metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[1,4-Bis(di­phenyl­phosphan­yl)butane-κ2P,P′]chlorido(η5-inden­yl)ruthenium(II)

aDepartment of Mathematics and Science (Pre-college), National Taiwan Normal University, Taiwan, bDepartment of Chemical and Materials Engineering, Lunghwa University of Science and Technology, Taiwan, and cDepartment of Mechatronic Technology, National Taiwan Normal University, Taiwan
*Correspondence e-mail: hlsung@ntnu.edu.tw

(Received 6 February 2011; accepted 21 April 2011; online 29 April 2011)

Facile ligand substitution is observed when the ruthenium chloride complex [Ru(η5-C9H7)Cl(PPh3)2] is treated with 1,4-bis­(diphenyl­phosphan­yl)butane in refluxing toluene yielding the title compound, [Ru(C9H7)Cl(C28H28P2)]. The RuII atom has a typical piano-stool coordination, defined by the indenyl ligand, one Cl atom and two phosphanyl P atoms. The Ru—P bond lengths are 2.2502 (9) and 2.2968 (8) Å.

Related literature

For general background to the title compound and other [Ru(η5-C9H7)Cl(diphos)] compounds, see: Oro et al. (1985[Oro, L. A., Ciriano, M. A., Campo, M., Foces-Foces, C. & Cano, F. H. (1985). J. Organomet. Chem. 289, 117-131.]); Tanase et al. (1994[Tanase, T., Mochizuki, H., Sato, R. & Yamamoto, Y. (1994). J. Organomet. Chem. 466, 233-236.]). For the chemistry of [Ru(η5-C9H7)Cl(diphos)], see: Franco (1989[Franco, M., Giambattista, C., Angelo, S. & Massimo, M. (1989). J. Organomet. Chem. 370, 305-318.]).

[Scheme 1]

Experimental

Crystal data
  • [Ru(C9H7)Cl(C28H28P2)]

  • Mr = 678.11

  • Monoclinic, P 21 /n

  • a = 12.6567 (2) Å

  • b = 15.7502 (3) Å

  • c = 15.9419 (3) Å

  • β = 103.165 (1)°

  • V = 3094.42 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.72 mm−1

  • T = 200 K

  • 0.55 × 0.48 × 0.38 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.704, Tmax = 0.821

  • 18461 measured reflections

  • 5443 independent reflections

  • 4355 reflections with I > 2σ(I)

  • Rint = 0.060

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.102

  • S = 0.91

  • 5443 reflections

  • 370 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.71 e Å−3

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Reaction of [Ru(η5-C9H7)Cl(diphos)] with phenylacetylene in the presence of alcoholic KOH yielded ruthenium acetylide complexes [Ru(η5-C9H7)(η1-CCPh)((diphos)] (diphos =1,2-bis(diphenylphosphanyl)butane (dppe), 1,2-bis(diphenylphosphanyl)butane (dppp), 1,2-bis(diphenylphosphanyl)butane (dppb)) in good yield (Tanase et al., 1994). Treatment of the complex [Ru(η5-C9H7)Cl(PPh3)2] with 1,2-bis(diphenylphosphanyl)butane in toluene afforded the title compound [Ru(η5-C9H7)Cl(dppb)] (Figure 1). In the crystal structure of the title compound, the bidentate ligand dppb is coordinated to Ru with an P—Ru—P angle of 94.88 (3)°. The Ru—P bond lengths are 2.2502 (9) and 2.2968 (8) Å, respectively.

Related literature top

For general background to the title compound and other [Ru(η5-C9H7)Cl(diphos)] compounds, see: Oro et al. (1985); Tanase et al. (1994). For the chemistry of [Ru(η5-C9H7)Cl(diphos)], see: Franco et al. (19894).

Experimental top

The title compound was prepared by a similar method used for the dppe ligand in the previous literature procedure of Oro, et al. (1985) The red-brown crystals of the title compound for X-ray structure analysis were obtained by slow diffusion of diethyl ether into a CH2Cl2 solution at room temperature for 3 days. Spectroscopic analysis: 1H NMR (CDCl3, 298 K, δ, p.p.m.): 7.48 — 7.13 (m, 24H, 20H of Ph and 4H of indenyl group); 4.49 (br, 1H of indenyl group); 3.82 (br, 2H of indenyl group); 3.21, 2.03, 1.80, 1.52 (m, 2H each one, CH2 of dppb). 31P{1H} NMR (CDCl3, 298 K, δ, p.p.m.): 49.5. 13C{1H} NMR (CDCl3, 298 K, δ, p.p.m.): 137.0 —128.4 (Ph); 122.6 (C-5, 6); 121.5 (C-4, 7); 115.7 (C-2); 99.7 (C-1, 3), 31.8 (t, two PCH2 of dppb, JP—C= 1.30 Hz); 27.4 (s, two CH2 of dppb). HRMS (ESI, m/z): 678.2 (M+). Anal. Calcd for C37H35 P2ClRu: C: 65.53, H: 5.20, Found: C: 65.58, H: 5.23.

Refinement top

All H atoms were initially located in a difference map, but were constrained to an idealized geometry. Constrained bond lengths and isotropic displacement parameters: C—H = 0.95 Å and Uiso(H) = 1.2 Ueq(C) for aromatic H atoms, and C—H = 0.99 Å and Uiso(H) = 1.2 Ueq(C) for methylene.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of the title compound showing displacement ellipsoids at the 30% probability level. H atom are omitted for clarity.
[1,4-Bis(diphenylphosphanyl)butane-κ2P,P']chlorido(η5- indenyl)ruthenium(II) top
Crystal data top
[Ru(C9H7)Cl(C28H28P2)]F(000) = 1392
Mr = 678.11Dx = 1.456 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 13485 reflections
a = 12.6567 (2) Åθ = 2.0–25.0°
b = 15.7502 (3) ŵ = 0.72 mm1
c = 15.9419 (3) ÅT = 200 K
β = 103.165 (1)°Prism, red–brown
V = 3094.42 (10) Å30.55 × 0.48 × 0.38 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
5443 independent reflections
Radiation source: fine-focus sealed tube4355 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
Detector resolution: 9 pixels mm-1θmax = 25.0°, θmin = 2.9°
CCD rotation images, thick slices scansh = 1415
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1818
Tmin = 0.704, Tmax = 0.821l = 1818
18461 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 0.91 w = 1/[σ2(Fo2) + (0.0707P)2 + 0.5716P]
where P = (Fo2 + 2Fc2)/3
5443 reflections(Δ/σ)max < 0.001
370 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.71 e Å3
Crystal data top
[Ru(C9H7)Cl(C28H28P2)]V = 3094.42 (10) Å3
Mr = 678.11Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.6567 (2) ŵ = 0.72 mm1
b = 15.7502 (3) ÅT = 200 K
c = 15.9419 (3) Å0.55 × 0.48 × 0.38 mm
β = 103.165 (1)°
Data collection top
Nonius KappaCCD
diffractometer
5443 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
4355 reflections with I > 2σ(I)
Tmin = 0.704, Tmax = 0.821Rint = 0.060
18461 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 0.91Δρmax = 0.36 e Å3
5443 reflectionsΔρmin = 0.71 e Å3
370 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.9824 (3)0.0561 (2)0.6534 (2)0.0310 (7)
C21.0539 (3)0.0051 (2)0.7111 (2)0.0416 (9)
H21.02620.03760.74230.050*
C31.1652 (3)0.0158 (3)0.7235 (2)0.0492 (10)
H31.21340.01880.76380.059*
C41.2059 (3)0.0773 (3)0.6769 (3)0.0485 (10)
H41.28210.08440.68490.058*
C51.1364 (3)0.1276 (2)0.6196 (3)0.0457 (9)
H51.16440.16980.58810.055*
C61.0246 (3)0.1170 (2)0.6073 (2)0.0375 (8)
H60.97680.15180.56690.045*
C70.7758 (2)0.1115 (2)0.5546 (2)0.0308 (7)
C80.7854 (3)0.0919 (2)0.4711 (2)0.0367 (8)
H80.82310.04200.46120.044*
C90.7405 (3)0.1445 (2)0.4029 (2)0.0415 (9)
H90.74770.13090.34640.050*
C100.6851 (3)0.2169 (2)0.4166 (3)0.0478 (9)
H100.65390.25290.36960.057*
C110.6753 (3)0.2367 (2)0.4985 (2)0.0470 (9)
H110.63760.28660.50810.056*
C120.7198 (3)0.1845 (2)0.5667 (2)0.0392 (8)
H120.71200.19870.62290.047*
C130.8163 (3)0.06514 (19)0.6006 (2)0.0344 (8)
H13A0.86280.07080.55870.041*
H13B0.84450.10550.64810.041*
C140.7023 (3)0.0944 (2)0.5559 (2)0.0373 (8)
H14A0.67360.05460.50800.045*
H14B0.70840.15080.53000.045*
C150.6194 (3)0.1009 (2)0.6115 (2)0.0387 (8)
H15A0.65530.12690.66730.046*
H15B0.56080.13980.58290.046*
C160.5680 (3)0.0169 (2)0.6296 (2)0.0333 (8)
H16A0.48900.02580.62240.040*
H16B0.57810.02520.58590.040*
C170.5251 (2)0.1131 (2)0.7400 (2)0.0325 (8)
C180.4995 (3)0.1697 (2)0.6714 (3)0.0486 (10)
H180.52680.16020.62140.058*
C190.4349 (3)0.2393 (3)0.6752 (3)0.0653 (13)
H190.41890.27780.62820.078*
C200.3931 (3)0.2536 (3)0.7471 (3)0.0618 (12)
H200.35000.30240.74990.074*
C210.4144 (3)0.1970 (3)0.8142 (3)0.0505 (10)
H210.38440.20570.86310.061*
C220.4798 (3)0.1269 (2)0.8105 (2)0.0378 (8)
H220.49390.08770.85690.045*
C230.5811 (3)0.05033 (19)0.8083 (2)0.0288 (7)
C240.4915 (3)0.1027 (2)0.7832 (2)0.0385 (8)
H240.45190.10210.72500.046*
C250.4590 (3)0.1557 (2)0.8414 (3)0.0495 (10)
H250.39790.19170.82300.059*
C260.5150 (3)0.1566 (2)0.9261 (2)0.0479 (10)
H260.49200.19280.96620.058*
C270.6037 (3)0.1055 (2)0.9528 (3)0.0474 (9)
H270.64180.10581.01150.057*
C280.6382 (3)0.0532 (2)0.8944 (2)0.0372 (8)
H280.70110.01910.91300.045*
C290.7860 (3)0.1711 (2)0.8823 (2)0.0338 (8)
C300.7742 (3)0.2060 (2)0.7974 (2)0.0371 (8)
H300.71180.24110.76580.045*
C310.8750 (3)0.1951 (2)0.7732 (3)0.0432 (9)
H310.89480.22150.72180.052*
C320.9457 (3)0.1465 (2)0.8371 (2)0.0440 (9)
H321.02280.13170.83800.053*
C330.8911 (3)0.1335 (2)0.9061 (2)0.0368 (8)
C340.9246 (3)0.0927 (2)0.9869 (3)0.0490 (10)
H340.99510.06861.00380.059*
C350.8541 (4)0.0886 (3)1.0400 (3)0.0541 (11)
H350.87510.05941.09340.065*
C360.7508 (3)0.1267 (3)1.0172 (2)0.0551 (11)
H360.70380.12341.05580.066*
C370.7170 (3)0.1684 (2)0.9408 (2)0.0412 (9)
H370.64800.19530.92710.049*
Ru10.800240 (19)0.071649 (15)0.775247 (16)0.02673 (11)
P10.83580 (7)0.04314 (5)0.64612 (5)0.0283 (2)
P20.62274 (6)0.02764 (5)0.73711 (5)0.0266 (2)
Cl10.85934 (7)0.07244 (5)0.82062 (5)0.0343 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0251 (17)0.0342 (18)0.0342 (18)0.0036 (14)0.0077 (14)0.0051 (15)
C20.0318 (19)0.052 (2)0.042 (2)0.0030 (17)0.0106 (16)0.0007 (18)
C30.035 (2)0.066 (3)0.045 (2)0.014 (2)0.0067 (17)0.005 (2)
C40.0260 (19)0.061 (3)0.061 (3)0.0005 (18)0.0146 (18)0.021 (2)
C50.038 (2)0.043 (2)0.060 (2)0.0085 (18)0.0201 (19)0.0107 (19)
C60.0314 (19)0.0367 (19)0.047 (2)0.0018 (15)0.0137 (16)0.0041 (17)
C70.0242 (17)0.0314 (18)0.0376 (18)0.0022 (14)0.0087 (14)0.0053 (15)
C80.038 (2)0.0350 (19)0.037 (2)0.0002 (15)0.0075 (16)0.0020 (16)
C90.038 (2)0.048 (2)0.038 (2)0.0024 (17)0.0059 (16)0.0065 (17)
C100.042 (2)0.049 (2)0.050 (2)0.0052 (19)0.0044 (18)0.0139 (19)
C110.041 (2)0.045 (2)0.058 (2)0.0146 (17)0.0168 (18)0.0140 (19)
C120.0338 (19)0.040 (2)0.046 (2)0.0034 (16)0.0132 (16)0.0079 (17)
C130.039 (2)0.0301 (18)0.0333 (19)0.0057 (15)0.0070 (15)0.0001 (15)
C140.049 (2)0.0268 (17)0.0370 (19)0.0065 (16)0.0119 (17)0.0082 (15)
C150.048 (2)0.0295 (17)0.0388 (19)0.0092 (16)0.0103 (17)0.0013 (16)
C160.0325 (18)0.0366 (19)0.0288 (17)0.0044 (15)0.0024 (14)0.0011 (15)
C170.0227 (17)0.0271 (17)0.046 (2)0.0022 (14)0.0042 (15)0.0005 (16)
C180.038 (2)0.042 (2)0.070 (3)0.0121 (17)0.0211 (19)0.020 (2)
C190.060 (3)0.045 (2)0.099 (4)0.019 (2)0.036 (3)0.031 (2)
C200.044 (2)0.041 (2)0.100 (4)0.0171 (19)0.017 (2)0.002 (2)
C210.041 (2)0.051 (2)0.059 (3)0.0117 (19)0.0079 (19)0.011 (2)
C220.0329 (19)0.041 (2)0.0368 (19)0.0056 (16)0.0019 (15)0.0053 (16)
C230.0267 (17)0.0256 (16)0.0351 (18)0.0004 (13)0.0089 (14)0.0027 (14)
C240.0356 (19)0.0381 (19)0.042 (2)0.0059 (16)0.0096 (16)0.0016 (17)
C250.052 (2)0.046 (2)0.057 (3)0.0180 (19)0.026 (2)0.0033 (19)
C260.060 (3)0.042 (2)0.049 (2)0.0032 (19)0.028 (2)0.0087 (18)
C270.054 (2)0.049 (2)0.042 (2)0.004 (2)0.0167 (19)0.0056 (18)
C280.039 (2)0.0377 (19)0.0352 (19)0.0007 (16)0.0086 (16)0.0039 (15)
C290.0290 (18)0.0273 (17)0.043 (2)0.0038 (14)0.0033 (15)0.0153 (15)
C300.0365 (19)0.0246 (17)0.048 (2)0.0007 (15)0.0049 (16)0.0097 (16)
C310.043 (2)0.0296 (18)0.061 (2)0.0099 (16)0.0204 (19)0.0128 (18)
C320.0247 (18)0.045 (2)0.062 (2)0.0120 (16)0.0086 (17)0.0266 (19)
C330.0263 (17)0.0338 (18)0.046 (2)0.0023 (15)0.0015 (15)0.0188 (16)
C340.050 (2)0.038 (2)0.049 (2)0.0065 (18)0.0089 (19)0.0206 (18)
C350.067 (3)0.053 (2)0.034 (2)0.004 (2)0.006 (2)0.0154 (18)
C360.058 (3)0.068 (3)0.040 (2)0.011 (2)0.013 (2)0.021 (2)
C370.0307 (19)0.051 (2)0.042 (2)0.0026 (16)0.0072 (16)0.0208 (18)
Ru10.02312 (16)0.02491 (16)0.03191 (17)0.00150 (10)0.00574 (11)0.00442 (11)
P10.0259 (4)0.0272 (4)0.0325 (5)0.0015 (3)0.0077 (4)0.0010 (4)
P20.0232 (4)0.0249 (4)0.0310 (4)0.0009 (3)0.0051 (3)0.0006 (4)
Cl10.0347 (5)0.0317 (4)0.0342 (4)0.0046 (3)0.0031 (3)0.0011 (3)
Geometric parameters (Å, º) top
C1—C21.389 (5)C19—H190.9500
C1—C61.387 (5)C20—C211.371 (6)
C1—P11.844 (3)C20—H200.9500
C2—C31.388 (5)C21—C221.390 (5)
C2—H20.9500C21—H210.9500
C3—C41.389 (6)C22—H220.9500
C3—H30.9500C23—C241.385 (5)
C4—C51.367 (5)C23—C281.399 (5)
C4—H40.9500C23—P21.829 (3)
C5—C61.394 (5)C24—C251.379 (5)
C5—H50.9500C24—H240.9500
C6—H60.9500C25—C261.374 (5)
C7—C121.387 (5)C25—H250.9500
C7—C81.398 (5)C26—C271.369 (5)
C7—P11.833 (3)C26—H260.9500
C8—C91.383 (5)C27—C281.384 (5)
C8—H80.9500C27—H270.9500
C9—C101.381 (5)C28—H280.9500
C9—H90.9500C29—C371.416 (5)
C10—C111.376 (5)C29—C331.427 (4)
C10—H100.9500C29—C301.438 (5)
C11—C121.377 (5)C29—Ru12.354 (3)
C11—H110.9500C30—C311.424 (5)
C12—H120.9500C30—Ru12.183 (3)
C13—C141.528 (5)C30—H301.0000
C13—P11.848 (3)C31—C321.417 (5)
C13—H13A0.9900C31—Ru12.165 (3)
C13—H13B0.9900C31—H311.0000
C14—C151.524 (5)C32—C331.441 (5)
C14—H14A0.9900C32—Ru12.219 (3)
C14—H14B0.9900C32—H321.0000
C15—C161.530 (5)C33—C341.414 (5)
C15—H15A0.9900C33—Ru12.352 (3)
C15—H15B0.9900C34—C351.365 (6)
C16—P21.836 (3)C34—H340.9500
C16—H16A0.9900C35—C361.410 (6)
C16—H16B0.9900C35—H350.9500
C17—C221.389 (5)C36—C371.363 (5)
C17—C181.390 (5)C36—H360.9500
C17—P21.835 (3)C37—H370.9500
C18—C191.377 (5)Ru1—P12.2502 (9)
C18—H180.9500Ru1—P22.2968 (8)
C19—C201.386 (6)Ru1—Cl12.4467 (8)
C2—C1—C6118.6 (3)C25—C26—H26119.9
C2—C1—P1118.2 (2)C26—C27—C28120.1 (4)
C6—C1—P1123.1 (3)C26—C27—H27119.9
C3—C2—C1120.8 (3)C28—C27—H27119.9
C3—C2—H2119.6C27—C28—C23120.5 (3)
C1—C2—H2119.6C27—C28—H28119.7
C2—C3—C4119.7 (4)C23—C28—H28119.7
C2—C3—H3120.1C37—C29—C33119.4 (3)
C4—C3—H3120.1C37—C29—C30133.2 (3)
C5—C4—C3120.0 (3)C33—C29—C30107.4 (3)
C5—C4—H4120.0C37—C29—Ru1128.2 (2)
C3—C4—H4120.0C33—C29—Ru172.28 (17)
C4—C5—C6120.2 (4)C30—C29—Ru165.16 (17)
C4—C5—H5119.9C31—C30—C29107.6 (3)
C6—C5—H5119.9C31—C30—Ru170.21 (18)
C1—C6—C5120.6 (3)C29—C30—Ru178.12 (18)
C1—C6—H6119.7C31—C30—H30125.8
C5—C6—H6119.7C29—C30—H30125.8
C12—C7—C8118.3 (3)Ru1—C30—H30125.8
C12—C7—P1120.5 (3)C32—C31—C30109.2 (3)
C8—C7—P1121.2 (3)C32—C31—Ru173.2 (2)
C9—C8—C7120.4 (3)C30—C31—Ru171.56 (19)
C9—C8—H8119.8C32—C31—H31125.3
C7—C8—H8119.8C30—C31—H31125.3
C8—C9—C10120.2 (3)Ru1—C31—H31125.3
C8—C9—H9119.9C31—C32—C33107.0 (3)
C10—C9—H9119.9C31—C32—Ru169.11 (19)
C11—C10—C9119.7 (3)C33—C32—Ru176.74 (18)
C11—C10—H10120.1C31—C32—H32126.2
C9—C10—H10120.1C33—C32—H32126.2
C12—C11—C10120.4 (4)Ru1—C32—H32126.2
C12—C11—H11119.8C34—C33—C29119.9 (3)
C10—C11—H11119.8C34—C33—C32131.6 (3)
C11—C12—C7121.0 (3)C29—C33—C32108.5 (3)
C11—C12—H12119.5C34—C33—Ru1127.2 (2)
C7—C12—H12119.5C29—C33—Ru172.41 (18)
C14—C13—P1119.3 (2)C32—C33—Ru166.65 (18)
C14—C13—H13A107.5C35—C34—C33118.9 (4)
P1—C13—H13A107.5C35—C34—H34120.5
C14—C13—H13B107.5C33—C34—H34120.5
P1—C13—H13B107.5C34—C35—C36121.3 (4)
H13A—C13—H13B107.0C34—C35—H35119.4
C15—C14—C13116.7 (3)C36—C35—H35119.4
C15—C14—H14A108.1C37—C36—C35121.3 (4)
C13—C14—H14A108.1C37—C36—H36119.3
C15—C14—H14B108.1C35—C36—H36119.3
C13—C14—H14B108.1C36—C37—C29119.2 (3)
H14A—C14—H14B107.3C36—C37—H37120.4
C14—C15—C16115.5 (3)C29—C37—H37120.4
C14—C15—H15A108.4C31—Ru1—C3038.23 (12)
C16—C15—H15A108.4C31—Ru1—C3237.69 (14)
C14—C15—H15B108.4C30—Ru1—C3263.48 (13)
C16—C15—H15B108.4C31—Ru1—P189.21 (10)
H15A—C15—H15B107.5C30—Ru1—P1114.21 (10)
C15—C16—P2114.8 (2)C32—Ru1—P1101.18 (10)
C15—C16—H16A108.6C31—Ru1—P2132.17 (10)
P2—C16—H16A108.6C30—Ru1—P299.27 (9)
C15—C16—H16B108.6C32—Ru1—P2160.13 (9)
P2—C16—H16B108.6P1—Ru1—P294.88 (3)
H16A—C16—H16B107.5C31—Ru1—C3360.97 (14)
C22—C17—C18118.0 (3)C30—Ru1—C3361.09 (12)
C22—C17—P2122.6 (3)C32—Ru1—C3336.61 (12)
C18—C17—P2119.2 (3)P1—Ru1—C33137.29 (9)
C19—C18—C17120.7 (4)P2—Ru1—C33127.67 (9)
C19—C18—H18119.7C31—Ru1—C2961.28 (13)
C17—C18—H18119.7C30—Ru1—C2936.72 (12)
C18—C19—C20120.5 (4)C32—Ru1—C2961.13 (12)
C18—C19—H19119.7P1—Ru1—C29149.38 (9)
C20—C19—H19119.7P2—Ru1—C2999.26 (8)
C21—C20—C19119.7 (4)C33—Ru1—C2935.31 (11)
C21—C20—H20120.1C31—Ru1—Cl1137.05 (11)
C19—C20—H20120.1C30—Ru1—Cl1154.00 (10)
C20—C21—C22119.7 (4)C32—Ru1—Cl1101.22 (11)
C20—C21—H21120.2P1—Ru1—Cl188.51 (3)
C22—C21—H21120.2P2—Ru1—Cl190.75 (3)
C21—C22—C17121.3 (3)C33—Ru1—Cl193.83 (9)
C21—C22—H22119.4C29—Ru1—Cl1118.14 (9)
C17—C22—H22119.4C7—P1—C1102.34 (15)
C24—C23—C28118.0 (3)C7—P1—C13103.63 (16)
C24—C23—P2123.6 (3)C1—P1—C1399.75 (15)
C28—C23—P2118.2 (2)C7—P1—Ru1118.56 (11)
C25—C24—C23121.1 (3)C1—P1—Ru1109.17 (11)
C25—C24—H24119.4C13—P1—Ru1120.43 (11)
C23—C24—H24119.4C23—P2—C16102.80 (15)
C26—C25—C24120.1 (4)C23—P2—C17100.73 (14)
C26—C25—H25120.0C16—P2—C17101.01 (15)
C24—C25—H25120.0C23—P2—Ru1116.19 (11)
C27—C26—C25120.1 (3)C16—P2—Ru1120.06 (11)
C27—C26—H26119.9C17—P2—Ru1113.29 (10)

Experimental details

Crystal data
Chemical formula[Ru(C9H7)Cl(C28H28P2)]
Mr678.11
Crystal system, space groupMonoclinic, P21/n
Temperature (K)200
a, b, c (Å)12.6567 (2), 15.7502 (3), 15.9419 (3)
β (°) 103.165 (1)
V3)3094.42 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.72
Crystal size (mm)0.55 × 0.48 × 0.38
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.704, 0.821
No. of measured, independent and
observed [I > 2σ(I)] reflections
18461, 5443, 4355
Rint0.060
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.102, 0.91
No. of reflections5443
No. of parameters370
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.71

Computer programs: COLLECT (Nonius, 1998), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

 

Acknowledgements

The authors are grateful to the National Science Council of the Republic of China (NSC grant No. 99-2221-E-003-003) and National Taiwan Normal University (grant No. 99031012) for financial support. The authors also thank Mr Ting Shen Kuo (Department of Chemistry, National Taiwan Normal University) for his assistance with the X-ray single-crystal structure analysis.

References

First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFranco, M., Giambattista, C., Angelo, S. & Massimo, M. (1989). J. Organomet. Chem. 370, 305–318.  Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOro, L. A., Ciriano, M. A., Campo, M., Foces-Foces, C. & Cano, F. H. (1985). J. Organomet. Chem. 289, 117–131.  CrossRef CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTanase, T., Mochizuki, H., Sato, R. & Yamamoto, Y. (1994). J. Organomet. Chem. 466, 233–236.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds