metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[aqua­(benzoato-κ2O,O′)(benzoic acid-κO)calcium]-μ3-benzoato-κ4O:O,O′:O′]

aInstitute of General and Inorganic Chemistry, Abdullaev St 32, Tashkent 100077, Uzbekistan, bTashkent Chemical–Technological Institute, Navoi St 32, Tashkent 100011, Uzbekistan, and cInstitute of Biorganic Chemistry, Mirzo-Ulugbek St 83, Tashkent 100125, Uzbekistan
*Correspondence e-mail: zuhra_kadirova@yahoo.com

(Received 22 February 2011; accepted 11 April 2011; online 16 April 2011)

In title compound, [Ca(C7H5O2)2(C7H6O2)(H2O)]n, the eightfold-coordinated CaII ion is bonded to four carboxyl­ate O atoms from two benzoate ions, an O atom from benzoic acid and a water O atom. One of the carboxyl­ate groups bridges adjacent Ca2+ ions, forming a polymeric ribbon structure parallel to [010]. In the crystal, the benzoate anions and water mol­ecule inter­act by way of inter- and intra­molecular O—H⋯O hydrogen bonds.

Related literature

For background to the crystal structures and physical stability of calcium benzoate hydrates, mesophases and related compounds, see: Cherkezova et al. (1987[Cherkezova, V. R., Musaev, F. N. & Karaev, Z. Sh. (1987). Russ. J. Coord. Chem. 13, 903-908.]); Zhang et al. (1999[Zhang, K., Yuan, J., Yuan, L. & Sun, J. (1999). Wuhan Univ. J. Nat. Sci. 4, 89-94.]); Yano et al. (2001[Yano, S., Numata, M., Kato, M., Motoo, S. & Nishimura, T. (2001). Acta Cryst. E57, m488-m490.]); Senkovska & Thewalt (2005[Senkovska, I. & Thewalt, U. (2005). Acta Cryst. C61, m448-m449.]); Terakita & Byrn (2006[Terakita, A. & Byrn, S. R. (2006). J. Pharm. Sci. 95, 1162-1172.]).

[Scheme 1]

Experimental

Crystal data
  • [Ca(C7H5O2)2(C7H6O2)(H2O)]

  • Mr = 422.43

  • Monoclinic, P 21 /n

  • a = 15.5535 (3) Å

  • b = 6.61183 (16) Å

  • c = 20.1828 (4) Å

  • β = 94.3750 (18)°

  • V = 2069.49 (8) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.96 mm−1

  • T = 293 K

  • 0.55 × 0.45 × 0.40 mm

Data collection
  • Oxford Diffraction Xcalibur Ruby diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.782, Tmax = 1.000

  • 7257 measured reflections

  • 3847 independent reflections

  • 2961 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.121

  • S = 1.07

  • 3847 reflections

  • 275 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W1⋯O5i 0.76 (3) 2.05 (3) 2.779 (2) 163 (3)
O1—H1O⋯O6 0.93 (3) 1.68 (3) 2.597 (2) 167 (3)
O1W—H2W1⋯O6ii 0.89 (3) 1.90 (3) 2.754 (2) 159 (3)
Symmetry codes: (i) -x+1, -y, -z; (ii) -x+1, -y+1, -z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The synthesis and structure determination of inorganic polymers are interesting subject for basic inorganic chemistry and materials science. Depending on the pH and other synthetic conditions, many calcium benzoates with different coordination modes, polymeric arrangements and molecular topologies have been observed, e.g. [Ca(C6H5COO)2]×3H2O(neutral solution; Terakita et al., 2006), Ca(C6H5COO)2](C6H5COO)0.5×2H2O (acid solution; Cherkezova et al., 1987), [Ca(C6H5COO)(H2O)3](C6H5COO)]n (basic solution; Senkovska et al., 2005),[Ca(C6H5COO)2(C3H7NO)(H2O)]n (dimetylformamide solution; Yano et al., 2001), [Ca(C6H5COO)2] (hydrothermal conditions; Zhang et al., 1999).

In this study we synthesized the CaII polymeric compound, (I), bridged by a benzoate group, and report the structure of the title compound, (I). The molecular structure is shown on Fig.1 and geometrical parameters are available from archived CIF.

The asymmetric unit of (I) consists of one Ca centre, two benzoate anions, benzoic acid and one water molecule (Fig 1). The calcium ion is surrounded by eight O atoms from two tri- and bidentate benzoates, a monodentate benzoic acid molecule, and a water molecule. The CaO8 polyhedron deviates extensively from idealized octacoordinated geometries found in other complexes (Senkovska et al., 2005; Yano et al., 2001). There are three different coordination modes of benzoic acid in crystal structure. The tridentate benzoate forms simultaneously the planar four-membered chelate and the buckled four-membered Ca–O–Ca–O rings by bridging adjacent Ca2+ ions. The Ca–O bridging bond lengths [2.3204 (14) and 2.3781 (14) Å] are considerably shorter than the Ca–O chelate distances [2.7414 (14) and 2.4567 (14) Å]. The bidentate benzoate has longer Ca–O distances [2.4837 (17) and 2.5628 (15) Å] than observed for monodentate benzoic acid and calcium ion [2.4467 (15) Å].

The bridging interactions and the system of H-bonds form polymeric structure consisted from the infinite ribbons along the b axis and separated by the stacked neighbouring phenyl groups. The benzoic acid hydroxyl group and an water molecule act as H-bond donors, and the O5 and O6 atoms of the bidentate COO- group are H-bond acceptors. The combination of these hydrogen bonds, π-π stacking interactions and the Ca–O bonds leads to the formation of a two-dimensional network running parallel to the ac-plane (Fig. 2).

Related literature top

For background to the crystal structures and physical stability of calcium benzoate hydrates, mesophases and related compounds, see: Cherkezova et al. (1987); Zhang et al. (1999); Yano et al. (2001); Senkovska & Thewalt (2005); Terakita & Byrn (2006).

Experimental top

The Ca(NO3)2×4H2O (1 mmol) and benzoic acid (3 mmol) in 75 ml of ethanol were mixed with the the benzoic acid water solution (2 mmol). The mixture were strirred 6 h at room temperature, and after 3 days the precipitated colourless crystals were filtered off, washed three times with ethanol, dried at room temperature. Crystals of the title compound, suitable to X-ray diffraction analysis, were selected directly from the sample as prepared.

Refinement top

All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

All the H-atoms were found in the difference Fourier synthesis and refined with restrained O–H 0.82 (2) Å, H···H 1.35 (2) Å, but free isotropic displacement parameters.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis PRO (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A view of the structure of (I), showing the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitary radii.
[Figure 2] Fig. 2. The crystal structure packing scheme showing the hydrogen bonds system.
catena-Poly[[aqua(benzoato-κ2O,O')(benzoic acid-κO)calcium]-µ3-benzoato- κ4O:O,O':O'] top
Crystal data top
[Ca(C7H5O2)2(C7H6O2)(H2O)]F(000) = 880
Mr = 422.43Dx = 1.356 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ynCell parameters from 3133 reflections
a = 15.5535 (3) Åθ = 3.5–70.6°
b = 6.61183 (16) ŵ = 2.96 mm1
c = 20.1828 (4) ÅT = 293 K
β = 94.3750 (18)°Monoclinic, colourless
V = 2069.49 (8) Å30.55 × 0.45 × 0.40 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Ruby
diffractometer
3847 independent reflections
Radiation source: Enhance (Cu) X-ray Source2961 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 10.2576 pixels mm-1θmax = 71.1°, θmin = 3.5°
q/2θ scansh = 1718
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
k = 77
Tmin = 0.782, Tmax = 1.000l = 2224
7257 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.121 w = 1/[σ2(Fo2) + (0.0754P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
3847 reflectionsΔρmax = 0.27 e Å3
275 parametersΔρmin = 0.26 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0050 (4)
Crystal data top
[Ca(C7H5O2)2(C7H6O2)(H2O)]V = 2069.49 (8) Å3
Mr = 422.43Z = 4
Monoclinic, P21/nCu Kα radiation
a = 15.5535 (3) ŵ = 2.96 mm1
b = 6.61183 (16) ÅT = 293 K
c = 20.1828 (4) Å0.55 × 0.45 × 0.40 mm
β = 94.3750 (18)°
Data collection top
Oxford Diffraction Xcalibur Ruby
diffractometer
3847 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
2961 reflections with I > 2σ(I)
Tmin = 0.782, Tmax = 1.000Rint = 0.025
7257 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.27 e Å3
3847 reflectionsΔρmin = 0.26 e Å3
275 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ca10.45197 (2)0.25532 (5)0.033347 (19)0.03194 (16)
O1W0.39727 (11)0.2332 (3)0.08057 (9)0.0443 (4)
O10.36276 (12)0.5693 (3)0.16770 (10)0.0675 (6)
O20.33262 (10)0.2999 (3)0.10426 (9)0.0508 (4)
O30.59059 (9)0.0795 (2)0.02003 (7)0.0394 (3)
O40.58487 (8)0.4064 (2)0.00286 (7)0.0368 (3)
O50.54914 (11)0.1360 (2)0.12874 (8)0.0528 (4)
O60.51357 (9)0.4557 (2)0.13481 (7)0.0430 (4)
C10.1629 (2)0.2997 (6)0.14566 (18)0.0862 (11)
H1A0.18150.18220.12580.103*
C20.0778 (2)0.3155 (8)0.1610 (2)0.1124 (15)
H2A0.03960.20890.15220.135*
C30.0512 (3)0.4885 (8)0.1889 (2)0.1325 (19)
H3A0.00590.50060.19900.159*
C40.1074 (3)0.6473 (9)0.2026 (3)0.1310 (18)
H4A0.08810.76540.22160.157*
C50.1927 (2)0.6303 (6)0.18807 (18)0.0944 (12)
H5A0.23120.73580.19750.113*
C60.21971 (16)0.4540 (4)0.15927 (12)0.0590 (7)
C70.31009 (15)0.4324 (4)0.14106 (12)0.0499 (6)
C80.76481 (14)0.4308 (4)0.02152 (12)0.0492 (6)
H8A0.73230.53910.03510.059*
C90.85412 (16)0.4419 (5)0.02713 (15)0.0660 (8)
H9A0.88130.55790.04440.079*
C100.90217 (16)0.2842 (5)0.00760 (17)0.0744 (9)
H10A0.9620.29310.01100.089*
C110.86257 (17)0.1122 (5)0.01702 (18)0.0801 (10)
H11A0.89570.00430.03010.096*
C120.77321 (15)0.0979 (4)0.02254 (14)0.0590 (7)
H12A0.74660.02010.03860.071*
C130.72419 (13)0.2590 (3)0.00417 (11)0.0378 (5)
C140.62723 (12)0.2463 (3)0.01012 (9)0.0306 (4)
C150.59799 (16)0.4938 (4)0.26173 (12)0.0542 (6)
H15A0.56360.60060.24550.065*
C160.64396 (19)0.5095 (5)0.32353 (14)0.0721 (8)
H16A0.63950.6260.34890.087*
C170.69539 (17)0.3548 (6)0.34678 (14)0.0765 (9)
H17A0.72620.36630.38790.092*
C180.70210 (18)0.1819 (6)0.31004 (15)0.0743 (9)
H18A0.73770.07710.32610.089*
C190.65589 (15)0.1632 (5)0.24906 (12)0.0553 (6)
H19A0.66000.04530.22440.066*
C200.60356 (13)0.3198 (4)0.22475 (10)0.0401 (5)
C210.55280 (13)0.3005 (3)0.15892 (10)0.0379 (5)
H1W10.4060 (18)0.139 (5)0.1002 (14)0.062 (10)*
H2W10.4184 (19)0.325 (5)0.1072 (15)0.074 (10)*
H1O0.420 (2)0.543 (5)0.1603 (16)0.090 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ca10.0308 (2)0.0223 (2)0.0429 (2)0.00138 (15)0.00329 (15)0.00246 (16)
O1W0.0509 (9)0.0296 (9)0.0512 (9)0.0004 (7)0.0051 (7)0.0028 (8)
O10.0524 (11)0.0671 (13)0.0837 (13)0.0043 (9)0.0102 (9)0.0329 (11)
O20.0478 (9)0.0470 (10)0.0600 (10)0.0015 (7)0.0187 (7)0.0103 (8)
O30.0376 (7)0.0237 (8)0.0574 (9)0.0041 (6)0.0064 (6)0.0038 (6)
O40.0330 (7)0.0254 (7)0.0518 (8)0.0025 (6)0.0030 (6)0.0031 (6)
O50.0690 (10)0.0360 (9)0.0523 (9)0.0049 (8)0.0028 (8)0.0066 (8)
O60.0437 (8)0.0357 (9)0.0490 (8)0.0028 (6)0.0005 (6)0.0012 (7)
C10.0648 (19)0.103 (2)0.096 (2)0.0124 (18)0.0364 (17)0.032 (2)
C20.065 (2)0.153 (4)0.124 (3)0.024 (2)0.044 (2)0.046 (3)
C30.062 (2)0.193 (5)0.148 (4)0.011 (3)0.043 (2)0.056 (4)
C40.079 (3)0.162 (4)0.157 (4)0.029 (3)0.039 (3)0.064 (4)
C50.074 (2)0.105 (3)0.107 (3)0.015 (2)0.0255 (18)0.039 (2)
C60.0508 (14)0.0750 (19)0.0526 (13)0.0080 (13)0.0136 (11)0.0091 (13)
C70.0498 (13)0.0520 (15)0.0491 (13)0.0048 (11)0.0109 (10)0.0039 (12)
C80.0369 (11)0.0421 (14)0.0681 (15)0.0041 (10)0.0007 (10)0.0077 (12)
C90.0414 (13)0.0679 (19)0.0874 (19)0.0160 (13)0.0035 (12)0.0104 (16)
C100.0273 (11)0.094 (2)0.102 (2)0.0010 (14)0.0051 (13)0.0049 (19)
C110.0390 (13)0.083 (2)0.119 (3)0.0131 (15)0.0089 (14)0.023 (2)
C120.0383 (12)0.0518 (15)0.0873 (19)0.0051 (11)0.0074 (11)0.0166 (14)
C130.0307 (10)0.0364 (12)0.0462 (11)0.0009 (8)0.0028 (8)0.0014 (9)
C140.0296 (9)0.0256 (10)0.0368 (10)0.0008 (8)0.0045 (7)0.0006 (8)
C150.0518 (13)0.0597 (16)0.0507 (13)0.0025 (12)0.0003 (10)0.0096 (12)
C160.0679 (17)0.089 (2)0.0579 (15)0.0055 (16)0.0038 (13)0.0217 (16)
C170.0522 (15)0.126 (3)0.0501 (15)0.0002 (18)0.0076 (12)0.0002 (18)
C180.0553 (16)0.106 (2)0.0605 (16)0.0200 (17)0.0007 (13)0.0175 (18)
C190.0498 (13)0.0640 (17)0.0524 (13)0.0115 (12)0.0053 (11)0.0037 (13)
C200.0339 (10)0.0482 (13)0.0388 (11)0.0014 (9)0.0059 (8)0.0021 (10)
C210.0338 (10)0.0386 (12)0.0415 (11)0.0004 (9)0.0053 (8)0.0002 (9)
Geometric parameters (Å, º) top
O4—Ca12.4566 (13)C4—C51.385 (5)
Ca1—O3i2.3204 (14)C4—H4A0.9300
Ca1—O4ii2.3781 (14)C5—C61.382 (4)
Ca1—O1W2.3943 (17)C5—H5A0.9300
Ca1—O22.4467 (15)C6—C71.487 (3)
Ca1—O52.4837 (17)C8—C131.382 (3)
Ca1—O62.5628 (15)C8—C91.387 (3)
Ca1—O32.7414 (14)C8—H8A0.9300
Ca1—C212.892 (2)C9—C101.359 (4)
Ca1—C142.9272 (18)C9—H9A0.9300
O1W—Ca12.3944 (17)C10—C111.369 (4)
O1W—H1W10.75 (3)C10—H10A0.9300
O1W—H2W10.89 (3)C11—C121.389 (4)
O1—C71.309 (3)C11—H11A0.9300
O1—H1O0.92 (4)C12—C131.377 (3)
O2—C71.217 (3)C12—H12A0.9300
O3—C141.250 (2)C13—C141.506 (3)
O3—Ca12.7414 (14)C14—Ca12.9273 (18)
O4—C141.261 (2)C15—C201.378 (3)
O4—Ca12.4567 (13)C15—C161.394 (3)
O5—C211.245 (3)C15—H15A0.9300
O5—Ca12.4838 (17)C16—C171.360 (4)
O6—C211.272 (2)C16—H16A0.9300
O6—Ca12.5628 (15)C17—C181.371 (5)
C1—C61.364 (4)C17—H17A0.9300
C1—C21.386 (4)C18—C191.383 (4)
C1—H1A0.9300C18—H18A0.9300
C2—C31.354 (6)C19—C201.384 (3)
C2—H2A0.9300C19—H19A0.9300
C3—C41.381 (6)C20—C211.498 (3)
C3—H3A0.9300C21—Ca12.892 (2)
O1W—Ca1—O2109.84 (6)C5—C6—C7120.6 (2)
O1W—Ca1—O380.16 (5)C1—C6—C7119.3 (3)
O1W—Ca1—O489.11 (5)C1—C6—C5120.2 (3)
O1W—Ca1—O5151.11 (6)O1—C7—C6114.0 (2)
O1W—Ca1—O6151.97 (6)O2—C7—C6122.8 (2)
O2—Ca1—O3159.31 (6)O1—C7—O2123.3 (2)
O2—Ca1—O4144.90 (6)C9—C8—C13120.0 (2)
O2—Ca1—O591.65 (6)C8—C9—C10120.4 (3)
O2—Ca1—O674.00 (5)C9—C10—C11120.1 (2)
O3—Ca1—O449.51 (4)C10—C11—C12120.4 (3)
O3—Ca1—O573.72 (5)C3—C4—H4A120.00
O3—Ca1—O6106.02 (4)C5—C4—H4A120.00
O4—Ca1—O583.32 (5)C4—C5—H5A121.00
O4—Ca1—O675.86 (5)C6—C5—H5A120.00
O5—Ca1—O651.43 (4)C9—C8—H8A120.00
C11—C12—C13119.8 (2)C13—C8—H8A120.00
C8—C13—C12119.4 (2)C8—C9—H9A120.00
C8—C13—C14120.15 (18)C10—C9—H9A120.00
C12—C13—C14120.46 (19)C9—C10—H10A120.00
O4—C14—C13118.21 (17)C11—C10—H10A120.00
O3—C14—O4121.54 (17)C10—C11—H11A120.00
O3—C14—C13120.22 (17)C12—C11—H11A120.00
C16—C15—C20119.9 (2)C11—C12—H12A120.00
C15—C16—C17120.1 (3)C13—C12—H12A120.00
C16—C17—C18120.5 (3)C16—C15—H15A120.00
C17—C18—C19120.0 (3)C20—C15—H15A120.00
C18—C19—C20120.0 (3)C15—C16—H16A120.00
C15—C20—C19119.5 (2)C17—C16—H16A120.00
C15—C20—C21120.1 (2)C16—C17—H17A120.00
C19—C20—C21120.4 (2)C18—C17—H17A120.00
O5—C21—C20120.62 (19)C17—C18—H18A120.00
O6—C21—C20118.40 (18)C19—C18—H18A120.00
O5—C21—O6120.98 (19)C18—C19—H19A120.00
C2—C1—H1A120.00C20—C19—H19A120.00
C6—C1—H1A120.00Ca1—O4—C1498.75 (11)
C1—C2—H2A120.00O1W—Ca1—O3i75.71 (6)
C3—C2—H2A121.00O1W—Ca1—O4ii75.41 (6)
C2—C3—H3A119.00O2—Ca1—O3i87.72 (6)
C4—C3—H3A119.00O2—Ca1—O4ii81.92 (6)
Ca1—O2—C7135.25 (16)O3—Ca1—O3i77.05 (5)
Ca1—O3—C1485.74 (11)O3—Ca1—O4ii118.58 (4)
Ca1—O5—C2195.98 (12)O3i—Ca1—O4126.34 (5)
Ca1—O6—C2191.59 (11)O4—Ca1—O4ii74.47 (4)
C7—O1—H1O112 (2)O3i—Ca1—O586.45 (5)
Ca1—O1W—H1W1119 (2)O4ii—Ca1—O5128.29 (5)
Ca1—O1W—H2W1115 (2)O3i—Ca1—O6132.20 (5)
H1W1—O1W—H2W199 (3)O4ii—Ca1—O677.79 (5)
C2—C1—C6120.9 (4)O3i—Ca1—O4ii143.74 (5)
C1—C2—C3119.0 (4)Ca1—O3—Ca1i102.95 (5)
C2—C3—C4121.1 (4)Ca1i—O3—C14169.26 (13)
C3—C4—C5119.9 (5)Ca1—O4—Ca1ii105.53 (5)
C4—C5—C6119.0 (4)Ca1ii—O4—C14151.28 (12)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O5i0.76 (3)2.05 (3)2.779 (2)163 (3)
O1—H1O···O60.93 (3)1.68 (3)2.597 (2)167 (3)
O1W—H2W1···O6ii0.89 (3)1.90 (3)2.754 (2)159 (3)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Ca(C7H5O2)2(C7H6O2)(H2O)]
Mr422.43
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)15.5535 (3), 6.61183 (16), 20.1828 (4)
β (°) 94.3750 (18)
V3)2069.49 (8)
Z4
Radiation typeCu Kα
µ (mm1)2.96
Crystal size (mm)0.55 × 0.45 × 0.40
Data collection
DiffractometerOxford Diffraction Xcalibur Ruby
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
Tmin, Tmax0.782, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7257, 3847, 2961
Rint0.025
(sin θ/λ)max1)0.614
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.121, 1.07
No. of reflections3847
No. of parameters275
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.26

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O5i0.76 (3)2.05 (3)2.779 (2)163 (3)
O1—H1O···O60.93 (3)1.68 (3)2.597 (2)167 (3)
O1W—H2W1···O6ii0.89 (3)1.90 (3)2.754 (2)159 (3)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z.
 

Acknowledgements

This work was supported by the Grant of Fundamental Research of Centers of Science and Technology, Republic Uzbekistan F 3–142.

References

First citationCherkezova, V. R., Musaev, F. N. & Karaev, Z. Sh. (1987). Russ. J. Coord. Chem. 13, 903–908.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSenkovska, I. & Thewalt, U. (2005). Acta Cryst. C61, m448–m449.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTerakita, A. & Byrn, S. R. (2006). J. Pharm. Sci. 95, 1162–1172.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYano, S., Numata, M., Kato, M., Motoo, S. & Nishimura, T. (2001). Acta Cryst. E57, m488–m490.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, K., Yuan, J., Yuan, L. & Sun, J. (1999). Wuhan Univ. J. Nat. Sci. 4, 89–94.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds