organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1069

4-(5-Hy­dr­oxy­meth­yl-2-meth­­oxy­phen­­oxy)benzoic acid

aSchool of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, People's Republic of China
*Correspondence e-mail: ny526ny526@gmail.com

(Received 22 March 2011; accepted 1 April 2011; online 7 April 2011)

The title compound, C15H14O5, crystallizes with two independent mol­ecules in the asymmetric unit in which the benzene rings are inclined at dihedral angles of 79.4 (1) and 84.2 (1)°. In the crystal, inter­molecular O—H⋯O hydrogen bonds link the mol­ecules into double chains propagating in [001].

Related literature

For the bioactivity of diphenyl ether derivatives, see: Asakawa (2001[Asakawa, Y. (2001). Phytochemistry, 56, 297-312.]); Hua et al. (2009[Hua, L., Kully, M. L., Boykin, D. W. & Abood, N. (2009). Bioorg. Med. Chem. Lett. 19, 4626-4629.]); Kini et al.(2009[Kini, S. G., Bhat, A. R., Bryant, B., Williamson, J. S. & Dayan, F. E. (2009). Eur. J. Med. Chem. 44, 492-500.]). For background to Ullman coupling, see: Bringmann et al. (1990[Bringmann, G., Walter, R. & Weirich, R. (1990). Angew. Chem. Int. Ed. 29, 977-991.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14O5

  • Mr = 274.26

  • Triclinic, [P \overline 1]

  • a = 10.5420 (15) Å

  • b = 10.6153 (15) Å

  • c = 12.8070 (18) Å

  • α = 78.024 (2)°

  • β = 75.184 (2)°

  • γ = 88.451 (2)°

  • V = 1354.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 273 K

  • 0.13 × 0.12 × 0.10 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.987, Tmax = 0.990

  • 5794 measured reflections

  • 3874 independent reflections

  • 3154 reflections with I > 2σ(I)

  • Rint = 0.015

  • θmax = 23.3°

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.141

  • S = 1.02

  • 3874 reflections

  • 365 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O9—H9⋯O1 0.82 1.80 2.620 (2) 175
O4—H4⋯O6 0.82 1.84 2.652 (2) 170
O6—H6⋯O10i 0.82 2.01 2.791 (3) 159
O1—H1⋯O5ii 0.82 1.89 2.706 (2) 172
Symmetry codes: (i) x, y, z+1; (ii) x, y, z-1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The diphenyl ether analogs existing in many natural products exhibit various bioactivities, such as antitubercular (Kini et al., 2009), antibacterial (Hua et al., 2009), and cytotoxic (Asakawa, 2001) activities. Most of the diphenyl ethers were synthesized by Ullman coupling (Bringmann et al., 1990), using Cu complexes as catalysts. Herewith we present the title compound (I) - a new derivative of diphenyl ether.

The asymmetric unit of (I) contains two independent molecules (Fig. 1). In the independent molecules, two benzene rings form the dihedral angles of 79.4 (1) and 84.2 (1)°, respectively. In the crystal structure, O—H···O hydrogen bonds (Table 1) link the molecules into doubled chains propagated in [001].

Related literature top

For the bioactivity of diphenyl ether derivative,s see: Asakawa (2001); Hua et al. (2009); Kini et al.(2009). For background to Ullman coupling, see: Bringmann et al. (1990).

Experimental top

(3-Bromo-4-methoxyphenyl)methanol (5.00 g, 23.04 mmol), and methyl 4-hydroxybenzoate (3.50 g, 23.04 mmol), potassium carbonate (3.17 g, 46.08 mmol), and cupric oxide (0.18 g, 2.25 mmol) in pyridine (20 ml) were added in flask and the mixture was stirred under reflux for 12 h. The pyridine was distilled in vacuo and the residue was extracted with CH2Cl2(3*30 ml). The solution was concentrated and the residue was purified by flash column chromatograph on Al2O3, The yield of the coupling product was 4.35 g (65%) as white solid. The coupling products was hydrolyzed with 20% NaOH aq and then acidified to pH=6.0 with 1M HCl. The final product was extracted with CH2Cl2 (3*20 ml) and obtained the white solid by vacuum distillation. (4.11 g, 99%). The colourless crystals suitable for an X-ray diffraction experiment were obtained by cystal growth from ethanol.

Refinement top

All the H atoms were located in difference maps; then placed in idealized positions [C—H 0.93–0.97 Å; O—H 0.82 Å] and treated as riding atoms, with Uiso(H) = 1.2–1.5 Ueq of the parent atom.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Two independent molecules of (I) showing the atomic numbering and 50% probabilty displacement ellipsoids.
4-(5-Hydroxymethyl-2-methoxyphenoxy)benzoic acid top
Crystal data top
C15H14O5Z = 4
Mr = 274.26F(000) = 576
Triclinic, P1Dx = 1.345 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.5420 (15) ÅCell parameters from 2550 reflections
b = 10.6153 (15) Åθ = 2.8–23.3°
c = 12.8070 (18) ŵ = 0.10 mm1
α = 78.024 (2)°T = 273 K
β = 75.184 (2)°Block, colourless
γ = 88.451 (2)°0.13 × 0.12 × 0.10 mm
V = 1354.9 (3) Å3
Data collection top
Bruker APEXII CCD
diffractometer
3874 independent reflections
Radiation source: fine-focus sealed tube3154 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
phi and ω scansθmax = 23.3°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1111
Tmin = 0.987, Tmax = 0.990k = 115
5794 measured reflectionsl = 1413
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.093P)2 + 0.1798P]
where P = (Fo2 + 2Fc2)/3
3874 reflections(Δ/σ)max < 0.001
365 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C15H14O5γ = 88.451 (2)°
Mr = 274.26V = 1354.9 (3) Å3
Triclinic, P1Z = 4
a = 10.5420 (15) ÅMo Kα radiation
b = 10.6153 (15) ŵ = 0.10 mm1
c = 12.8070 (18) ÅT = 273 K
α = 78.024 (2)°0.13 × 0.12 × 0.10 mm
β = 75.184 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
3874 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
3154 reflections with I > 2σ(I)
Tmin = 0.987, Tmax = 0.990Rint = 0.015
5794 measured reflectionsθmax = 23.3°
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.141H-atom parameters constrained
S = 1.02Δρmax = 0.22 e Å3
3874 reflectionsΔρmin = 0.19 e Å3
365 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O80.45863 (12)0.12659 (13)0.65556 (10)0.0507 (4)
O70.68968 (14)0.00872 (15)0.63970 (12)0.0595 (4)
C220.52664 (18)0.12698 (18)0.73608 (16)0.0447 (5)
C160.51038 (17)0.20109 (18)0.55175 (15)0.0424 (5)
C190.60706 (19)0.33828 (19)0.33809 (16)0.0480 (5)
C200.5219 (2)0.2327 (2)0.35983 (17)0.0500 (5)
H20A0.49780.20790.30190.060*
C230.64416 (19)0.06201 (18)0.73023 (16)0.0470 (5)
C210.47319 (19)0.16482 (19)0.46587 (16)0.0475 (5)
H21A0.41560.09490.47990.057*
C270.4736 (2)0.1865 (2)0.82238 (16)0.0510 (5)
H27A0.39560.23010.82450.061*
C240.7062 (2)0.0578 (2)0.81386 (18)0.0566 (6)
H24A0.78450.01480.81190.068*
C170.5919 (2)0.30742 (19)0.53229 (17)0.0511 (5)
H17A0.61420.33320.59050.061*
O100.6491 (2)0.36489 (19)0.14387 (14)0.0957 (7)
O90.7344 (2)0.50767 (18)0.21132 (13)0.0866 (6)
H90.76900.53550.14570.130*
C180.6399 (2)0.3752 (2)0.42520 (16)0.0520 (5)
H18A0.69520.44690.41160.062*
C260.5356 (2)0.1820 (2)0.90646 (16)0.0543 (5)
C250.6514 (2)0.1177 (2)0.90050 (18)0.0605 (6)
H25A0.69400.11440.95620.073*
C280.6631 (2)0.4042 (2)0.22227 (18)0.0590 (6)
C290.8069 (3)0.0626 (3)0.6332 (2)0.0796 (8)
H29A0.82790.09520.56650.119*
H29B0.79420.13320.69570.119*
H29C0.87760.00740.63310.119*
O31.04180 (13)0.76114 (15)0.31213 (12)0.0619 (4)
C70.9680 (2)0.70611 (19)0.41650 (17)0.0502 (5)
O20.89962 (16)0.97320 (16)0.31548 (14)0.0700 (5)
O50.8207 (2)0.5321 (2)0.82261 (14)0.0896 (6)
C10.97799 (19)0.8027 (2)0.22881 (17)0.0516 (5)
C120.8381 (2)0.66884 (19)0.43978 (17)0.0501 (5)
H12A0.79410.68240.38420.060*
C100.8387 (2)0.59194 (19)0.63005 (17)0.0524 (5)
C110.7735 (2)0.61085 (19)0.54690 (17)0.0503 (5)
H11A0.68600.58440.56320.060*
C30.9363 (2)0.7804 (2)0.05822 (17)0.0560 (6)
C60.90656 (19)0.9154 (2)0.22828 (17)0.0517 (5)
C20.9932 (2)0.7374 (2)0.14517 (18)0.0561 (5)
H2A1.04230.66320.14660.067*
O40.65453 (19)0.48294 (19)0.75911 (13)0.0810 (5)
H40.61920.45960.82510.122*
C81.0346 (2)0.6871 (2)0.4979 (2)0.0612 (6)
H8A1.12250.71240.48110.073*
C150.7709 (3)0.5337 (2)0.74642 (18)0.0630 (6)
C50.8493 (2)0.9587 (2)0.14235 (19)0.0589 (6)
H5A0.80061.03310.14060.071*
C90.9694 (2)0.6303 (2)0.60459 (19)0.0616 (6)
H9A1.01370.61770.65990.074*
C40.8646 (2)0.8908 (2)0.05883 (18)0.0603 (6)
H4A0.82540.92060.00140.072*
C140.9473 (3)0.7054 (3)0.03082 (19)0.0724 (7)
H14A0.93940.76250.09840.087*
H14B1.03210.66550.04530.087*
C130.8180 (3)1.0823 (2)0.3227 (2)0.0787 (7)
H13A0.82091.11400.38700.118*
H13B0.72941.05750.32790.118*
H13C0.84901.14870.25800.118*
O60.5358 (2)0.37953 (16)0.96729 (14)0.0863 (6)
H60.58270.38831.00750.129*
O10.8463 (2)0.6102 (2)0.00454 (13)0.0946 (7)
H10.84070.57960.04790.142*
C300.4822 (3)0.2530 (3)0.99757 (19)0.0717 (7)
H30A0.38740.25561.01210.086*
H30B0.50410.20831.06460.086*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O80.0490 (8)0.0603 (9)0.0454 (8)0.0110 (6)0.0185 (6)0.0068 (7)
O70.0618 (9)0.0643 (9)0.0656 (10)0.0097 (7)0.0272 (7)0.0302 (8)
C220.0472 (11)0.0465 (11)0.0426 (11)0.0110 (9)0.0170 (9)0.0060 (9)
C160.0414 (10)0.0445 (11)0.0446 (11)0.0036 (8)0.0165 (8)0.0102 (9)
C190.0531 (11)0.0491 (11)0.0458 (11)0.0032 (9)0.0194 (9)0.0108 (9)
C200.0585 (12)0.0534 (12)0.0479 (12)0.0010 (10)0.0275 (10)0.0148 (10)
C230.0549 (12)0.0412 (11)0.0484 (12)0.0052 (9)0.0197 (9)0.0082 (9)
C210.0477 (11)0.0470 (11)0.0546 (13)0.0028 (9)0.0240 (9)0.0119 (10)
C270.0496 (11)0.0546 (12)0.0478 (12)0.0043 (9)0.0104 (9)0.0102 (10)
C240.0651 (13)0.0525 (12)0.0597 (13)0.0017 (10)0.0315 (11)0.0090 (10)
C170.0613 (12)0.0504 (12)0.0479 (12)0.0092 (10)0.0214 (10)0.0136 (9)
O100.1400 (18)0.1021 (15)0.0491 (10)0.0394 (13)0.0320 (10)0.0091 (10)
O90.1231 (15)0.0779 (12)0.0519 (10)0.0380 (11)0.0120 (10)0.0062 (9)
C180.0616 (13)0.0464 (11)0.0518 (13)0.0090 (10)0.0193 (10)0.0111 (10)
C260.0656 (14)0.0556 (13)0.0401 (11)0.0127 (11)0.0113 (10)0.0075 (9)
C250.0786 (16)0.0599 (14)0.0505 (13)0.0066 (12)0.0334 (11)0.0063 (10)
C280.0713 (14)0.0584 (14)0.0496 (13)0.0051 (11)0.0208 (11)0.0089 (11)
C290.0760 (16)0.0827 (18)0.099 (2)0.0262 (14)0.0367 (15)0.0474 (16)
O30.0482 (8)0.0761 (10)0.0612 (10)0.0049 (7)0.0208 (7)0.0056 (8)
C70.0533 (12)0.0481 (12)0.0552 (13)0.0113 (9)0.0229 (10)0.0143 (10)
O20.0745 (10)0.0656 (10)0.0815 (11)0.0104 (8)0.0311 (9)0.0285 (9)
O50.1208 (15)0.1074 (15)0.0559 (10)0.0156 (12)0.0428 (11)0.0273 (10)
C10.0435 (11)0.0556 (13)0.0555 (13)0.0004 (9)0.0175 (9)0.0046 (10)
C120.0549 (12)0.0488 (11)0.0534 (12)0.0040 (9)0.0265 (10)0.0103 (10)
C100.0704 (14)0.0436 (11)0.0539 (13)0.0145 (10)0.0288 (11)0.0196 (9)
C110.0600 (12)0.0445 (11)0.0537 (13)0.0056 (9)0.0246 (10)0.0141 (10)
C30.0550 (12)0.0602 (14)0.0467 (12)0.0099 (10)0.0066 (10)0.0038 (10)
C60.0452 (11)0.0513 (12)0.0570 (13)0.0050 (9)0.0114 (9)0.0085 (10)
C20.0527 (12)0.0523 (12)0.0594 (14)0.0043 (10)0.0105 (10)0.0084 (11)
O40.1012 (14)0.0868 (13)0.0534 (10)0.0133 (11)0.0265 (9)0.0004 (9)
C80.0554 (13)0.0679 (14)0.0722 (16)0.0094 (11)0.0329 (12)0.0211 (12)
C150.0921 (18)0.0545 (13)0.0526 (14)0.0174 (13)0.0313 (13)0.0201 (11)
C50.0561 (13)0.0518 (13)0.0648 (14)0.0032 (10)0.0176 (11)0.0007 (11)
C90.0741 (15)0.0658 (14)0.0603 (15)0.0166 (12)0.0390 (12)0.0221 (12)
C40.0563 (13)0.0685 (15)0.0512 (13)0.0053 (11)0.0170 (10)0.0033 (11)
C140.0780 (16)0.0839 (18)0.0500 (13)0.0120 (14)0.0063 (11)0.0131 (12)
C130.0876 (18)0.0606 (15)0.0837 (18)0.0078 (13)0.0080 (14)0.0234 (13)
O60.1443 (18)0.0613 (11)0.0554 (10)0.0033 (11)0.0256 (10)0.0161 (8)
O10.1292 (16)0.1022 (15)0.0485 (10)0.0476 (13)0.0084 (10)0.0180 (10)
C300.0852 (17)0.0803 (17)0.0516 (14)0.0086 (13)0.0136 (12)0.0216 (12)
Geometric parameters (Å, º) top
O8—C161.381 (2)O2—C61.367 (3)
O8—C221.399 (2)O2—C131.428 (3)
O7—C231.367 (2)O5—C151.218 (3)
O7—C291.425 (3)C1—C21.367 (3)
C22—C271.374 (3)C1—C61.396 (3)
C22—C231.394 (3)C12—C111.385 (3)
C16—C171.378 (3)C12—H12A0.9300
C16—C211.384 (3)C10—C91.384 (3)
C19—C181.380 (3)C10—C111.388 (3)
C19—C201.392 (3)C10—C151.487 (3)
C19—C281.477 (3)C11—H11A0.9300
C20—C211.373 (3)C3—C41.377 (3)
C20—H20A0.9300C3—C21.387 (3)
C23—C241.383 (3)C3—C141.500 (3)
C21—H21A0.9300C6—C51.379 (3)
C27—C261.387 (3)C2—H2A0.9300
C27—H27A0.9300O4—C151.311 (3)
C24—C251.384 (3)O4—H40.8200
C24—H24A0.9300C8—C91.379 (3)
C17—C181.382 (3)C8—H8A0.9300
C17—H17A0.9300C5—C41.384 (3)
O10—C281.207 (3)C5—H5A0.9300
O9—C281.311 (3)C9—H9A0.9300
O9—H90.8200C4—H4A0.9300
C18—H18A0.9300C14—O11.408 (3)
C26—C251.375 (3)C14—H14A0.9700
C26—C301.501 (3)C14—H14B0.9700
C25—H25A0.9300C13—H13A0.9600
C29—H29A0.9600C13—H13B0.9600
C29—H29B0.9600C13—H13C0.9600
C29—H29C0.9600O6—C301.409 (3)
O3—C71.379 (3)O6—H60.8200
O3—C11.393 (2)O1—H10.8200
C7—C121.376 (3)C30—H30A0.9700
C7—C81.378 (3)C30—H30B0.9700
C16—O8—C22117.53 (13)O3—C1—C6119.31 (19)
C23—O7—C29117.67 (17)C7—C12—C11119.26 (18)
C27—C22—C23121.00 (18)C7—C12—H12A120.4
C27—C22—O8119.45 (18)C11—C12—H12A120.4
C23—C22—O8119.49 (17)C9—C10—C11119.3 (2)
C17—C16—O8123.43 (17)C9—C10—C15119.11 (19)
C17—C16—C21120.64 (18)C11—C10—C15121.6 (2)
O8—C16—C21115.91 (16)C12—C11—C10120.4 (2)
C18—C19—C20118.90 (18)C12—C11—H11A119.8
C18—C19—C28122.14 (18)C10—C11—H11A119.8
C20—C19—C28118.92 (18)C4—C3—C2117.9 (2)
C21—C20—C19120.65 (18)C4—C3—C14121.1 (2)
C21—C20—H20A119.7C2—C3—C14120.9 (2)
C19—C20—H20A119.7O2—C6—C5125.7 (2)
O7—C23—C24125.23 (19)O2—C6—C1115.72 (19)
O7—C23—C22116.22 (16)C5—C6—C1118.6 (2)
C24—C23—C22118.54 (19)C1—C2—C3120.8 (2)
C20—C21—C16119.57 (18)C1—C2—H2A119.6
C20—C21—H21A120.2C3—C2—H2A119.6
C16—C21—H21A120.2C15—O4—H4109.5
C22—C27—C26120.5 (2)C7—C8—C9119.3 (2)
C22—C27—H27A119.7C7—C8—H8A120.3
C26—C27—H27A119.7C9—C8—H8A120.3
C23—C24—C25119.8 (2)O5—C15—O4123.3 (2)
C23—C24—H24A120.1O5—C15—C10122.5 (2)
C25—C24—H24A120.1O4—C15—C10114.19 (19)
C16—C17—C18119.21 (18)C6—C5—C4119.6 (2)
C16—C17—H17A120.4C6—C5—H5A120.2
C18—C17—H17A120.4C4—C5—H5A120.2
C28—O9—H9109.5C8—C9—C10120.6 (2)
C19—C18—C17120.98 (18)C8—C9—H9A119.7
C19—C18—H18A119.5C10—C9—H9A119.7
C17—C18—H18A119.5C3—C4—C5122.0 (2)
C25—C26—C27118.34 (19)C3—C4—H4A119.0
C25—C26—C30120.8 (2)C5—C4—H4A119.0
C27—C26—C30120.7 (2)O1—C14—C3108.56 (18)
C26—C25—C24121.80 (19)O1—C14—H14A110.0
C26—C25—H25A119.1C3—C14—H14A110.0
C24—C25—H25A119.1O1—C14—H14B110.0
O10—C28—O9122.3 (2)C3—C14—H14B110.0
O10—C28—C19123.6 (2)H14A—C14—H14B108.4
O9—C28—C19113.99 (19)O2—C13—H13A109.5
O7—C29—H29A109.5O2—C13—H13B109.5
O7—C29—H29B109.5H13A—C13—H13B109.5
H29A—C29—H29B109.5O2—C13—H13C109.5
O7—C29—H29C109.5H13A—C13—H13C109.5
H29A—C29—H29C109.5H13B—C13—H13C109.5
H29B—C29—H29C109.5C30—O6—H6109.5
C7—O3—C1118.79 (15)C14—O1—H1109.5
C12—C7—C8121.1 (2)O6—C30—C26109.97 (19)
C12—C7—O3123.66 (18)O6—C30—H30A109.7
C8—C7—O3115.18 (19)C26—C30—H30A109.7
C6—O2—C13117.22 (18)O6—C30—H30B109.7
C2—C1—O3119.55 (19)C26—C30—H30B109.7
C2—C1—C6121.01 (19)H30A—C30—H30B108.2
C16—O8—C22—C27109.7 (2)C7—O3—C1—C2109.8 (2)
C16—O8—C22—C2373.2 (2)C7—O3—C1—C674.4 (2)
C22—O8—C16—C1724.5 (3)C8—C7—C12—C110.2 (3)
C22—O8—C16—C21156.97 (17)O3—C7—C12—C11178.08 (18)
C18—C19—C20—C211.2 (3)C7—C12—C11—C100.8 (3)
C28—C19—C20—C21176.59 (19)C9—C10—C11—C120.7 (3)
C29—O7—C23—C243.4 (3)C15—C10—C11—C12178.07 (18)
C29—O7—C23—C22177.65 (19)C13—O2—C6—C55.0 (3)
C27—C22—C23—O7178.58 (17)C13—O2—C6—C1174.72 (19)
O8—C22—C23—O74.4 (3)C2—C1—C6—O2179.12 (18)
C27—C22—C23—C240.5 (3)O3—C1—C6—O23.4 (3)
O8—C22—C23—C24176.58 (17)C2—C1—C6—C51.1 (3)
C19—C20—C21—C160.7 (3)O3—C1—C6—C5176.89 (18)
C17—C16—C21—C202.4 (3)O3—C1—C2—C3176.70 (18)
O8—C16—C21—C20179.01 (16)C6—C1—C2—C31.0 (3)
C23—C22—C27—C260.7 (3)C4—C3—C2—C10.2 (3)
O8—C22—C27—C26176.39 (17)C14—C3—C2—C1177.01 (18)
O7—C23—C24—C25178.76 (19)C12—C7—C8—C90.3 (3)
C22—C23—C24—C250.2 (3)O3—C7—C8—C9178.76 (19)
O8—C16—C17—C18179.35 (18)C9—C10—C15—O58.9 (3)
C21—C16—C17—C182.2 (3)C11—C10—C15—O5169.9 (2)
C20—C19—C18—C171.4 (3)C9—C10—C15—O4170.1 (2)
C28—C19—C18—C17176.28 (19)C11—C10—C15—O411.1 (3)
C16—C17—C18—C190.2 (3)O2—C6—C5—C4179.73 (18)
C22—C27—C26—C250.6 (3)C1—C6—C5—C40.6 (3)
C22—C27—C26—C30176.53 (19)C7—C8—C9—C100.3 (3)
C27—C26—C25—C240.3 (3)C11—C10—C9—C80.2 (3)
C30—C26—C25—C24176.3 (2)C15—C10—C9—C8178.65 (19)
C23—C24—C25—C260.1 (3)C2—C3—C4—C50.4 (3)
C18—C19—C28—O10170.7 (2)C14—C3—C4—C5177.58 (19)
C20—C19—C28—O107.0 (4)C6—C5—C4—C30.2 (3)
C18—C19—C28—O96.9 (3)C4—C3—C14—O191.9 (3)
C20—C19—C28—O9175.4 (2)C2—C3—C14—O185.2 (3)
C1—O3—C7—C1211.8 (3)C25—C26—C30—O687.2 (3)
C1—O3—C7—C8169.74 (19)C27—C26—C30—O688.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9···O10.821.802.620 (2)175
O4—H4···O60.821.842.652 (2)170
O6—H6···O10i0.822.012.791 (3)159
O1—H1···O5ii0.821.892.706 (2)172
Symmetry codes: (i) x, y, z+1; (ii) x, y, z1.

Experimental details

Crystal data
Chemical formulaC15H14O5
Mr274.26
Crystal system, space groupTriclinic, P1
Temperature (K)273
a, b, c (Å)10.5420 (15), 10.6153 (15), 12.8070 (18)
α, β, γ (°)78.024 (2), 75.184 (2), 88.451 (2)
V3)1354.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.13 × 0.12 × 0.10
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.987, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
5794, 3874, 3154
Rint0.015
θmax (°)23.3
(sin θ/λ)max1)0.557
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.141, 1.02
No. of reflections3874
No. of parameters365
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.19

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9···O10.821.802.620 (2)175
O4—H4···O60.821.842.652 (2)170
O6—H6···O10i0.822.012.791 (3)159
O1—H1···O5ii0.821.892.706 (2)172
Symmetry codes: (i) x, y, z+1; (ii) x, y, z1.
 

Acknowledgements

Financial support from the Department of Science and Technology of Shandong Province is gratefully acknowledged.

References

First citationAsakawa, Y. (2001). Phytochemistry, 56, 297–312.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBringmann, G., Walter, R. & Weirich, R. (1990). Angew. Chem. Int. Ed. 29, 977–991.  CrossRef Google Scholar
First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHua, L., Kully, M. L., Boykin, D. W. & Abood, N. (2009). Bioorg. Med. Chem. Lett. 19, 4626–4629.  Web of Science CrossRef PubMed Google Scholar
First citationKini, S. G., Bhat, A. R., Bryant, B., Williamson, J. S. & Dayan, F. E. (2009). Eur. J. Med. Chem. 44, 492–500.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1069
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds