metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(4-acetyl­anilinium) hexa­chlorido­stannate(IV)

aInstitute of Materials Science and Engineering, Ocean University of China, Qingdao, Shandong 266100, People's Republic of China
*Correspondence e-mail: xuert@163.com

(Received 2 April 2011; accepted 25 April 2011; online 29 April 2011)

In the title compound, (C8H10NO)2[SnCl6], the SnIV atom exists in an octa­hedral coordination environment. In the crystal, inter­molecular N—H⋯O and N—H⋯Cl hydrogen bonds link the cations and anions into a three-dimensional framework.

Related literature

For general background to inorganic–organic hybrid compounds, see: Antonietti & Ozin (2004[Antonietti, M. & Ozin, G. A. (2004). Chem. Eur. J. 10, 28-41.]); Cong & Yu (2009[Cong, H. P. & Yu, S. H. (2009). Curr. Opin. Colloid Interface Sci. 14, 71-80.]); Descazo et al. (2006[Descazo, A. B., Martinez-Manez, R., Sancenón, F., Hoffmann, K. & Rurack, K. (2006). Angew. Chem. Int. Ed. 45, 5924-5948.]); Li et al. (2007[Li, Y. Y., Zheng, G. L., Lin, C. K. & Lin, J. (2007). Solid State Sci. 9, 855-861.]); Sanchez et al. (2005[Sanchez, C., Julián, B., Belleville, P. & Popall, M. (2005). J. Mater. Chem. 15, 3559-3592.]).

[Scheme 1]

Experimental

Crystal data
  • (C8H10NO)2[SnCl6]

  • Mr = 603.73

  • Monoclinic, P 21 /c

  • a = 7.2540 (8) Å

  • b = 12.6481 (13) Å

  • c = 24.438 (2) Å

  • β = 93.991 (1)°

  • V = 2236.7 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.87 mm−1

  • T = 298 K

  • 0.48 × 0.44 × 0.43 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.467, Tmax = 0.500

  • 10422 measured reflections

  • 3929 independent reflections

  • 2996 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.112

  • S = 1.00

  • 3929 reflections

  • 248 parameters

  • H-atom parameters constrained

  • Δρmax = 0.84 e Å−3

  • Δρmin = −0.83 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1i 0.89 2.06 2.939 (7) 170
N1—H1B⋯O2ii 0.89 2.01 2.884 (6) 168
N1—H1A⋯Cl1iii 0.89 2.49 3.322 (6) 156
N2—H2B⋯Cl2i 0.89 2.59 3.350 (6) 144
N2—H2C⋯Cl3iv 0.89 2.69 3.321 (5) 129
N1—H1C⋯Cl5v 0.89 2.55 3.367 (5) 153
N2—H2C⋯Cl6iv 0.89 2.64 3.442 (5) 151
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z; (iii) [x+1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Inorganic-organic hybrid materials have received much attention due to their potential applications in many areas such as gas storage, separation, catalysis, magnetism, optics as well as in electrical conductivity (Descazo et al., 2006; Li et al., 2007; Sanchez et al., 2005). Recently, we have prepared the title compound and here its crystal structure is reported.

This title compound contains SnC16 inorganic anions and organic cations. The SnCl6 inorganic anion adopts a regular octahedral geometry, with average Sn—Cl distance of 2.4102 Å. In the organic cations, the diangle between the methyl ketone and the phenyl ring is 14.9 (3)° or 3.1 (2)°.

In the crystal structure, intermolecular N—H···O and N—H···Cl hydrogen bonds link cations and anions into a three-dimensioal framework.

Related literature top

For general background to inorganic–organic hybrid compounds, see: Antonietti & Ozin (2004); Cong & Yu (2009); Descazo et al. (2006); Li et al. (2007); Sanchez et al. (2005).

Experimental top

p-Aminoacetophenone (10 mmol) was dissolved in methanol (10 ml). Ten minutes later, a methanol solution (10 ml) of tin tetrachloride (5 mmol) was added with stirring. The reaction mixture was stirred for 4 h. The solution was held at room temperature for about two weeks, whereupon yellow crystals suitable for X-ray diffraction analysis were obtained.

Refinement top

All H-atoms were positioned geometrically and refined using a riding model, with C–H = 0.96 Å (methyl), 0.93 Å (aromatic), N–H = 0.89 Å (ammonium) and Uiso(H) = 1.5Ueq(Cmethyl,N) and 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.
Bis(4-acetylanilinium) hexachloridostannate(IV) top
Crystal data top
(C8H10NO)2[SnCl6]F(000) = 1192
Mr = 603.73Dx = 1.793 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3529 reflections
a = 7.2540 (8) Åθ = 2.5–27.3°
b = 12.6481 (13) ŵ = 1.87 mm1
c = 24.438 (2) ÅT = 298 K
β = 93.991 (1)°Block, yellow
V = 2236.7 (4) Å30.48 × 0.44 × 0.43 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3929 independent reflections
Radiation source: fine-focus sealed tube2996 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
ϕ and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.467, Tmax = 0.500k = 1514
10422 measured reflectionsl = 2329
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0414P)2 + 4.9089P]
where P = (Fo2 + 2Fc2)/3
3929 reflections(Δ/σ)max = 0.001
248 parametersΔρmax = 0.84 e Å3
0 restraintsΔρmin = 0.83 e Å3
Crystal data top
(C8H10NO)2[SnCl6]V = 2236.7 (4) Å3
Mr = 603.73Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.2540 (8) ŵ = 1.87 mm1
b = 12.6481 (13) ÅT = 298 K
c = 24.438 (2) Å0.48 × 0.44 × 0.43 mm
β = 93.991 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3929 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2996 reflections with I > 2σ(I)
Tmin = 0.467, Tmax = 0.500Rint = 0.058
10422 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.00Δρmax = 0.84 e Å3
3929 reflectionsΔρmin = 0.83 e Å3
248 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.26788 (5)0.33553 (3)0.392680 (15)0.02996 (14)
Cl10.2381 (3)0.19836 (12)0.46029 (6)0.0541 (5)
Cl20.2941 (3)0.47370 (13)0.32429 (7)0.0631 (5)
Cl30.0010 (2)0.26670 (12)0.33926 (7)0.0492 (4)
Cl40.4656 (3)0.22042 (16)0.34441 (7)0.0645 (5)
Cl50.5344 (3)0.40331 (15)0.44385 (9)0.0763 (6)
Cl60.0643 (3)0.44692 (15)0.43985 (8)0.0706 (6)
N10.7808 (7)0.3221 (4)0.04410 (19)0.0425 (12)
H1A0.89490.30380.05160.064*
H1B0.75320.38470.05910.064*
H1C0.70110.27390.05780.064*
N20.2441 (7)0.0116 (4)0.1716 (2)0.0435 (13)
H2A0.23360.02620.20690.065*
H2B0.35010.03780.16120.065*
H2C0.15010.04060.15150.065*
O10.7432 (7)0.4341 (3)0.21126 (18)0.0580 (13)
O20.2530 (7)0.4680 (3)0.08980 (18)0.0539 (12)
C10.7034 (9)0.2499 (5)0.2194 (2)0.0438 (15)
H1D0.67420.26720.25600.066*
H1E0.81390.20790.22070.066*
H1F0.60320.21060.20150.066*
C20.7326 (8)0.3483 (5)0.1884 (2)0.0367 (14)
C30.7471 (8)0.3413 (4)0.1275 (2)0.0311 (12)
C40.7306 (9)0.4318 (4)0.0953 (2)0.0418 (15)
H40.71240.49690.11170.050*
C50.7409 (9)0.4261 (4)0.0395 (2)0.0409 (15)
H50.72880.48650.01790.049*
C60.7697 (8)0.3287 (4)0.0163 (2)0.0323 (13)
C70.7890 (8)0.2386 (4)0.0465 (2)0.0357 (14)
H70.81140.17420.02980.043*
C80.7747 (8)0.2445 (4)0.1024 (2)0.0352 (13)
H80.78360.18330.12350.042*
C90.2098 (11)0.5103 (5)0.1816 (3)0.060 (2)
H9A0.21720.58170.16850.091*
H9B0.30520.49860.21020.091*
H9C0.09120.49900.19570.091*
C100.2339 (8)0.4365 (4)0.1361 (3)0.0367 (14)
C110.2402 (7)0.3190 (4)0.1471 (2)0.0291 (12)
C120.2097 (8)0.2773 (4)0.1983 (2)0.0334 (13)
H120.18740.32260.22710.040*
C130.2122 (8)0.1688 (4)0.2070 (2)0.0361 (13)
H130.19420.14070.24140.043*
C140.2417 (7)0.1046 (4)0.1635 (2)0.0309 (13)
C150.2731 (9)0.1431 (4)0.1123 (2)0.0393 (15)
H150.29410.09730.08360.047*
C160.2725 (8)0.2515 (4)0.1044 (2)0.0368 (14)
H160.29390.27900.07010.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.0358 (2)0.0256 (2)0.0283 (2)0.00138 (17)0.00080 (15)0.00247 (16)
Cl10.0862 (13)0.0402 (9)0.0365 (9)0.0050 (8)0.0079 (8)0.0140 (7)
Cl20.0919 (14)0.0452 (10)0.0497 (10)0.0193 (9)0.0122 (9)0.0256 (8)
Cl30.0447 (9)0.0490 (9)0.0523 (10)0.0104 (7)0.0098 (8)0.0073 (7)
Cl40.0585 (12)0.0893 (14)0.0474 (10)0.0312 (10)0.0165 (8)0.0046 (9)
Cl50.0737 (14)0.0646 (12)0.0854 (15)0.0219 (10)0.0323 (11)0.0147 (10)
Cl60.0885 (15)0.0613 (11)0.0630 (12)0.0274 (10)0.0125 (11)0.0232 (9)
N10.056 (3)0.042 (3)0.030 (3)0.005 (2)0.003 (2)0.001 (2)
N20.054 (3)0.028 (3)0.049 (3)0.003 (2)0.006 (3)0.002 (2)
O10.100 (4)0.038 (3)0.036 (3)0.001 (2)0.012 (2)0.010 (2)
O20.086 (4)0.035 (2)0.042 (3)0.006 (2)0.013 (2)0.012 (2)
C10.051 (4)0.050 (4)0.031 (3)0.007 (3)0.005 (3)0.001 (3)
C20.036 (3)0.045 (4)0.029 (3)0.005 (3)0.002 (3)0.003 (3)
C30.033 (3)0.032 (3)0.028 (3)0.002 (2)0.001 (2)0.005 (2)
C40.066 (4)0.021 (3)0.038 (4)0.005 (3)0.005 (3)0.006 (2)
C50.063 (4)0.024 (3)0.036 (3)0.001 (3)0.004 (3)0.000 (2)
C60.037 (3)0.034 (3)0.025 (3)0.000 (3)0.003 (2)0.005 (2)
C70.048 (4)0.021 (3)0.038 (3)0.003 (2)0.004 (3)0.004 (2)
C80.043 (4)0.033 (3)0.029 (3)0.001 (3)0.002 (3)0.001 (2)
C90.097 (6)0.025 (3)0.061 (5)0.004 (3)0.018 (4)0.006 (3)
C100.039 (4)0.030 (3)0.040 (4)0.005 (3)0.001 (3)0.004 (3)
C110.030 (3)0.027 (3)0.030 (3)0.001 (2)0.000 (2)0.001 (2)
C120.042 (3)0.027 (3)0.032 (3)0.002 (2)0.006 (3)0.004 (2)
C130.044 (4)0.034 (3)0.031 (3)0.006 (3)0.006 (3)0.001 (3)
C140.030 (3)0.025 (3)0.038 (3)0.003 (2)0.002 (3)0.003 (2)
C150.053 (4)0.031 (3)0.035 (3)0.002 (3)0.007 (3)0.009 (2)
C160.049 (4)0.033 (3)0.029 (3)0.001 (3)0.006 (3)0.003 (2)
Geometric parameters (Å, º) top
Sn1—Cl52.3873 (18)C4—C51.373 (8)
Sn1—Cl62.3938 (17)C4—H40.93
Sn1—Cl42.4090 (17)C5—C61.378 (7)
Sn1—Cl12.4158 (15)C5—H50.93
Sn1—Cl32.4206 (15)C6—C71.360 (7)
Sn1—Cl22.4346 (15)C7—C81.379 (8)
N1—C61.486 (7)C7—H70.93
N1—H1A0.89C8—H80.93
N1—H1B0.89C9—C101.471 (9)
N1—H1C0.89C9—H9A0.96
N2—C141.482 (7)C9—H9B0.96
N2—H2A0.89C9—H9C0.96
N2—H2B0.89C10—C111.509 (7)
N2—H2C0.89C11—C161.381 (8)
O1—C21.220 (7)C11—C121.390 (8)
O2—C101.217 (7)C12—C131.389 (7)
C1—C21.480 (8)C12—H120.93
C1—H1D0.96C13—C141.365 (8)
C1—H1E0.96C13—H130.93
C1—H1F0.96C14—C151.378 (8)
C2—C31.502 (8)C15—C161.384 (8)
C3—C41.389 (8)C15—H150.93
C3—C81.390 (7)C16—H160.93
Cl5—Sn1—Cl692.32 (8)C3—C4—H4119.6
Cl5—Sn1—Cl489.17 (8)C4—C5—C6118.4 (5)
Cl6—Sn1—Cl4178.43 (8)C4—C5—H5120.8
Cl5—Sn1—Cl190.42 (7)C6—C5—H5120.8
Cl6—Sn1—Cl190.34 (7)C7—C6—C5122.5 (5)
Cl4—Sn1—Cl189.16 (7)C7—C6—N1118.8 (5)
Cl5—Sn1—Cl3178.91 (8)C5—C6—N1118.6 (5)
Cl6—Sn1—Cl388.53 (7)C6—C7—C8118.7 (5)
Cl4—Sn1—Cl389.98 (7)C6—C7—H7120.6
Cl1—Sn1—Cl390.25 (6)C8—C7—H7120.6
Cl5—Sn1—Cl290.16 (7)C7—C8—C3120.5 (5)
Cl6—Sn1—Cl289.33 (7)C7—C8—H8119.7
Cl4—Sn1—Cl291.16 (7)C3—C8—H8119.7
Cl1—Sn1—Cl2179.35 (7)C10—C9—H9A109.5
Cl3—Sn1—Cl289.18 (6)C10—C9—H9B109.5
C6—N1—H1A109.5H9A—C9—H9B109.5
C6—N1—H1B109.5C10—C9—H9C109.5
H1A—N1—H1B109.5H9A—C9—H9C109.5
C6—N1—H1C109.5H9B—C9—H9C109.5
H1A—N1—H1C109.5O2—C10—C9121.4 (5)
H1B—N1—H1C109.5O2—C10—C11118.9 (5)
C14—N2—H2A109.5C9—C10—C11119.7 (5)
C14—N2—H2B109.5C16—C11—C12119.4 (5)
H2A—N2—H2B109.5C16—C11—C10118.7 (5)
C14—N2—H2C109.5C12—C11—C10121.9 (5)
H2A—N2—H2C109.5C13—C12—C11120.8 (5)
H2B—N2—H2C109.5C13—C12—H12119.6
C2—C1—H1D109.5C11—C12—H12119.6
C2—C1—H1E109.5C14—C13—C12118.1 (5)
H1D—C1—H1E109.5C14—C13—H13121.0
C2—C1—H1F109.5C12—C13—H13121.0
H1D—C1—H1F109.5C13—C14—C15122.8 (5)
H1E—C1—H1F109.5C13—C14—N2119.2 (5)
O1—C2—C1121.4 (5)C15—C14—N2118.0 (5)
O1—C2—C3120.0 (5)C14—C15—C16118.5 (5)
C1—C2—C3118.6 (5)C14—C15—H15120.7
C4—C3—C8119.0 (5)C16—C15—H15120.7
C4—C3—C2120.3 (5)C11—C16—C15120.5 (5)
C8—C3—C2120.8 (5)C11—C16—H16119.8
C5—C4—C3120.7 (5)C15—C16—H16119.8
C5—C4—H4119.6
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.892.062.939 (7)170
N1—H1B···O2ii0.892.012.884 (6)168
N1—H1A···Cl1iii0.892.493.322 (6)156
N2—H2B···Cl2i0.892.593.350 (6)144
N2—H2C···Cl3iv0.892.693.321 (5)129
N1—H1C···Cl5v0.892.553.367 (5)153
N2—H2C···Cl6iv0.892.643.442 (5)151
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1, z; (iii) x+1, y+1/2, z1/2; (iv) x, y1/2, z+1/2; (v) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula(C8H10NO)2[SnCl6]
Mr603.73
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)7.2540 (8), 12.6481 (13), 24.438 (2)
β (°) 93.991 (1)
V3)2236.7 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.87
Crystal size (mm)0.48 × 0.44 × 0.43
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.467, 0.500
No. of measured, independent and
observed [I > 2σ(I)] reflections
10422, 3929, 2996
Rint0.058
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.112, 1.00
No. of reflections3929
No. of parameters248
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.84, 0.83

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.892.062.939 (7)170
N1—H1B···O2ii0.892.012.884 (6)168
N1—H1A···Cl1iii0.892.493.322 (6)156
N2—H2B···Cl2i0.892.593.350 (6)144
N2—H2C···Cl3iv0.892.693.321 (5)129
N1—H1C···Cl5v0.892.553.367 (5)153
N2—H2C···Cl6iv0.892.643.442 (5)151
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1, z; (iii) x+1, y+1/2, z1/2; (iv) x, y1/2, z+1/2; (v) x, y+1/2, z1/2.
 

Acknowledgements

The authors acknowledge the National Science Foundation of China for financial support of this project (grant Nos. 51072188 and 50702053).

References

First citationAntonietti, M. & Ozin, G. A. (2004). Chem. Eur. J. 10, 28–41.  CrossRef PubMed CAS Google Scholar
First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCong, H. P. & Yu, S. H. (2009). Curr. Opin. Colloid Interface Sci. 14, 71–80.  CrossRef CAS Google Scholar
First citationDescazo, A. B., Martinez-Manez, R., Sancenón, F., Hoffmann, K. & Rurack, K. (2006). Angew. Chem. Int. Ed. 45, 5924–5948.  Google Scholar
First citationLi, Y. Y., Zheng, G. L., Lin, C. K. & Lin, J. (2007). Solid State Sci. 9, 855–861.  Web of Science CSD CrossRef Google Scholar
First citationSanchez, C., Julián, B., Belleville, P. & Popall, M. (2005). J. Mater. Chem. 15, 3559–3592.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds