0265 (19)0.0267 (18)0.0175 (18)0.0018 (15)0.0069 (14)0.0042 (14)
C280.0280 (19)0.0214 (17)0.0146 (17)0.0016 (14)0.0051 (14)0.0029 (13)
C290.027 (2)0.0268 (19)0.027 (2)0.0080 (15)0.0014 (16)0.0015 (16)
C300.0275 (19)0.0243 (18)0.0206 (19)0.0044 (15)0.0048 (15)0.0019 (14)
C310.0213 (17)0.0211 (17)0.0188 (18)0.0004 (13)0.0007 (14)0.0038 (14)
C320.037 (2)0.0241 (19)0.032 (2)0.0093 (17)0.0070 (18)0.0040 (16)
C330.040 (2)0.0255 (19)0.024 (2)0.0085 (17)0.0031 (17)0.0088 (16)
C340.0250 (18)0.0190 (16)0.0199 (18)0.0008 (14)0.0046 (14)0.0052 (14)
C350.0252 (18)0.0188 (16)0.0193 (18)0.0000 (14)0.0039 (14)0.0030 (13)
C360.032 (2)0.0240 (18)0.027 (2)0.0070 (16)0.0071 (16)0.0016 (15)
C370.034 (2)0.029 (2)0.030 (2)0.0044 (17)0.0117 (17)0.0039 (16)
C380.035 (2)0.032 (2)0.0140 (18)0.0074 (17)0.0064 (15)0.0038 (15)
C390.035 (2)0.0251 (18)0.022 (2)0.0010 (16)0.0028 (16)0.0014 (15)
C400.0286 (19)0.0218 (17)0.0222 (19)0.0025 (15)0.0047 (15)0.0014 (14)
Geometric parameters (Å, º) top
Cu1—O21.850 (3)Cu2—O31.842 (2)
Cu1—O11.864 (3)Cu2—O41.857 (2)
Cu1—S12.1433 (10)Cu2—S32.1423 (10)
Cu1—S22.1451 (10)Cu2—S42.1435 (10)
Br1—C81.895 (4)Br3—C281.897 (3)
Br2—C181.904 (4)Br4—C381.903 (4)
S1—C11.738 (4)S3—C211.739 (4)
S2—C111.734 (4)S4—C311.741 (4)
O1—C41.265 (4)O3—C241.271 (4)
O2—C141.270 (4)O4—C341.266 (4)
N1—C41.324 (4)N5—C241.315 (4)
N1—C11.344 (5)N5—C211.342 (4)
N2—C11.336 (4)N6—C211.344 (4)
N2—C21.464 (5)N6—C221.454 (5)
N2—C31.474 (5)N6—C231.462 (5)
N3—C141.318 (5)N7—C341.329 (5)
N3—C111.356 (4)N7—C311.337 (4)
N4—C111.339 (4)N8—C311.332 (4)
N4—C131.456 (5)N8—C331.453 (5)
N4—C121.459 (5)N8—C321.463 (5)
C2—H2A0.9800C22—H22A0.9800
C2—H2B0.9800C22—H22B0.9800
C2—H2C0.9800C22—H22C0.9800
C3—H3A0.9800C23—H23A0.9800
C3—H3B0.9800C23—H23B0.9800
C3—H3C0.9800C23—H23C0.9800
C4—C51.490 (5)C24—C251.496 (5)
C5—C101.391 (5)C25—C301.386 (5)
C5—C61.400 (5)C25—C261.397 (5)
C6—C71.393 (5)C26—C271.386 (5)
C6—H6A0.9500C26—H26A0.9500
C7—C81.382 (5)C27—C281.385 (5)
C7—H7A0.9500C27—H27A0.9500
C8—C91.393 (5)C28—C291.369 (5)
C9—C101.395 (5)C29—C301.391 (5)
C9—H9A0.9500C29—H29A0.9500
C10—H10A0.9500C30—H30A0.9500
C12—H12A0.9800C32—H32A0.9800
C12—H12B0.9800C32—H32B0.9800
C12—H12C0.9800C32—H32C0.9800
C13—H13A0.9800C33—H33A0.9800
C13—H13B0.9800C33—H33B0.9800
C13—H13C0.9800C33—H33C0.9800
C14—C151.493 (5)C34—C351.488 (5)
C15—C201.377 (5)C35—C401.389 (5)
C15—C161.391 (5)C35—C361.399 (5)
C16—C171.394 (5)C36—C371.390 (5)
C16—H16A0.9500C36—H36A0.9500
C17—C181.371 (5)C37—C381.373 (5)
C17—H17A0.9500C37—H37A0.9500
C18—C191.387 (5)C38—C391.381 (5)
C19—C201.385 (5)C39—C401.390 (5)
C19—H19A0.9500C39—H39A0.9500
C20—H20A0.9500C40—H40A0.9500
O2—Cu1—O184.47 (11)O3—Cu2—O483.73 (11)
O2—Cu1—S1176.03 (9)O3—Cu2—S394.44 (8)
O1—Cu1—S193.66 (8)O4—Cu2—S3177.74 (8)
O2—Cu1—S294.24 (8)O3—Cu2—S4177.64 (9)
O1—Cu1—S2176.26 (9)O4—Cu2—S494.60 (8)
S1—Cu1—S287.84 (4)S3—Cu2—S487.27 (4)
C1—S1—Cu1107.27 (13)C21—S3—Cu2108.25 (12)
C11—S2—Cu1108.03 (13)C31—S4—Cu2109.18 (12)
C4—O1—Cu1132.3 (2)C24—O3—Cu2134.5 (2)
C14—O2—Cu1132.4 (2)C34—O4—Cu2134.3 (2)
C4—N1—C1122.7 (3)C24—N5—C21123.0 (3)
C1—N2—C2121.9 (3)C21—N6—C22120.4 (3)
C1—N2—C3121.5 (3)C21—N6—C23122.5 (3)
C2—N2—C3116.6 (3)C22—N6—C23117.1 (3)
C14—N3—C11123.1 (3)C34—N7—C31123.3 (3)
C11—N4—C13123.4 (3)C31—N8—C33122.6 (3)
C11—N4—C12121.3 (3)C31—N8—C32121.2 (3)
C13—N4—C12115.3 (3)C33—N8—C32116.2 (3)
N2—C1—N1115.7 (3)N5—C21—N6115.7 (3)
N2—C1—S1116.1 (3)N5—C21—S3128.6 (3)
N1—C1—S1128.2 (3)N6—C21—S3115.7 (3)
N2—C2—H2A109.5N6—C22—H22A109.5
N2—C2—H2B109.5N6—C22—H22B109.5
H2A—C2—H2B109.5H22A—C22—H22B109.5
N2—C2—H2C109.5N6—C22—H22C109.5
H2A—C2—H2C109.5H22A—C22—H22C109.5
H2B—C2—H2C109.5H22B—C22—H22C109.5
N2—C3—H3A109.5N6—C23—H23A109.5
N2—C3—H3B109.5N6—C23—H23B109.5
H3A—C3—H3B109.5H23A—C23—H23B109.5
N2—C3—H3C109.5N6—C23—H23C109.5
H3A—C3—H3C109.5H23A—C23—H23C109.5
H3B—C3—H3C109.5H23B—C23—H23C109.5
O1—C4—N1129.9 (3)O3—C24—N5129.5 (3)
O1—C4—C5114.2 (3)O3—C24—C25114.3 (3)
N1—C4—C5115.8 (3)N5—C24—C25116.1 (3)
C10—C5—C6119.0 (3)C30—C25—C26119.4 (3)
C10—C5—C4120.1 (3)C30—C25—C24121.7 (3)
C6—C5—C4120.9 (3)C26—C25—C24118.9 (3)
C7—C6—C5120.9 (4)C27—C26—C25120.3 (3)
C7—C6—H6A119.6C27—C26—H26A119.8
C5—C6—H6A119.6C25—C26—H26A119.8
C8—C7—C6118.6 (4)C28—C27—C26119.0 (3)
C8—C7—H7A120.7C28—C27—H27A120.5
C6—C7—H7A120.7C26—C27—H27A120.5
C7—C8—C9122.2 (3)C29—C28—C27121.5 (3)
C7—C8—Br1119.5 (3)C29—C28—Br3120.4 (3)
C9—C8—Br1118.3 (3)C27—C28—Br3118.0 (3)
C8—C9—C10118.2 (4)C28—C29—C30119.4 (3)
C8—C9—H9A120.9C28—C29—H29A120.3
C10—C9—H9A120.9C30—C29—H29A120.3
C5—C10—C9121.1 (3)C25—C30—C29120.3 (3)
C5—C10—H10A119.4C25—C30—H30A119.9
C9—C10—H10A119.4C29—C30—H30A119.9
N4—C11—N3114.6 (3)N8—C31—N7115.4 (3)
N4—C11—S2117.0 (3)N8—C31—S4115.9 (3)
N3—C11—S2128.4 (3)N7—C31—S4128.7 (3)
N4—C12—H12A109.5N8—C32—H32A109.5
N4—C12—H12B109.5N8—C32—H32B109.5
H12A—C12—H12B109.5H32A—C32—H32B109.5
N4—C12—H12C109.5N8—C32—H32C109.5
H12A—C12—H12C109.5H32A—C32—H32C109.5
H12B—C12—H12C109.5H32B—C32—H32C109.5
N4—C13—H13A109.5N8—C33—H33A109.5
N4—C13—H13B109.5N8—C33—H33B109.5
H13A—C13—H13B109.5H33A—C33—H33B109.5
N4—C13—H13C109.5N8—C33—H33C109.5
H13A—C13—H13C109.5H33A—C33—H33C109.5
H13B—C13—H13C109.5H33B—C33—H33C109.5
O2—C14—N3129.5 (3)O4—C34—N7129.7 (3)
O2—C14—C15114.5 (3)O4—C34—C35114.2 (3)
N3—C14—C15116.0 (3)N7—C34—C35116.1 (3)
C20—C15—C16119.0 (3)C40—C35—C36118.9 (3)
C20—C15—C14119.8 (3)C40—C35—C34119.9 (3)
C16—C15—C14121.3 (3)C36—C35—C34121.3 (3)
C15—C16—C17120.7 (3)C37—C36—C35119.9 (4)
C15—C16—H16A119.7C37—C36—H36A120.1
C17—C16—H16A119.7C35—C36—H36A120.1
C18—C17—C16118.8 (3)C38—C37—C36119.6 (4)
C18—C17—H17A120.6C38—C37—H37A120.2
C16—C17—H17A120.6C36—C37—H37A120.2
C17—C18—C19121.7 (3)C37—C38—C39122.0 (3)
C17—C18—Br2120.1 (3)C37—C38—Br4119.3 (3)
C19—C18—Br2118.1 (3)C39—C38—Br4118.7 (3)
C20—C19—C18118.5 (3)C38—C39—C40118.0 (4)
C20—C19—H19A120.8C38—C39—H39A121.0
C18—C19—H19A120.8C40—C39—H39A121.0
C15—C20—C19121.4 (3)C35—C40—C39121.6 (3)
C15—C20—H20A119.3C35—C40—H40A119.2
C19—C20—H20A119.3C39—C40—H40A119.2
O1—Cu1—S1—C122.70 (14)O3—Cu2—S3—C2111.88 (15)
S2—Cu1—S1—C1153.87 (12)S4—Cu2—S3—C21166.49 (13)
O2—Cu1—S2—C1116.75 (15)O4—Cu2—S4—C314.72 (15)
S1—Cu1—S2—C11159.88 (13)S3—Cu2—S4—C31174.00 (13)
O2—Cu1—O1—C4161.0 (3)O4—Cu2—O3—C24173.4 (3)
S1—Cu1—O1—C422.5 (3)S3—Cu2—O3—C247.9 (3)
O1—Cu1—O2—C14159.3 (3)O3—Cu2—O4—C34176.0 (4)
S2—Cu1—O2—C1424.2 (3)S4—Cu2—O4—C345.6 (3)
C2—N2—C1—N1178.8 (3)C24—N5—C21—N6177.0 (3)
C3—N2—C1—N10.0 (5)C24—N5—C21—S35.8 (5)
C2—N2—C1—S13.6 (4)C22—N6—C21—N50.2 (5)
C3—N2—C1—S1177.6 (3)C23—N6—C21—N5178.8 (3)
C4—N1—C1—N2179.7 (3)C22—N6—C21—S3177.8 (3)
C4—N1—C1—S12.5 (5)C23—N6—C21—S31.2 (5)
Cu1—S1—C1—N2162.9 (2)Cu2—S3—C21—N514.2 (4)
Cu1—S1—C1—N119.8 (3)Cu2—S3—C21—N6168.6 (2)
Cu1—O1—C4—N17.8 (6)Cu2—O3—C24—N50.8 (6)
Cu1—O1—C4—C5170.2 (2)Cu2—O3—C24—C25178.3 (2)
C1—N1—C4—O17.7 (6)C21—N5—C24—O34.0 (6)
C1—N1—C4—C5174.3 (3)C21—N5—C24—C25178.5 (3)
O1—C4—C5—C108.1 (5)O3—C24—C25—C30175.4 (3)
N1—C4—C5—C10173.6 (3)N5—C24—C25—C302.5 (5)
O1—C4—C5—C6170.5 (3)O3—C24—C25—C262.7 (5)
N1—C4—C5—C67.9 (5)N5—C24—C25—C26179.4 (3)
C10—C5—C6—C70.3 (5)C30—C25—C26—C271.4 (5)
C4—C5—C6—C7178.3 (3)C24—C25—C26—C27176.7 (3)
C5—C6—C7—C81.2 (5)C25—C26—C27—C280.6 (5)
C6—C7—C8—C91.4 (5)C26—C27—C28—C290.6 (6)
C6—C7—C8—Br1177.2 (3)C26—C27—C28—Br3177.2 (3)
C7—C8—C9—C100.8 (5)C27—C28—C29—C301.1 (6)
Br1—C8—C9—C10177.9 (3)Br3—C28—C29—C30176.8 (3)
C6—C5—C10—C90.4 (5)C26—C25—C30—C291.0 (5)
C4—C5—C10—C9179.0 (3)C24—C25—C30—C29177.1 (3)
C8—C9—C10—C50.2 (5)C28—C29—C30—C250.3 (6)
C13—N4—C11—N3179.3 (3)C33—N8—C31—N7177.8 (3)
C12—N4—C11—N30.4 (5)C32—N8—C31—N72.2 (5)
C13—N4—C11—S20.8 (5)C33—N8—C31—S41.4 (5)
C12—N4—C11—S2179.6 (3)C32—N8—C31—S4178.5 (3)
C14—N3—C11—N4175.5 (3)C34—N7—C31—N8178.5 (3)
C14—N3—C11—S24.5 (5)C34—N7—C31—S40.6 (5)
Cu1—S2—C11—N4171.5 (2)Cu2—S4—C31—N8175.2 (2)
Cu1—S2—C11—N38.5 (3)Cu2—S4—C31—N73.8 (4)
Cu1—O2—C14—N316.2 (6)Cu2—O4—C34—N73.4 (6)
Cu1—O2—C14—C15164.1 (2)Cu2—O4—C34—C35176.1 (2)
C11—N3—C14—O23.5 (6)C31—N7—C34—O40.5 (6)
C11—N3—C14—C15176.3 (3)C31—N7—C34—C35179.9 (3)
O2—C14—C15—C203.8 (5)O4—C34—C35—C401.1 (5)
N3—C14—C15—C20176.5 (3)N7—C34—C35—C40179.3 (3)
O2—C14—C15—C16177.1 (3)O4—C34—C35—C36178.9 (3)
N3—C14—C15—C162.7 (5)N7—C34—C35—C360.7 (5)
C20—C15—C16—C170.2 (6)C40—C35—C36—C370.7 (6)
C14—C15—C16—C17179.0 (3)C34—C35—C36—C37179.3 (3)
C15—C16—C17—C180.6 (6)C35—C36—C37—C380.3 (6)
C16—C17—C18—C190.5 (6)C36—C37—C38—C390.1 (6)
C16—C17—C18—Br2179.8 (3)C36—C37—C38—Br4178.0 (3)
C17—C18—C19—C200.0 (6)C37—C38—C39—C400.1 (6)
Br2—C18—C19—C20179.7 (3)Br4—C38—C39—C40178.0 (3)
C16—C15—C20—C190.4 (5)C36—C35—C40—C390.7 (6)
C14—C15—C20—C19179.6 (3)C34—C35—C40—C39179.3 (3)
C18—C19—C20—C150.5 (6)C38—C39—C40—C350.3 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13C···Br2i0.982.923.809 (4)150
C19—H19A···Br4ii0.952.913.858 (4)174
C27—H27A···Br1iii0.952.903.849 (4)176
C37—H37A···Br3iv0.952.933.845 (4)163
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z+1; (iii) x, y, z1; (iv) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Cu(C10H10BrN2OS)2]
Mr635.88
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)9.1780 (11), 11.0028 (13), 23.241 (3)
α, β, γ (°)94.857 (2), 96.144 (3), 95.095 (2)
V3)2313.7 (5)
Z4
Radiation typeMo Kα
µ (mm1)4.60
Crystal size (mm)0.28 × 0.21 × 0.12
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.359, 0.608
No. of measured, independent and
observed [I > 2σ(I)] reflections
20433, 10926, 8446
Rint0.029
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.117, 1.00
No. of reflections10926
No. of parameters567
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.98, 0.84

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009), SHELXTL (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009), publCIF (Westrip, 2010) and Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13C···Br2i0.982.923.809 (4)150
C19—H19A···Br4ii0.952.913.858 (4)174
C27—H27A···Br1iii0.952.903.849 (4)176
C37—H37A···Br3iv0.952.933.845 (4)163
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z+1; (iii) x, y, z1; (iv) x+1, y+1, z.
 

Acknowledgements

This work was supported by Mersin University Research Fund [project Nos. BAP-ECZ-F-TBB-(HA) 2004–3 and BAP-FEF-KB-(NK) 2006–3].

References

First citationArslan, H., Duran, N., Börekçi, G., Özer, C. K. & Akbay, C. (2009). Molecules, 14, 519–527.  Web of Science CrossRef PubMed Google Scholar
First citationArslan, H., Flörke, U., Külcü, N. & Emen, F. M. (2006). J. Coord. Chem. 59, 223–228.  CrossRef CAS Google Scholar
First citationArslan, H., Vanderveer, D., Emen, F. M. & Külcü, N. (2003). Z. Kristallogr. New Cryst. Struct. 218, 479–480.  CAS Google Scholar
First citationAvşar, G., Arslan, H., Haupt, H.-J. & Külcü, N. (2003). Turk. J. Chem. 27, 281–285.  Google Scholar
First citationAvşar, G., Külcü, N. & Arslan, H. (2002). Turk. J. Chem. 26, 607–615.  Google Scholar
First citationBinzet, G., Külcü, N., Flörke, U. & Arslan, H. (2009). J. Coord. Chem. 62, 3454–3462.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEmen, F. M., Arslan, H., Külcü, N., Flörke, U. & Duran, N. (2005). Pol. J. Chem. 79, 1615–1626.  CAS Google Scholar
First citationHenderson, W., Nicholson, K., Dinger, M. B. & Bennett, R. L. (2002). Inorg. Chim. Acta, 338, 210–218.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMansuroğlu, D. S., Arslan, H., Flörke, U. & Külcü, N. (2008). J. Coord. Chem. 61, 3134–3146.  Google Scholar
First citationSacht, C., Datt, M. S., Otto, S. & Roodt, A. (2000). J. Chem. Soc. Dalton Trans. pp. 4579–4585.  CrossRef Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages m648-m649
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds