metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages m579-m580

Tris(ethyl­enedi­amine)­cobalt(III) diformatodioxalatoindate(III) dihydrate

aSchool of Materials Science and Engineering, Shanghai University, Shanghai 201800, People's Republic of China, and bDepartment of Materials and Chemical Engineering, Ministry of Education Key Laboratory of Application Technology of Hainan, Superior Resources Chemical Materials, Hainan University, Haikou 570228, Hainan Province, People's Republic of China
*Correspondence e-mail: panqinhe@163.com

(Received 29 March 2011; accepted 7 April 2011; online 13 April 2011)

In the cation of the title compound, [Co(C2H8N2)3][In(C2O4)2(CHO2)2]·2H2O, the Co—N bond lengths lie in the range 1.960 (5)–1.997 (5) Å. In the anion, the InIII atom is coordin­ated by four O atoms from two oxalato ligands and two O atoms from two formato ligands in a distorted octa­hedral geometry. Inter­molecular O—H⋯O and N—H⋯O hydrogen bonds form an extensive hydrogen-bonding network, which link the cations, anions and water mol­ecules into three-dimensional structure.

Related literature

For related structures, see: Chen et al. (2005[Chen, P., Yu, J. H. & Xu, R. R. (2005). J. Solid State Chem. 178, 1929-1934.]); Du et al. (2004[Du, Y., Yu, J. H. & Xu, R. R. (2004). J. Solid State Chem. 177, 2032-3037.]); Pan et al. (2005[Pan, Q. H., Yu, J. H. & Xu, R. R. (2005). Chem. J. Chin. Univ. 26, 2199-2202.], 2008[Pan, Q. H., Yu, J. H. & Xu, R. R. (2008). Chem. Mater. 20, 370-372.], 2010a[Pan, Q. H., Li, J. Y. & Bu, X.-H. (2010a). Micropor. Mesopor. Mater. 132, 453-457.],b[Pan, Q. H., Cheng, Q. & Bu, X.-H. (2010b). CrystEngComm, 12, 4198-4204.], 2011[Pan, Q. H., Cheng, Q. & Bu, X.-H. (2011). Chem. J. Chin. Univ. 32, 527-531.]); Stalder & Wilkinson (1997[Stalder, S. M. & Wilkinson, A. P. (1997). Chem. Mater. 9, 2168-2173.]); Wang et al. (2003a[Wang, Y., Yu, J. H. & Xu, R. R. (2003a). J. Solid State Chem. 170, 176-3037.],b[Wang, Y., Yu, J. H. & Xu, R. R. (2003b). Angew. Chem. Int. Ed. 42, 4089-4092.],c[Wang, Y., Yu, J. H. & Xu, R. R. (2003c). Chem. Eur. J. 9, 5048-5055.], 2004[Wang, G.-M., Sun, Y.-Q. & Yang, G.-Y. (2004). Acta Cryst. E60, m705-m707.]); Yu et al. (2001[Yu, J. H., Wang, Y. & Xu, R. R. (2001). Chem. Mater. 13, 2972-2978.]); Zhang et al. (2003a[Zhang, H. X., Zhang, J. & Yang, G. Y. (2003a). Inorg. Chem. 42, 6595-6597.],b[Zhang, H.-X., Yang, G.-Y. & Sun, Y.-Q. (2003b). Acta Cryst. E59, m185-m187.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C2H8N2)3][In(C2O4)2(CHO2)2]·2H2O

  • Mr = 656.17

  • Triclinic, [P \overline 1]

  • a = 8.2048 (16) Å

  • b = 12.016 (2) Å

  • c = 12.052 (2) Å

  • α = 79.09 (3)°

  • β = 81.45 (3)°

  • γ = 88.43 (3)°

  • V = 1153.7 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.80 mm−1

  • T = 293 K

  • 0.2 × 0.18 × 0.15 mm

Data collection
  • Rigaku R-AXIS RAPID-S diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]) Tmin = 0.686, Tmax = 1

  • 12132 measured reflections

  • 5263 independent reflections

  • 3963 reflections with I > 2σ(I)

  • Rint = 0.084

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.168

  • S = 1.05

  • 5263 reflections

  • 311 parameters

  • H-atom parameters constrained

  • Δρmax = 1.01 e Å−3

  • Δρmin = −1.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O7i 0.90 2.22 3.019 (7) 148
N1—H1B⋯O6ii 0.90 2.25 2.981 (7) 139
N2—H2A⋯O1Wiii 0.90 2.02 2.857 (7) 155
N2—H2B⋯O4iv 0.90 2.14 3.017 (6) 166
N3—H3A⋯O2Wv 0.90 2.23 3.017 (7) 146
N3—H3B⋯O6ii 0.90 2.17 3.002 (7) 154
N3—H3B⋯O8ii 0.90 2.50 3.153 (7) 130
N4—H4A⋯O2 0.90 2.11 2.915 (6) 148
N4—H4B⋯O10iv 0.90 2.33 3.102 (7) 144
N4—H4B⋯O2iv 0.90 2.53 3.166 (7) 128
N5—H5A⋯O8i 0.90 2.16 2.986 (6) 153
N5—H5B⋯O4iv 0.90 2.27 3.022 (6) 141
N5—H5B⋯O2iv 0.90 2.28 3.060 (6) 145
N6—H6A⋯O1 0.90 2.05 2.917 (7) 161
N6—H6B⋯O6ii 0.90 2.19 3.024 (7) 154
O2W—H2WA⋯O3vi 0.55 2.36 2.889 (6) 163
O2W—H2WB⋯O12vii 0.55 2.22 2.751 (7) 166
O1W—H1WA⋯O2W 0.80 2.03 2.821 (7) 169
O1W—H1WB⋯O4 0.80 2.09 2.836 (6) 156
Symmetry codes: (i) -x+2, -y+2, -z+1; (ii) -x+1, -y+2, -z+1; (iii) x, y, z+1; (iv) -x+2, -y+1, -z+1; (v) -x+1, -y+1, -z+1; (vi) -x+1, -y+1, -z; (vii) x, y-1, z.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Template synthesis is an important method to get new materials. One of the interesting strategies is employing chiral metal complexes as a template, because they are versatile and can be made with a wide of shapes, charges and particularly chirality. Up to now, aluminophosphates such as [d-Co(en)3]Al3P4O16.2H2O (Stalder et al., 1997) and [d-Co(en)3]AlP2O8.6.5H2O (Chen et al., 2005), gallium phosphates such as [d-Co(en)3][H3Ga2P4O16] (Stalder et al., 1997) and [Co(en)3][Ga3(H2PO4)6(HPO4)3] (Wang et al., 2003a), zinc phosphates such as [Co(en)3][Zn8P6O24Cl].2H2O (Yu et al., 2001) and [Co(dien)2.H3O][Zn2(HPO4)4] (Wang et al., 2003b), indium phosphate [Co(en)3][In3(H2PO4)6(HPO4)3].H2O (Du et al., 2004), germanates such as [Ni(1,2-PDA)3]2(HOCH2CH2CH2NH3)3(H3O)2[Ge7O14X3]3 (X = F, OH) (Pan et al., 2008) and [Ni(dien)2]2[GeO7O13(OH)2F3]Cl (Zhang et al., 2003a), and fluorogermanates such as [Ni(dien)2][GeF6] (Zhang et al., 2003b), [Ni(en)(TETA)][GeF6] (Wang et al., 2004), and [Ni(en)3][GeF6] (Pan et al., 2005), have been reported. Also a new concept of chirality transfer of the metal complex into the inorganic host framework has been demonstrated (Wang et al., 2003c). Recently, we reported some metal oxalate using metal complex cations as template (Pan et al., 2010a,b, 2011). When formate anions were introduced to the system, the title compound (I) - a formate oxalate mixed coordinated complex - was obtained.

The crystal structure of (I) consists of a discrete [In(C2O4)2(HCO2)2]3- anions and [Co(en)3]3+ cations (Fig. 1). The In(iii) ion is coordinated by two formate anions in a monodentate mode and two oxalate anions. The asymmetric part contains two crystalline water molecules. Intermolecular O—H···O and N—H···O hydrogen bonds (Table 1) form an extensive hydrogen-bonding network, which link cations, anions and crystalline water molecules into three-dimensional crystal structure.

Related literature top

For related structures, see: Chen et al. (2005); Du et al. (2004); Pan et al. (2005, 2008, 2010a,b, 2011); Stalder & Wilkinson (1997); Wang et al. (2003a,b,c, 2004); Yu et al. (2001); Zhang et al. (2003a,b).

Experimental top

In a typical synthesis, a mixture of In(NO3)3.5H2O (1 mmol), Co(en)3Cl3 (0.43 mmol), K2C2O4.H2O (2 mmol) and DMF (10 ml), was added to a 20 ml Teflon-lined reactor under autogenous pressure at 120 °C for 3 days.

Refinement top

C- and N-bound H atoms were positioned geometrically (C—H = 0.97Å; N—H = 0.90 Å), and refined as riding, with Uiso(H) = 1.2Ueq(parent atom).. The water' H atoms were located in a difference map, and refined as riding with as found O—H bond lengths, and with Uiso(H) fixed to 0.08 Å-2.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick,2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The content of asymmetric part of (I). Displacement ellipsoids are drawn at the 30% probability level. H atoms omitted for clarity.
Tris(ethylenediamine)cobalt(III) diformatodioxalatoindate(III) dihydrate top
Crystal data top
[Co(C2H8N2)3][In(CHO2)2(C2O4)2]·2H2OZ = 2
Mr = 656.17F(000) = 664
Triclinic, P1Dx = 1.889 Mg m3
a = 8.2048 (16) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.016 (2) ÅCell parameters from 11095 reflections
c = 12.052 (2) Åθ = 3.1–27.5°
α = 79.09 (3)°µ = 1.80 mm1
β = 81.45 (3)°T = 293 K
γ = 88.43 (3)°Block, yellow
V = 1153.7 (4) Å30.2 × 0.18 × 0.15 mm
Data collection top
Rigaku R-AXIS RAPID-S
diffractometer
5263 independent reflections
Radiation source: fine-focus sealed tube3963 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.084
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2002)
h = 1010
Tmin = 0.686, Tmax = 1k = 1515
12132 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.168H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0731P)2 + 0.3428P]
where P = (Fo2 + 2Fc2)/3
5263 reflections(Δ/σ)max = 0.002
311 parametersΔρmax = 1.01 e Å3
0 restraintsΔρmin = 1.13 e Å3
Crystal data top
[Co(C2H8N2)3][In(CHO2)2(C2O4)2]·2H2Oγ = 88.43 (3)°
Mr = 656.17V = 1153.7 (4) Å3
Triclinic, P1Z = 2
a = 8.2048 (16) ÅMo Kα radiation
b = 12.016 (2) ŵ = 1.80 mm1
c = 12.052 (2) ÅT = 293 K
α = 79.09 (3)°0.2 × 0.18 × 0.15 mm
β = 81.45 (3)°
Data collection top
Rigaku R-AXIS RAPID-S
diffractometer
5263 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2002)
3963 reflections with I > 2σ(I)
Tmin = 0.686, Tmax = 1Rint = 0.084
12132 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.168H-atom parameters constrained
S = 1.05Δρmax = 1.01 e Å3
5263 reflectionsΔρmin = 1.13 e Å3
311 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
In10.74015 (5)0.84824 (3)0.22384 (3)0.03043 (16)
Co10.91881 (8)0.71299 (6)0.70020 (6)0.02243 (19)
O10.7451 (5)0.7212 (3)0.3813 (3)0.0322 (9)
O20.7964 (6)0.5351 (3)0.4313 (3)0.0427 (11)
O30.6793 (5)0.6899 (3)0.1777 (3)0.0311 (9)
O40.7309 (5)0.5043 (3)0.2225 (3)0.0332 (9)
O50.4826 (5)0.8852 (4)0.2719 (4)0.0393 (10)
O60.3200 (5)1.0247 (4)0.3203 (4)0.0456 (11)
O70.7497 (5)0.9860 (3)0.3147 (4)0.0343 (9)
O80.5935 (5)1.1319 (4)0.3600 (4)0.0507 (12)
O91.0041 (5)0.8544 (4)0.1954 (4)0.0500 (12)
O101.0526 (6)0.6669 (4)0.2194 (4)0.0539 (13)
O110.7412 (7)0.9122 (5)0.0455 (4)0.0629 (15)
O120.6375 (8)1.0792 (5)0.0718 (5)0.0687 (16)
N10.9683 (6)0.8481 (4)0.7639 (4)0.0351 (12)
H1A1.04300.89270.71410.080*
H1B0.87600.88870.77690.080*
N20.9620 (6)0.6240 (5)0.8484 (4)0.0360 (12)
H2A0.88270.57140.87490.080*
H2B1.05920.58800.83880.080*
N30.6829 (6)0.7226 (4)0.7557 (4)0.0343 (11)
H3A0.66470.70270.83240.080*
H3B0.64740.79410.73620.080*
N40.8610 (6)0.5716 (4)0.6530 (4)0.0336 (11)
H4A0.87040.58270.57640.080*
H4B0.93140.51620.67590.080*
N51.1499 (6)0.7020 (4)0.6257 (4)0.0307 (11)
H5A1.21640.74330.65520.080*
H5B1.18370.62940.63830.080*
N60.8846 (6)0.8113 (4)0.5550 (4)0.0342 (11)
H6A0.82900.77320.51510.080*
H6B0.82450.87220.56920.080*
C11.0354 (12)0.8056 (8)0.8742 (6)0.072 (3)
H1C1.15430.79860.85820.080*
H1D1.01090.86040.92410.080*
C20.9658 (11)0.6976 (7)0.9314 (7)0.067 (2)
H2C0.85480.70810.96880.080*
H2D1.03150.66290.98930.080*
C30.5917 (7)0.6445 (6)0.7038 (6)0.0427 (16)
H3C0.57840.67950.62620.080*
H3D0.48320.62830.74770.080*
C40.6898 (7)0.5366 (5)0.7039 (5)0.0371 (14)
H4C0.68720.49460.78130.080*
H4D0.64520.48920.65900.080*
C51.1587 (7)0.7451 (5)0.5007 (5)0.0359 (14)
H5C1.12130.68750.46370.080*
H5D1.27110.76560.46670.080*
C61.0470 (8)0.8487 (5)0.4871 (5)0.0369 (14)
H6C1.09170.90980.51570.080*
H6D1.03600.87490.40740.080*
C70.7596 (7)0.6186 (5)0.3633 (5)0.0296 (12)
C80.7208 (6)0.6011 (4)0.2445 (4)0.0235 (11)
C90.4559 (7)0.9783 (5)0.3048 (5)0.0351 (14)
C100.6120 (7)1.0395 (5)0.3296 (5)0.0351 (14)
C111.0973 (8)0.7662 (7)0.2032 (6)0.0447 (16)
H11A1.21000.77890.19570.080*
C120.6927 (10)1.0096 (7)0.0090 (7)0.057 (2)
H12A0.69741.03260.06960.080*
O2W0.5103 (6)0.2921 (4)0.0086 (4)0.0538 (15)
H2WA0.4820.28610.0280.080*
H2WB0.5310.2510.0300.080*
O1W0.7148 (6)0.4807 (5)0.0054 (4)0.0612 (16)
H1WA0.6680.4220.00170.080*
H1WB0.68900.48820.0600.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
In10.0318 (3)0.0236 (3)0.0380 (3)0.00444 (17)0.01046 (18)0.00754 (18)
Co10.0216 (4)0.0219 (4)0.0252 (4)0.0017 (3)0.0058 (3)0.0063 (3)
O10.042 (2)0.025 (2)0.031 (2)0.0068 (18)0.0109 (18)0.0073 (17)
O20.068 (3)0.030 (2)0.031 (2)0.011 (2)0.019 (2)0.0007 (18)
O30.043 (2)0.022 (2)0.032 (2)0.0033 (18)0.0167 (18)0.0064 (17)
O40.043 (2)0.021 (2)0.037 (2)0.0027 (18)0.0084 (18)0.0067 (17)
O50.027 (2)0.030 (2)0.066 (3)0.0050 (18)0.013 (2)0.020 (2)
O60.030 (2)0.035 (2)0.075 (3)0.0086 (19)0.007 (2)0.019 (2)
O70.028 (2)0.025 (2)0.052 (3)0.0011 (17)0.0104 (18)0.0103 (19)
O80.045 (3)0.038 (3)0.082 (4)0.006 (2)0.019 (2)0.037 (3)
O90.029 (2)0.051 (3)0.065 (3)0.003 (2)0.001 (2)0.002 (2)
O100.044 (3)0.050 (3)0.064 (3)0.008 (2)0.001 (2)0.008 (3)
O110.080 (4)0.052 (3)0.049 (3)0.007 (3)0.019 (3)0.015 (3)
O120.094 (4)0.049 (3)0.066 (4)0.001 (3)0.037 (3)0.002 (3)
N10.029 (3)0.037 (3)0.044 (3)0.000 (2)0.006 (2)0.019 (2)
N20.036 (3)0.043 (3)0.031 (3)0.003 (2)0.009 (2)0.009 (2)
N30.032 (3)0.033 (3)0.041 (3)0.001 (2)0.007 (2)0.012 (2)
N40.034 (3)0.032 (3)0.037 (3)0.002 (2)0.008 (2)0.008 (2)
N50.028 (2)0.026 (3)0.037 (3)0.003 (2)0.004 (2)0.007 (2)
N60.039 (3)0.024 (3)0.040 (3)0.003 (2)0.013 (2)0.004 (2)
C10.111 (7)0.073 (6)0.038 (4)0.031 (5)0.019 (4)0.012 (4)
C20.097 (7)0.065 (5)0.050 (5)0.013 (5)0.037 (4)0.024 (4)
C30.029 (3)0.051 (4)0.053 (4)0.009 (3)0.010 (3)0.017 (3)
C40.034 (3)0.034 (3)0.042 (4)0.007 (3)0.002 (3)0.006 (3)
C50.039 (3)0.034 (3)0.033 (3)0.001 (3)0.002 (3)0.002 (3)
C60.045 (4)0.032 (3)0.031 (3)0.006 (3)0.003 (3)0.001 (3)
C70.033 (3)0.025 (3)0.032 (3)0.005 (2)0.007 (2)0.008 (2)
C80.026 (3)0.023 (3)0.022 (3)0.001 (2)0.006 (2)0.005 (2)
C90.030 (3)0.030 (3)0.048 (4)0.002 (3)0.008 (3)0.013 (3)
C100.030 (3)0.028 (3)0.048 (4)0.001 (3)0.012 (3)0.005 (3)
C110.027 (3)0.056 (5)0.046 (4)0.007 (3)0.003 (3)0.001 (3)
C120.057 (5)0.060 (5)0.046 (4)0.008 (4)0.015 (4)0.012 (4)
O2W0.076 (4)0.049 (3)0.046 (3)0.009 (3)0.028 (2)0.018 (2)
O1W0.066 (3)0.078 (4)0.038 (3)0.022 (3)0.005 (2)0.013 (3)
Geometric parameters (Å, º) top
In1—O112.140 (5)N4—C41.485 (7)
In1—O92.143 (4)N4—H4A0.9000
In1—O72.160 (4)N4—H4B0.9000
In1—O52.164 (4)N5—C51.489 (8)
In1—O32.171 (4)N5—H5A0.9000
In1—O12.203 (4)N5—H5B0.9000
Co1—N31.960 (5)N6—C61.489 (8)
Co1—N61.970 (5)N6—H6A0.9000
Co1—N21.976 (5)N6—H6B0.9000
Co1—N41.981 (5)C1—C21.439 (11)
Co1—N51.986 (5)C1—H1C0.9700
Co1—N11.997 (5)C1—H1D0.9700
O1—C71.292 (7)C2—H2C0.9700
O2—C71.230 (7)C2—H2D0.9700
O3—C81.280 (6)C3—C41.507 (9)
O4—C81.239 (6)C3—H3C0.9700
O5—C91.259 (7)C3—H3D0.9700
O6—C91.238 (7)C4—H4C0.9700
O7—C101.290 (7)C4—H4D0.9700
O8—C101.232 (7)C5—C61.524 (8)
O9—C111.286 (8)C5—H5C0.9700
O10—C111.229 (8)C5—H5D0.9700
O11—C121.247 (9)C6—H6C0.9700
O12—C121.262 (10)C6—H6D0.9700
N1—C11.509 (9)C7—C81.565 (7)
N1—H1A0.9000C9—C101.587 (8)
N1—H1B0.9000C11—H11A0.9300
N2—C21.459 (9)C12—H12A0.9300
N2—H2A0.9000O2W—H2WA0.5459
N2—H2B0.9000O2W—H2WB0.5460
N3—C31.493 (8)O1W—H1WA0.8043
N3—H3A0.9000O1W—H1WB0.8031
N3—H3B0.9000
O11—In1—O988.9 (2)Co1—N5—H5B109.9
O11—In1—O7110.48 (19)H5A—N5—H5B108.3
O9—In1—O786.65 (17)C6—N6—Co1109.6 (4)
O11—In1—O594.8 (2)C6—N6—H6A109.8
O9—In1—O5163.60 (18)Co1—N6—H6A109.8
O7—In1—O577.07 (15)C6—N6—H6B109.8
O11—In1—O382.94 (18)Co1—N6—H6B109.8
O9—In1—O3104.71 (18)H6A—N6—H6B108.2
O7—In1—O3162.86 (16)C2—C1—N1111.7 (6)
O5—In1—O391.61 (16)C2—C1—H1C109.3
O11—In1—O1157.73 (19)N1—C1—H1C109.3
O9—In1—O190.38 (17)C2—C1—H1D109.3
O7—In1—O191.69 (15)N1—C1—H1D109.3
O5—In1—O192.12 (16)H1C—C1—H1D107.9
O3—In1—O175.71 (14)C1—C2—N2109.6 (6)
N3—Co1—N689.5 (2)C1—C2—H2C109.8
N3—Co1—N291.9 (2)N2—C2—H2C109.8
N6—Co1—N2175.7 (2)C1—C2—H2D109.8
N3—Co1—N485.3 (2)N2—C2—H2D109.8
N6—Co1—N494.4 (2)H2C—C2—H2D108.2
N2—Co1—N489.8 (2)N3—C3—C4108.0 (5)
N3—Co1—N5173.0 (2)N3—C3—H3C110.1
N6—Co1—N585.1 (2)C4—C3—H3C110.1
N2—Co1—N593.7 (2)N3—C3—H3D110.1
N4—Co1—N590.6 (2)C4—C3—H3D110.1
N3—Co1—N191.9 (2)H3C—C3—H3D108.4
N6—Co1—N190.6 (2)N4—C4—C3106.1 (5)
N2—Co1—N185.3 (2)N4—C4—H4C110.5
N4—Co1—N1174.2 (2)C3—C4—H4C110.5
N5—Co1—N192.7 (2)N4—C4—H4D110.5
C7—O1—In1113.2 (3)C3—C4—H4D110.5
C8—O3—In1114.3 (3)H4C—C4—H4D108.7
C9—O5—In1114.6 (4)N5—C5—C6106.6 (5)
C10—O7—In1113.9 (4)N5—C5—H5C110.4
C11—O9—In1124.1 (5)C6—C5—H5C110.4
C12—O11—In1122.2 (5)N5—C5—H5D110.4
C1—N1—Co1107.6 (4)C6—C5—H5D110.4
C1—N1—H1A110.2H5C—C5—H5D108.6
Co1—N1—H1A110.2N6—C6—C5105.9 (5)
C1—N1—H1B110.2N6—C6—H6C110.6
Co1—N1—H1B110.2C5—C6—H6C110.6
H1A—N1—H1B108.5N6—C6—H6D110.6
C2—N2—Co1110.7 (4)C5—C6—H6D110.6
C2—N2—H2A109.5H6C—C6—H6D108.7
Co1—N2—H2A109.5O2—C7—O1126.1 (5)
C2—N2—H2B109.5O2—C7—C8118.4 (5)
Co1—N2—H2B109.5O1—C7—C8115.5 (5)
H2A—N2—H2B108.1O4—C8—O3125.3 (5)
C3—N3—Co1108.8 (4)O4—C8—C7118.6 (5)
C3—N3—H3A109.9O3—C8—C7116.1 (4)
Co1—N3—H3A109.9O6—C9—O5125.9 (6)
C3—N3—H3B109.9O6—C9—C10118.0 (5)
Co1—N3—H3B109.9O5—C9—C10116.1 (5)
H3A—N3—H3B108.3O8—C10—O7125.8 (5)
C4—N4—Co1110.4 (4)O8—C10—C9118.9 (5)
C4—N4—H4A109.6O7—C10—C9115.3 (5)
Co1—N4—H4A109.6O10—C11—O9126.7 (6)
C4—N4—H4B109.6O10—C11—H11A116.7
Co1—N4—H4B109.6O9—C11—H11A116.7
H4A—N4—H4B108.1O11—C12—O12124.2 (7)
C5—N5—Co1109.0 (4)O11—C12—H12A117.9
C5—N5—H5A109.9O12—C12—H12A117.9
Co1—N5—H5A109.9H2WA—O2W—H2WB109.4
C5—N5—H5B109.9H1WA—O1W—H1WB98.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O7i0.902.223.019 (7)148
N1—H1B···O6ii0.902.252.981 (7)139
N2—H2A···O1Wiii0.902.022.857 (7)155
N2—H2B···O4iv0.902.143.017 (6)166
N3—H3A···O2Wv0.902.233.017 (7)146
N3—H3B···O6ii0.902.173.002 (7)154
N3—H3B···O8ii0.902.503.153 (7)130
N4—H4A···O20.902.112.915 (6)148
N4—H4B···O10iv0.902.333.102 (7)144
N4—H4B···O2iv0.902.533.166 (7)128
N5—H5A···O8i0.902.162.986 (6)153
N5—H5B···O4iv0.902.273.022 (6)141
N5—H5B···O2iv0.902.283.060 (6)145
N6—H6A···O10.902.052.917 (7)161
N6—H6B···O6ii0.902.193.024 (7)154
O2W—H2WA···O3vi0.552.362.889 (6)163
O2W—H2WB···O12vii0.552.222.751 (7)166
O1W—H1WA···O2W0.802.032.821 (7)169
O1W—H1WB···O40.802.092.836 (6)156
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+1, y+2, z+1; (iii) x, y, z+1; (iv) x+2, y+1, z+1; (v) x+1, y+1, z+1; (vi) x+1, y+1, z; (vii) x, y1, z.

Experimental details

Crystal data
Chemical formula[Co(C2H8N2)3][In(CHO2)2(C2O4)2]·2H2O
Mr656.17
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.2048 (16), 12.016 (2), 12.052 (2)
α, β, γ (°)79.09 (3), 81.45 (3), 88.43 (3)
V3)1153.7 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.80
Crystal size (mm)0.2 × 0.18 × 0.15
Data collection
DiffractometerRigaku R-AXIS RAPID-S
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2002)
Tmin, Tmax0.686, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
12132, 5263, 3963
Rint0.084
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.168, 1.05
No. of reflections5263
No. of parameters311
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.01, 1.13

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalClear (Rigaku/MSC, 2002), SHELXS97 (Sheldrick,2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O7i0.902.223.019 (7)148
N1—H1B···O6ii0.902.252.981 (7)139
N2—H2A···O1Wiii0.902.022.857 (7)155
N2—H2B···O4iv0.902.143.017 (6)166
N3—H3A···O2Wv0.902.233.017 (7)146
N3—H3B···O6ii0.902.173.002 (7)154
N3—H3B···O8ii0.902.503.153 (7)130
N4—H4A···O20.902.112.915 (6)148
N4—H4B···O10iv0.902.333.102 (7)144
N4—H4B···O2iv0.902.533.166 (7)128
N5—H5A···O8i0.902.162.986 (6)153
N5—H5B···O4iv0.902.273.022 (6)141
N5—H5B···O2iv0.902.283.060 (6)145
N6—H6A···O10.902.052.917 (7)161
N6—H6B···O6ii0.902.193.024 (7)154
O2W—H2WA···O3vi0.552.362.889 (6)163
O2W—H2WB···O12vii0.552.222.751 (7)166
O1W—H1WA···O2W0.802.032.821 (7)169
O1W—H1WB···O40.802.092.836 (6)156
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+1, y+2, z+1; (iii) x, y, z+1; (iv) x+2, y+1, z+1; (v) x+1, y+1, z+1; (vi) x+1, y+1, z; (vii) x, y1, z.
 

Acknowledgements

This work was supported by the Priming Scientific Research Foundation of Hainan University (grant No. kyqd1051).

References

First citationChen, P., Yu, J. H. & Xu, R. R. (2005). J. Solid State Chem. 178, 1929–1934.  CrossRef CAS Google Scholar
First citationDu, Y., Yu, J. H. & Xu, R. R. (2004). J. Solid State Chem. 177, 2032–3037.  Web of Science CrossRef Google Scholar
First citationPan, Q. H., Cheng, Q. & Bu, X.-H. (2010b). CrystEngComm, 12, 4198–4204.  Web of Science CSD CrossRef CAS Google Scholar
First citationPan, Q. H., Cheng, Q. & Bu, X.-H. (2011). Chem. J. Chin. Univ. 32, 527–531.  CAS Google Scholar
First citationPan, Q. H., Li, J. Y. & Bu, X.-H. (2010a). Micropor. Mesopor. Mater. 132, 453–457.  Web of Science CSD CrossRef CAS Google Scholar
First citationPan, Q. H., Yu, J. H. & Xu, R. R. (2005). Chem. J. Chin. Univ. 26, 2199–2202.  CAS Google Scholar
First citationPan, Q. H., Yu, J. H. & Xu, R. R. (2008). Chem. Mater. 20, 370–372.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStalder, S. M. & Wilkinson, A. P. (1997). Chem. Mater. 9, 2168–2173.  CSD CrossRef CAS Web of Science Google Scholar
First citationWang, G.-M., Sun, Y.-Q. & Yang, G.-Y. (2004). Acta Cryst. E60, m705–m707.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, Y., Yu, J. H. & Xu, R. R. (2003a). J. Solid State Chem. 170, 176–3037.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, Y., Yu, J. H. & Xu, R. R. (2003b). Angew. Chem. Int. Ed. 42, 4089–4092.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, Y., Yu, J. H. & Xu, R. R. (2003c). Chem. Eur. J. 9, 5048–5055.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYu, J. H., Wang, Y. & Xu, R. R. (2001). Chem. Mater. 13, 2972–2978.  CrossRef CAS Google Scholar
First citationZhang, H.-X., Yang, G.-Y. & Sun, Y.-Q. (2003b). Acta Cryst. E59, m185–m187.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, H. X., Zhang, J. & Yang, G. Y. (2003a). Inorg. Chem. 42, 6595–6597.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages m579-m580
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds