organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1216

2,2-Di­methyl-5-[(2-nitro­anilino)methyl­­idene]-1,3-dioxane-4,6-dione

aBioengineering College, Xihua University, Chengdu, Sichuan 610039, People's Republic of China, and bSichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, People's Republic of China
*Correspondence e-mail: shijianyoude@126.com

(Received 9 April 2011; accepted 16 April 2011; online 29 April 2011)

The crystal of the title compound, C13H12N2O6, contains a bifurcated intra­molecular hydrogen bond between the N—H group and one of the O atoms from both the nitro group and the dioxane-4,6-dione moiety. In addition, mol­ecules are linked by a series of inter­molecular C—H⋯O secondary inter­actions. The dihedral angles between the benzene ring and the nitro group and the conjugated part of the dioxane-4,6-dione moiety are 19.1 (2) and 17.89 (7)°, respectively.

Related literature

The title compound is an important intermediate drug discovery. For the synthesis and structures of related antitumor precursors, see: Cassis et al. (1985[Cassis, R., Tapia, R. & Valderrama, J. A. (1985). Synth. Commun. 15, 125-133.]). For related literature, see Dolomanov et al. (2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

[Scheme 1]

Experimental

Crystal data
  • C13H12N2O6

  • Mr = 292.25

  • Monoclinic, P 21 /c

  • a = 6.3860 (2) Å

  • b = 17.3800 (5) Å

  • c = 11.9338 (3) Å

  • β = 90.622 (3)°

  • V = 1324.44 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 150 K

  • 0.42 × 0.35 × 0.25 mm

Data collection
  • Oxford Diffraction Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.993, Tmax = 1.0

  • 9157 measured reflections

  • 2693 independent reflections

  • 2212 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.097

  • S = 1.03

  • 2693 reflections

  • 192 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O5 0.88 1.97 2.6403 (16) 132
N1—H1⋯O3 0.88 2.10 2.7439 (16) 130
C7—H7⋯O4i 0.95 2.40 3.0852 (18) 129
C10—H10⋯O6ii 0.95 2.48 3.4219 (19) 170
C11—H11⋯O1iii 0.95 2.53 3.4508 (18) 162
C13—H13⋯O4i 0.95 2.53 3.4445 (18) 161
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+2, -y+1, -z; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

2,2-Dimethyl-5-[(2-nitrophenylamino)-methylene]-[1,3]dioxane-4,6-dione, C13H12N2O6, is a key intermediate which can be used to synthesize the 4(1H)quinolone derivatives by thermolysis, which can then be used as precursors for anti-malarial agents or anti-cancer agents. The structure contains an bifurcated intramolecular hydrogen bond between the N-H and one of the O's from both the nitro group and the dioxane-4,6-dione moiety. In addition the molecules are linked by a series of intermolecular C-H···O secondary interactions. The dihedral angles between the phenyl group and both the nitro and conjugated part of the dioxane-4,6-dione moiety are 19.1 (2)° and 17.89 (7)°, respectively.

Related literature top

Please supply related literature section.

Experimental top

A mixture of 2,2-dimethyl-1,3-dioxane-4,6-dione(1.44 g, 0.01 mol) and methylorthoformate (1.27 g, 0.012 mol) was heated to reflux for 0.5 h, then 2-nitroaniline(1.38 g, 0.01 mol) in ethanol (20 mL) was added into the above solution. The mixture was heated under reflux for another 2 h and poured into cold water then filtered to obtain a powder. Single crystals were obtained from the powder in CH2Cl2 and methanol after 3 days.

Refinement top

H atoms were positioned geometrically (C—H = 0.93–0.98 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C) [Uiso(H) = 1.5Ueq(C) for the CH3 groups).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the bifurcated intramolecular hydrogen bond.
[Figure 2] Fig. 2. Fi. 2. The packing diagram for the title compound viewed down the a axis, showing the intermolecular C—H···O interactions.
2,2-Dimethyl-5-[(2-nitroanilino)methylidene]-1,3-dioxane-4,6-dione top
Crystal data top
C13H12N2O6F(000) = 608
Mr = 292.25Dx = 1.466 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71070 Å
Hall symbol: -P 2ybcCell parameters from 3956 reflections
a = 6.3860 (2) Åθ = 2.9–29.1°
b = 17.3800 (5) ŵ = 0.12 mm1
c = 11.9338 (3) ÅT = 150 K
β = 90.622 (3)°Block, colourless
V = 1324.44 (7) Å30.42 × 0.35 × 0.25 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
2693 independent reflections
Radiation source: fine-focus sealed tube2212 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 16.0874 pixels mm-1θmax = 26.4°, θmin = 2.9°
ω scansh = 77
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 021
Tmin = 0.993, Tmax = 1.0l = 014
9157 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0439P)2 + 0.3082P]
where P = (Fo2 + 2Fc2)/3
2693 reflections(Δ/σ)max < 0.001
192 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C13H12N2O6V = 1324.44 (7) Å3
Mr = 292.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.3860 (2) ŵ = 0.12 mm1
b = 17.3800 (5) ÅT = 150 K
c = 11.9338 (3) Å0.42 × 0.35 × 0.25 mm
β = 90.622 (3)°
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
2693 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
2212 reflections with I > 2σ(I)
Tmin = 0.993, Tmax = 1.0Rint = 0.027
9157 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.03Δρmax = 0.21 e Å3
2693 reflectionsΔρmin = 0.22 e Å3
192 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.38713 (16)0.72407 (6)0.58099 (8)0.0262 (3)
O20.14846 (17)0.64025 (6)0.66934 (8)0.0260 (3)
O30.57240 (17)0.68777 (6)0.43461 (9)0.0287 (3)
O40.10877 (16)0.51978 (6)0.61477 (8)0.0255 (3)
O50.7590 (2)0.62314 (7)0.21713 (11)0.0434 (3)
O60.9663 (2)0.55108 (8)0.12201 (10)0.0452 (3)
N10.45628 (19)0.55433 (7)0.32793 (9)0.0215 (3)
H10.53900.59480.32410.026*
N20.7992 (2)0.56246 (8)0.16919 (10)0.0302 (3)
C10.1846 (2)0.71834 (8)0.63308 (12)0.0254 (3)
C20.4337 (2)0.67221 (8)0.49964 (11)0.0218 (3)
C30.3173 (2)0.60086 (8)0.50100 (11)0.0204 (3)
C40.1833 (2)0.58240 (8)0.59513 (11)0.0211 (3)
C50.1985 (3)0.76619 (10)0.73797 (13)0.0358 (4)
H5A0.31320.74720.78560.054*
H5B0.06640.76260.77870.054*
H5C0.22490.82000.71800.054*
C60.0136 (3)0.74320 (10)0.55292 (13)0.0329 (4)
H6A0.00980.70840.48840.049*
H6B0.04130.79580.52730.049*
H6C0.12150.74170.59100.049*
C70.3356 (2)0.54685 (8)0.41734 (12)0.0204 (3)
H70.25630.50090.42400.025*
C80.4737 (2)0.50006 (8)0.24088 (12)0.0216 (3)
C90.6411 (2)0.50180 (8)0.16525 (12)0.0238 (3)
C100.6632 (3)0.44616 (9)0.08294 (12)0.0295 (4)
H100.77840.44820.03330.035*
C110.5182 (3)0.38812 (9)0.07327 (13)0.0323 (4)
H110.53280.34980.01710.039*
C120.3506 (3)0.38574 (9)0.14598 (14)0.0334 (4)
H120.25030.34560.13940.040*
C130.3277 (2)0.44111 (9)0.22799 (13)0.0283 (4)
H130.21050.43900.27630.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0282 (6)0.0224 (5)0.0279 (6)0.0010 (4)0.0001 (5)0.0038 (4)
O20.0299 (6)0.0280 (6)0.0201 (5)0.0010 (5)0.0039 (4)0.0033 (4)
O30.0266 (6)0.0276 (6)0.0322 (6)0.0059 (5)0.0055 (5)0.0002 (5)
O40.0235 (6)0.0290 (6)0.0239 (5)0.0056 (4)0.0029 (4)0.0009 (4)
O50.0497 (8)0.0287 (6)0.0524 (8)0.0103 (6)0.0263 (6)0.0056 (6)
O60.0343 (7)0.0534 (8)0.0484 (8)0.0045 (6)0.0235 (6)0.0030 (6)
N10.0198 (7)0.0203 (6)0.0245 (6)0.0010 (5)0.0048 (5)0.0014 (5)
N20.0316 (8)0.0324 (7)0.0269 (7)0.0017 (6)0.0115 (6)0.0042 (6)
C10.0283 (8)0.0248 (8)0.0230 (7)0.0031 (7)0.0007 (6)0.0027 (6)
C20.0213 (8)0.0227 (7)0.0213 (7)0.0017 (6)0.0027 (6)0.0006 (6)
C30.0178 (7)0.0214 (7)0.0219 (7)0.0012 (6)0.0014 (6)0.0000 (6)
C40.0172 (7)0.0268 (8)0.0193 (7)0.0002 (6)0.0024 (6)0.0004 (6)
C50.0463 (11)0.0336 (9)0.0275 (8)0.0052 (8)0.0038 (8)0.0085 (7)
C60.0332 (10)0.0365 (9)0.0289 (8)0.0100 (7)0.0046 (7)0.0062 (7)
C70.0159 (7)0.0209 (7)0.0245 (7)0.0001 (6)0.0000 (6)0.0024 (6)
C80.0226 (8)0.0208 (7)0.0214 (7)0.0045 (6)0.0015 (6)0.0007 (6)
C90.0250 (8)0.0245 (7)0.0219 (7)0.0029 (6)0.0044 (6)0.0039 (6)
C100.0344 (9)0.0317 (9)0.0227 (8)0.0095 (7)0.0068 (7)0.0028 (6)
C110.0435 (10)0.0284 (8)0.0251 (8)0.0078 (7)0.0017 (7)0.0064 (6)
C120.0368 (10)0.0286 (8)0.0347 (9)0.0043 (7)0.0009 (7)0.0065 (7)
C130.0247 (9)0.0310 (8)0.0294 (8)0.0021 (7)0.0055 (7)0.0044 (6)
Geometric parameters (Å, º) top
O1—C21.3600 (17)C5—H5A0.9800
O1—C11.4446 (17)C5—H5B0.9800
O2—C41.3598 (17)C5—H5C0.9800
O2—C11.4438 (17)C6—H6A0.9800
O3—C21.2144 (17)C6—H6B0.9800
O4—C41.2118 (17)C6—H6C0.9800
O5—N21.2283 (17)C7—H70.9500
O6—N21.2276 (17)C8—C131.393 (2)
N1—C71.3292 (18)C8—C91.4066 (19)
N1—C81.4084 (18)C9—C101.387 (2)
N1—H10.8808C10—C111.373 (2)
N2—C91.460 (2)C10—H100.9500
C1—C51.505 (2)C11—C121.386 (2)
C1—C61.507 (2)C11—H110.9500
C2—C31.446 (2)C12—C131.382 (2)
C3—C71.376 (2)C12—H120.9500
C3—C41.4551 (19)C13—H130.9500
C2—O1—C1117.73 (11)H5B—C5—H5C109.5
C4—O2—C1118.16 (10)C1—C6—H6A109.5
C7—N1—C8125.29 (12)C1—C6—H6B109.5
C7—N1—H1118.2H6A—C6—H6B109.5
C8—N1—H1116.4C1—C6—H6C109.5
O6—N2—O5122.62 (14)H6A—C6—H6C109.5
O6—N2—C9118.24 (13)H6B—C6—H6C109.5
O5—N2—C9119.12 (12)N1—C7—C3124.77 (14)
O2—C1—O1109.90 (11)N1—C7—H7117.6
O2—C1—C5106.16 (12)C3—C7—H7117.6
O1—C1—C5105.96 (13)C13—C8—C9117.22 (13)
O2—C1—C6110.05 (13)C13—C8—N1121.06 (13)
O1—C1—C6110.67 (12)C9—C8—N1121.70 (13)
C5—C1—C6113.91 (13)C10—C9—C8121.56 (14)
O3—C2—O1118.37 (13)C10—C9—N2116.77 (13)
O3—C2—C3125.22 (13)C8—C9—N2121.67 (13)
O1—C2—C3116.35 (12)C11—C10—C9119.87 (15)
C7—C3—C2121.94 (13)C11—C10—H10120.1
C7—C3—C4117.71 (13)C9—C10—H10120.1
C2—C3—C4120.28 (12)C10—C11—C12119.61 (14)
O4—C4—O2118.07 (12)C10—C11—H11120.2
O4—C4—C3125.65 (13)C12—C11—H11120.2
O2—C4—C3116.21 (12)C13—C12—C11120.75 (15)
C1—C5—H5A109.5C13—C12—H12119.6
C1—C5—H5B109.5C11—C12—H12119.6
H5A—C5—H5B109.5C12—C13—C8120.97 (14)
C1—C5—H5C109.5C12—C13—H13119.5
H5A—C5—H5C109.5C8—C13—H13119.5
C4—O2—C1—O149.01 (16)C2—C3—C7—N10.9 (2)
C4—O2—C1—C5163.17 (13)C4—C3—C7—N1177.98 (13)
C4—O2—C1—C673.12 (16)C7—N1—C8—C1315.3 (2)
C2—O1—C1—O250.40 (15)C7—N1—C8—C9163.14 (14)
C2—O1—C1—C5164.70 (12)C13—C8—C9—C101.6 (2)
C2—O1—C1—C671.36 (15)N1—C8—C9—C10176.90 (14)
C1—O1—C2—O3160.00 (13)C13—C8—C9—N2178.09 (14)
C1—O1—C2—C322.41 (18)N1—C8—C9—N23.4 (2)
O3—C2—C3—C78.8 (2)O6—N2—C9—C1018.5 (2)
O1—C2—C3—C7173.82 (13)O5—N2—C9—C10159.99 (15)
O3—C2—C3—C4168.19 (14)O6—N2—C9—C8161.84 (14)
O1—C2—C3—C49.2 (2)O5—N2—C9—C819.7 (2)
C1—O2—C4—O4163.13 (13)C8—C9—C10—C110.7 (2)
C1—O2—C4—C319.81 (18)N2—C9—C10—C11178.97 (14)
C7—C3—C4—O410.9 (2)C9—C10—C11—C120.1 (2)
C2—C3—C4—O4166.25 (14)C10—C11—C12—C130.0 (2)
C7—C3—C4—O2172.34 (13)C11—C12—C13—C81.0 (3)
C2—C3—C4—O210.6 (2)C9—C8—C13—C121.7 (2)
C8—N1—C7—C3178.89 (14)N1—C8—C13—C12176.80 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O50.881.972.6403 (16)132
N1—H1···O30.882.102.7439 (16)130
C7—H7···O4i0.952.403.0852 (18)129
C10—H10···O6ii0.952.483.4219 (19)170
C11—H11···O1iii0.952.533.4508 (18)162
C13—H13···O4i0.952.533.4445 (18)161
Symmetry codes: (i) x, y+1, z+1; (ii) x+2, y+1, z; (iii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H12N2O6
Mr292.25
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)6.3860 (2), 17.3800 (5), 11.9338 (3)
β (°) 90.622 (3)
V3)1324.44 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.42 × 0.35 × 0.25
Data collection
DiffractometerOxford Diffraction Xcalibur Eos
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.993, 1.0
No. of measured, independent and
observed [I > 2σ(I)] reflections
9157, 2693, 2212
Rint0.027
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.097, 1.03
No. of reflections2693
No. of parameters192
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.22

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O50.881.972.6403 (16)131.7
N1—H1···O30.882.102.7439 (16)129.8
C7—H7···O4i0.952.403.0852 (18)128.9
C10—H10···O6ii0.952.483.4219 (19)170.1
C11—H11···O1iii0.952.533.4508 (18)162.2
C13—H13···O4i0.952.533.4445 (18)160.6
Symmetry codes: (i) x, y+1, z+1; (ii) x+2, y+1, z; (iii) x+1, y1/2, z+1/2.
 

Acknowledgements

The authors thank Mr Zhi-Hua Mao of Sichuan University for the X-ray data collection. This work was supported by the Research Fund of the Key Laboratory of TCM Biotechnology (Xihua University).

References

First citationCassis, R., Tapia, R. & Valderrama, J. A. (1985). Synth. Commun. 15, 125–133.  CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1216
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds